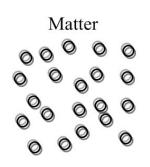
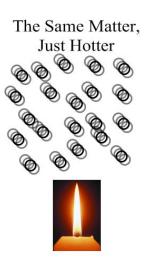
Review Sheet for Science 8 Unit 5: Thermal Energy

Thermal energy	Total energy of the particles in matter; potential energy and kinetic energy of atoms	
Heat	The thermal energy that transfers from something at a high temperature to something at a low temperature	
Temperature	A measure of the average kinetic energy of an object; <u>how fast the particles are moving</u>	
Specific heat	The amount of energy (in Joules) needed to heat something by a <u>certain amount</u>	
Absolute zero	 Zero (0) kelvin -273°C the temperature at which all atomic motion stops 	
Conduction	The transfer of thermal energy by collisions between particles in matter; requires direct contact	
Convection	Transfer of thermal energy in a fluid by the movement of warmer and cooler fluid fr om place to place ; can only happen in a <u>fluid</u>	
Fluid	Matter that <u>flows;</u> any liquid or gas	

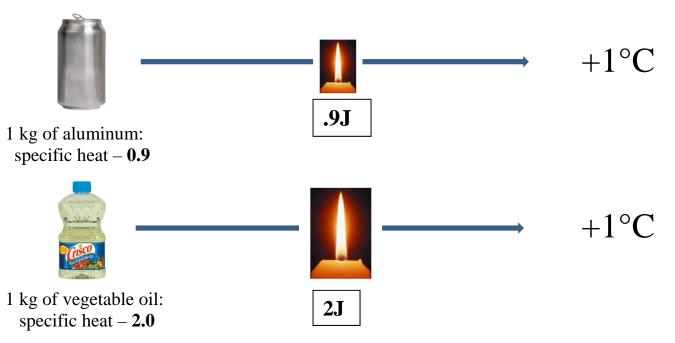

Convection current	Rising and sinking action in a fluid as portions of the fluid are heated and then cooled	
Radiation	Transfer of energy by electromagnetic waves (light, microwaves, etc.); when these waves are absorbed, the result is heat	
Reflection	When radiation <u>bounces off</u> matter Reflectors are smooth and/or light-colored	
Absorption	When radiation is soaked up by matter, causing the temperature of that matter to increase If the surface of the matter is rough and/or dark- colored , the matter will <u>absorb more radiation</u> and its temperature will increase	
Insulation	Material that prevents or slows heat transfer <u>Good insulators</u> : air, vacuum, wood, plastics, fiberglass	Good insulators are bad conductors! Good conductors are bad insulators!
Conductor	Material that increases or speeds heat transfer <u>Good conductors</u> : metals (especially silver, gold, copper), water	itors are bad ictors! ctors are bad ators!


Thermal Energy

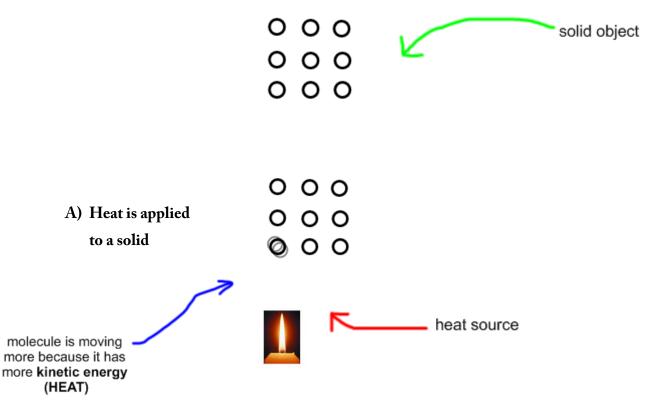
Thermal energy is atomic motion in matter. All the particles in matter are moving. When heat is added, the particles move faster

Higher **temperature** = more atomic motion

No atomic motion = **absolute zero**



Absolute Zero

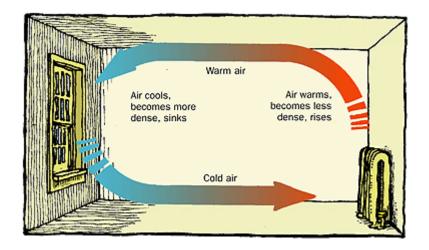

Specific Heat

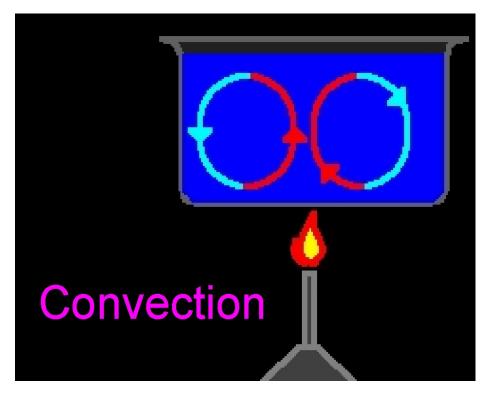
- Amount of energy (in joules) needed to change the temperature of something by 1 Kelvin
- This value is different for different substances!

Conduction:

- Molecules bounce into each other to give each other energy
- Works best in a **solid**

- B) Vibrating molecule bumps into nearby molecules, making them move too (giving them <u>kinetic energy</u>/HEAT)
- C) Each vibrating molecule keeps bumping into others until they are all moving





Convection:

- Movement of heat within a fluid
- A fluid is a **liquid** or a **gas** (anything that <u>flows</u>)
- Hot fluids rise up, cold fluids sink down
- This tends to create a <u>circular flow</u> (convection current) within the fluid

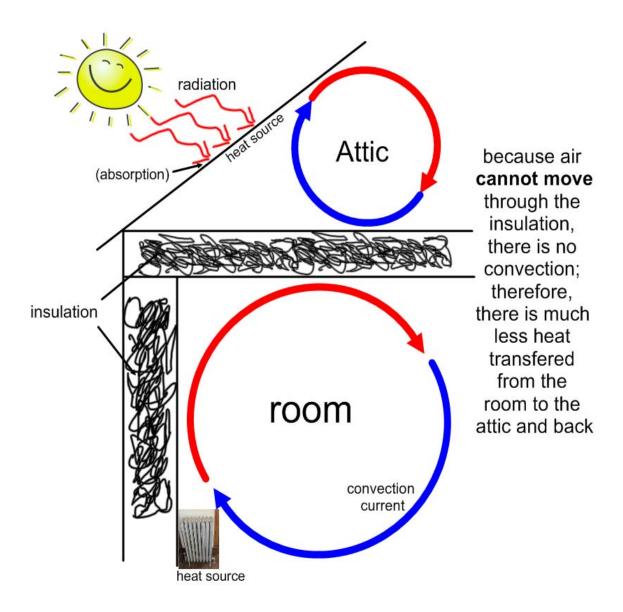
Radiation, Absorption, Reflection:

Radiation – energy travels without physical contact, and can travel through vacuum

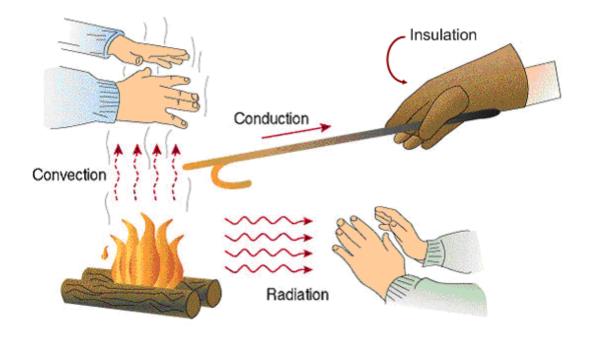
Absorption – matter "soaks up" energy and gets hotter

Reflection – some energy bounces off matter and is not absorbed

Dark, rough surfaces <u>reflect</u> <u>less</u> and <u>absorb more</u>



Light, smooth surfaces <u>reflect more</u> and <u>absorb less</u>


Insulation:

Insulation "<u>blocks</u>" thermal energy from travelling from one place to another, such as into and out of your house:

Things to Think About:

The soda you bring to your picnic isn't cold. Ugh! You have a cooler full of ice, so you put the soda in. Your friend Annie says you should add water to make the soda cool off faster. Is she right? Why or why not?

Why is a down coat so warm? Describe what happens using the terminology of thermal energy transfer.

Jorge stirs his hot tea with a steel spoon. He is surprised when his sister Cynthia yelps as she stirs her own hot tea with a silver spoon. Why did Cynthia burn her fingers when Jorge did not? Consider conduction, insulation, and specific heat.

