ABSORPTION & RADIATION OF ENERGY

INTRODUCTION: Earth's surface varies in both chemical and physical properties. The wavelength of solar radiation that is absorbed by an earth material is changed and re-radiated as heat. The characteristics of the surface determine what happens to the incoming solar radiation.

OBJECTIVE: You will determine how the surface characteristics of a material affect the relative rates of energy absorption and radiation.

VOCABULARY:

Lab Activity

absorption: reflection:

re-radiation: radiative balance:

PROCEDURE:

- 1. Calibrate your thermometers.
- 2. Arrange the black and white (shiny) cans as shown in the diagram.
- 3. On the Report Sheet, record the temperature of each thermometer at Time 0.
- 4. Turn on the lamp and read the thermometers at one minute intervals for 10 minutes. Record these data on the Report Sheet.
- 5. Without disturbing the position of the cans, turn off the lamp and turn it away from the area of the cans. CONTINUE TIMING.
- 6. Continue to take temperature readings every minute for another 10 minutes recording them on the Report Sheet.
- 7. Graph your data. Plot both curves on the same set of axes. Place time on the horizontal axis.

DIAGRAM

REPORT SHEET

Time in minutes	Black Can Temperature in°C	White Can Temperature in°C							
0									
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									

Time in minutes	Black Can Temperature in°C	White Can Temperature in°C							
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									

ABSORBTION AND RADIATION GRAPH

DISCUSSION QUESTIONS: (Answer in Complete Sentences)

- 1. Why was it important to place each can an equal distance from the lamp?
- 2. After 10 minutes why was it necessary to turn the lamps away from the area of the cans?
- 3. Which can absorbed energy more quickly? How does your graph illustrate this?
- 4. Which can reradiated energy more quickly? How does your graph illustrate this?
- 5. Which can had the greatest rate of change throughout this experiment?
- 6. What evidence can you find from your graph that indicates neither cup heated up nor cooled off at a constant rate?
- 7. If you know that a surface is a good absorber of energy, what can you infer about its ability to radiate energy?
- 8. What would cause the graph lines tend to level off near the end of 20 minutes?
- 9. How do the wavelengths absorbed by the cans differ from the wavelengths radiated from the cans?

CONCLUSION: What characteristic of the surfaces used in this lab determined the rates of heating and cooling?