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http:www.damtp.cam.ac.uk/user/examples and find N23L.

1



C
op

yr
ig

ht
 ©

 2
01

0 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Chapter 1

1. Small oscillations

This chapter contains the first set of syllabus items: small oscillations and
equilibrium; normal modes and normal coordinates, examples, e.g. vibrations
of linear molecules such as CO2.

Administrative note: All footnotes are non-examinable: you don’t have to read them.
Other sections in small print are either (a) administrative, like this section, or (b) non-
examinable if flagged as such, like the Preamble below, or (c) worked examples that will
not be covered in the lectures, or (d) reminders of relevant parts of earlier courses. For
this course it’s recommended that you revise vector spaces and matrices, including unitary
transformations. Also needed will be Lagrange’s equations from dynamics.

As far as I am aware these printed notes are accurate. However, if anyone de-
tects an error or obscurity, no matter how minor, please email me as soon as possible
(mbg15@damtp.cam.ac.uk). Or, if you prefer anonymity, email nst@maths.cam.ac.uk.
Any necessary corrections will go into the online copy of the notes
(N23L at http://www.damtp.cam.ac.uk/user/examples). See the date at bottom left of
page 1.

Preamble (non-examinable)

Science, like ordinary perception, works by fitting models to data. (Models are partial,
approximate representations of reality, with some models fitting better than others. An
important class of models in the natural sciences comes under the heading classical theory
of small oscillations, small-oscillations theory for short. It is the first topic in these lectures.

The classical theory has countless applications, ranging from probing the Sun’s interior
to environmental noise control, the design of earthquake-resistant structures, jet-engine
and mobile-phone design — and on and on. And it is an essential prelude to the quan-
tum theory of molecular vibrations and energy levels. That in turn tells you how lasers
and quantum computing work and why, for instance, oxygen and nitrogen but not CO2

are transparent to infrared radiation — this involves small oscillations on femtosecond
timescales — and why life as we know it depends on temperatures staying within a certain
range. Small-oscillations theory underlies all of this.
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1.1 Examples

Example 1.1 The simple pendulum

For small oscillations in a fixed vertical plane, the pendulum is a system
with one degree of freedom exhibiting harmonic motion, in the sense of simple
sinusoidal motion.

Θ

l

Fig. 1: A simple pendulum of length l with a mass m.

We regard the pendulum as a massless rod of constant length l, pivoted to a
fixed point at one end and with a point mass m attached at the other. For
angular displacement θ(t) the equation of motion is1

mlθ̈ = −mg sin θ

where the dots mean differentiation with respect to time t. For small θ, the
equation linearizes to

θ̈ = −g

l
θ

whose general solution is

θ = A sin ω(t − t0), where ω2 = g/l .

The solution has two arbitrary constants of integration, the amplitude A and
the phase or phase angle, ωt0.

1The tangential acceleration is simply lθ̈ because of the condition l = constant, a
constraint on the motion; without that constraint there’d be another contribution 2l̇θ̇ .
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Example 1.2 Coupled pendula: equal masses

First we take identical pendula with masses m on massless rods of length l,
joined by a massless spring with restoring force k × extension. The length of
the spring is such that the system is in static equilibrium when the pendula
are vertical. Again we assume that motion is confined to a vertical plane.

The extension of the spring is l(θ2 − θ1), to sufficient accuracy in the
linearization for small θ1 and θ2.

Θ2Θ1

l

l l

Fig. 2: Coupled pendula of equal masses and lengths l.

For small oscillations, therefore, the equations of motion are

mlθ̈1 = −mgθ1 + kl(θ2 − θ1) (1.1)

mlθ̈2 = −mgθ2 + kl(θ1 − θ2). (1.2)

A typical solution for θ1 would look quite complicated:

Fig. 3: The generic behaviour for θ1(t) is not harmonic motion. (The
expression (1.3) below is plotted for ω = 1, Ω =

√
1.4, A = B = 1.)
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Energy is transferred back and forth between the two pendula. This is not
harmonic (i.e. simple sinusoidal) motion. However, there are harmonic so-
lutions of the coupled equations, which are obvious both from inspection of
the equations and from physical intuition:

(i) In-phase solution, θ1 = θ2. The joining spring exerts no force, since its
length doesn’t change. Each of the equations reduces to the same form, e.g.

mlθ̈1 = −mgθ1 ,

as if the two pendula were uncoupled. So θ1 = θ2 = A sin ω(t − t0), where
again A and t0 are arbitrary constants and ω2 = g/l.

(ii) 180◦ out-of-phase solution, θ1 = −θ2. Each equation again reduces
to the same form, e.g.

mlθ̈1 = −(mg + 2kl)θ1 ,

with solution
θ1 = B sin Ω(t − t1),

where Ω2 = g/l + 2k/m. Notice that Ω > ω, though not by much if 2kl/mg
is small.

Each of these two special solutions has a single, pure frequency, namely

ω =
√

g/l in case (i), Ω =
√

g/l + 2k/m in case (ii).

The two simple modes of oscillation represented by these special solutions are
called normal modes of oscillation. Their frequencies are called normal
frequencies, short for ‘normal-mode frequencies’.

The general solution for θ1 can be written as linear combinations of the
normal-mode solutions, involving the four arbitrary constants A, B, t0 and
t1, i.e.

θ1 = A sin ω(t − t0) + B sin Ω(t − t1) . (1.3)

It is the general solution because (i) it certainly satisfies the equations,
being just the sum of two solutions — the principle of superposition
applying because the equations are linear — and (ii) it contains the correct
number, four, of arbitrary constants. The corresponding general solution for
θ2 is evidently

θ2 = A sin ω(t − t0) − B sin Ω(t − t1) . (1.4)
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This follows from the relations θ1 = θ2 and θ1 = −θ2 already noted, respec-
tively, for the in-phase (A 6= 0, B = 0) and out-of-phase (A = 0, B 6= 0)
solutions.

If Ω/ω is not equal to any rational number (ratio of integers), then the
general solution is not periodic. The case of figure 3 above illustrates this
point, since Ω/ω =

√
1.4 =

√
(7/5).

The special linear combinations θ1 + θ2 and θ1 − θ2, which do oscillate
simple harmonically and are, therefore, periodic — specifically, θ1 + θ2 =
2A sin ω(t − t0), and θ1 − θ2 = 2B sin Ω(t − t1) — are called the normal
coordinates for this problem.

Example 1.3 Coupled pendula with unequal masses; Lagrange’s equations

The setup is as in Example 1.2 except that the masses are taken to be
different, m1 and m2 say. This time we use a more sophisticated approach,
which will point toward the general theory.

Although we could use the natural coordinates x1 and x2 (the position
vectors of the masses) together with the two constraints (the two rods have
constant lengths), it is easier to use the generalized coordinates θ1 and θ2 as
before. We can then use a standard result of dynamics, Lagrange’s equations,
a recipe for writing down the equations of motion for a very general class of
systems.

(Recall that generalized coordinates in dynamics means any set of numbers that

specifies the configuration of the system at a given instant. The configuration means

the spatial locations and orientations of all its components, hence the distribution of mass

in the system, taking account of any constraints — in this case the fact that l = constant.

The generalized coordinates can be angles, lengths, areas, volumes or whatever is relevant

and convenient. Here, of course, it’s angles that are relevant and convenient.)

In our case there are two generalized coordinates and therefore two La-
grange’s equations, one of which is

d

dt

(

∂L
∂θ̇1

)

− ∂L
∂θ1

= 0

and the other the same with suffix 2 instead of 1. Here the Lagrangian
function L, ‘Lagrangian’ for short, is defined to be the difference

L = T − V

6
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where T and V are the kinetic and potential energies of the whole system
expressed in terms of the generalized coordinates and their time derivatives,
in our case θ1, θ2, θ̇1, and θ̇2.

(The partial derivatives in Lagrange’s equations then make sense. For instance ∂L/∂θ̇1

means, by definition, differentiation that varies θ̇1 while artificially holding θ1, θ2, and

θ̇2 constant. That is, these partial derivatives refer only to the prescribed functional

dependence of L upon its four arguments θ1, θ2, θ̇1, and θ̇2. At this stage the symbols θ1,

θ2, θ̇1, and θ̇2 mean just the four arguments of L, not the functions of time required to

describe the dynamical evolution.)

For our system the total kinetic energy T is exactly 1
2
m1l

2θ̇2
1 + 1

2
m2 l

2θ̇2
2,

a function of θ̇1, θ̇2 alone, and the total potential energy is evidently a function
V (θ1, θ2) of θ1 and θ2 alone — i.e. V , being the gravitational plus the elastic
energy, is a function of the system configuration alone and not of its rate of
change. Therefore L has the form

L = 1
2
m1l

2θ̇2
1 + 1

2
m2 l

2θ̇2
2 − V (θ1, θ2) .

(Thus, for instance, ∂L/∂θ̇1 = m1l
2θ̇1. And remember that the d/dt in Lagrange’s

equations is a different animal altogether; it does, of course, refer to the time dependence
of the dynamical evolution; thus (d/dt) (∂L/∂θ̇1) = m1l

2θ̈1.)

The total potential energy V (θ1, θ2) is exactly

V = m1gl(1 − cos θ1) + m2gl(1 − cos θ2)

+1
2
k

{

[

(b − l sin θ1 + l sin θ2)
2 + (l cos θ2 − l cos θ1)

2

]1/2

− b

}2

,

where b is the natural length of the spring, which is also the separation of the
two pivots. Since the spring has restoring force k × extension, its potential
energy is 1

2
k × extension2, hence the rather complicated second line, in-

volving the sum of the squares of the horizontal and vertical displacements.
Then, in the same way as before, the extension of the spring is lθ2 − lθ1,
to sufficient approximation (being the difference between the horizontal dis-
placements). Thus for small amplitude, correct to leading order, which for
the energies is quadratic order. the total potential energy is approximately

V = 1
2
m1glθ2

1 + 1
2
m2glθ2

2 + 1
2
kl2(θ2 − θ1)

2
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. In summary, therefore, the Lagrangian function is

L(θ1, θ2, θ̇1, θ̇2) = 1
2
m1l

2θ̇2
1 + 1

2
m2 l

2θ̇2
2 − 1

2
m1glθ2

1 − 1
2
m2glθ2

2 − 1
2
kl2(θ2 − θ1)

2 ;

and the equations of motion are

m1lθ̈1 = −m1gθ1 − kl(θ1 − θ2) (1.5)

m2 lθ̈2 = −m2gθ2 + kl(θ1 − θ2) (1.6)

or, in matrix form,

(

m1l 0
0 m2 l

) (

θ̈1

θ̈2

)

=

(

−m1g − kl kl
kl −m2g − kl

) (

θ1

θ2

)

. (1.7)

This matrix equation can be rewritten as

Tẍ = −Vx

where the column vector x = (θ1, θ2)
T and where the matrices

T =

(

m1l
2 0

0 m2 l
2

)

, V =

(

−m1gl − kl2 kl2

kl2 −m2gl − kl2

)

, (1.8)

have been defined in a standard way, such that the Lagrangian

L = 1
2
Tij θ̇iθ̇j − 1

2
Vijθiθj (1.9)

to quadratic order (summation convention, i, j each running from 1 to 2).

There are various ways of solving these equations. The most elementary
is to use (1.5) to eliminate θ2 from (1.6). This results in a fourth order
equation with constant coefficients for θ1, the general solution of which will
be a sum of four complex exponential terms.

(As usual it will be convenient to use complex exponentials in place of sines and
cosines. After solving the equations we can take the real part, which also satisfies the
equations because they are linear equations with real coefficients.)

Since we know from the above reasoning that the solution will contain
only exponentials, we may as well try immediately a solution of the form

θ1 = a1e
iωt, θ2 = a2e

iωt ,

8
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where a1 and a2 are constants. By definition this will be a normal mode,
because the coordinates will oscillate sinusoidally with the same frequency.
For such a solution we can replace each time derivative in equation (1.7) with
iω and cancel the exponentials, giving

−ω2

(

m1l 0

0 m2 l

)(

a1

a2

)

=

(−m1g − kl kl

kl −m2g − kl

) (

a1

a2

)

(1.10)

i.e.
(

ω2m1l − m1g − kl kl

kl ω2m2 l − m2g − kl

) (

a1

a2

)

= 0 . (1.11)

This equation has nontrivial solutions only if ω2 takes values satisfying

∣

∣

∣

∣

∣

∣

ω2m1l − m1g − kl kl

kl ω2m2 l − m2g − kl

∣

∣

∣

∣

∣

∣

= 0 . (1.12)

Calculating the determinant gives a quadratic equation in ω2,

(ω2m1l − m1g − kl)(ω2m2 l − m2g − kl) − (kl)2 = 0 ,

i.e.
m1m2(ω

2l − g)2 − (m1 + m2)((ω
2l − g)kl = 0 ,

which has solutions

ω2
1 =

g

l
and ω2

2 =
g

l
+

k(m1 + m2)

m1m2

generalizing those on page 5. Corresponding to each of these solutions, there
is a pair of amplitudes

(a(1)

1 , a(1)

2 ) and (a(2)

1 , a(2)

2 )

that can be determined up to an overall scale factor from equation (1.11).
Thus for ω1 we have

(−kl kl

kl −kl

)





a
(1)
1

a
(1)
2



 = 0 , (1.13)

9
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so that a
(1)
1 = a

(1)
2 . This corresponds to the two masses swinging in phase.

For ω2, we have

(

(m1/m2)kl kl

kl (m2/m1)kl

)





a
(2)
1

a
(2)
2



 = 0 , (1.14)

so that m1a
(2)
1 = −m2a

(2)
2 . This corresponds to the two masses swinging

180◦ out of phase, with scaled amplitudes. By picturing the situation and
remembering Newton’s third law — the spring exerts equal and opposite
forces — one can see that the accelerations and therefore the amplitudes
must scale in just this way. (It’s easiest to consider first the limit g/l → 0.)

As in the case of equal masses, we can find the normal coordinates — the
special linear combinations of θ1 and θ2 that oscillate simple harmonically,
with a single, pure frequency, in this case either ω1 or ω2. This can be done
by taking linear combinations of equations (1.5) with (1.6). Adding them
gives

l(m1θ̈1 + m2θ̈2) = −g(m1θ1 + m2θ2)

whereas dividing the first by m1, the second by m2, and subtracting gives

l(θ̈1 − θ̈2) = −
(

g + kl(m−1
1 + m−1

2 )
)

(θ1 − θ2) .

So (m1θ1 +m2θ2), (θ1−θ2) are the normal coordinates for this problem.

Remark: In more complicated small-oscillations problems, it is worth pay-
ing attention to symmetry properties. There are many important problems
with symmetries; that is why group theory is so important in physics and
chemistry. The usefulness of symmetry considerations will be illustrated in
a worked example below (equilateral triangle problem, Example 1.5) and at
the end of the the course.

The pendulum problem just analysed has an obvious reflectional sym-
metry in the case m1 = m2 . In that respect it is like the CO2 molecule
(Example 1.4 below). The equations of motion express the symmetry in that
they are unaltered by the transformation θ1 ↔ −θ2, when m1 = m2. (This
is shorthand for making the substitutions θ1 = −θnew

2 , θ2 = −θnew
1 and then

dropping the superscripts.) Notice that it is the second of the normal modes
found above that’s invariant under this particular transformation. That is,
any motion described by the second normal mode alone looks exactly the

10
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same when reflected about a vertical plane halfway between the two piv-
ots. Typically, for each symmetry of the system, there will be at least one
invariant mode.

1.2 General analysis of small oscillations

1.2.1 Lagrange’s equations

We consider a system with N degrees of freedom, i.e. one that can be de-
scribed by means of N generalized coordinates

q1, q2, . . . , qN .

We may refer to these coordinates as the vector q, meaning column vector
as before.

Let V (q) be the potential energy of the system and assume that the
coordinates have been chosen so that q = 0 is a position of stable equilibrium.
Expanding V (q) by Taylor series about the origin for small q gives (using
the summation convention and writing ∂2V/∂qi∂qj|q=0 = Vij)

V (q) = V (0) + 1
2
Vijqiqj + · · ·

where Vij represents the components of a constant, symmetric, semi-positive
matrix V. Once again there are no linear terms, since ∂V/∂qi = 0 at q = 0,
this being the condition for equilibrium. We will take V (0) = 0, without loss
of generality, since this constant plays no part in determining the motion.

(V is semi-positive or non-negative, i.e. Vijqiqj > 0 for all q, implying that all the
forces derived from the potential are either restoring forces or zero.)

Let T be the kinetic energy of the system, which will generally depend
on q and q̇. To second order, however, we assume that it can be written in
the form

T = 1
2
Tij q̇iq̇j,

where Tij represent the components of a constant, symmetric positive-definite
matrix T.

(Unlike V, T is taken to be positive definite. That is, Tij q̇iq̇j > 0 for all nonzero q̇.
Thus, all modes of oscillation contribute to the kinetic energy at lowest order. If q has
dimensions of length, then T has dimensions of mass; if q is dimensionless (e.g. angles),
then T has dimensions of moment of inertia. If the qi have a variety of dimensions —

11
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e.g. lengths, angles, areas — then the matrix elements Tij have a corresponding variety of
dimensions and similarly for the Vij .)

The Lagrangian for the system is, to first nontrivial order (i.e. quadratic),

L = T − V = 1
2
Tij q̇iq̇j − 1

2
Vijqiqj .

Lagrange’s equations are

d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= 0 (i = 1, ...N) .

Therefore the equations of motion (equivalent to Newton’s laws) are the
following system of N coupled second order linear equations:

Tij q̈j + Vijqj = 0, (1.15)

1.2.2 Normal modes

The idea of normal modes is the same as before. The normal modes are
those special solutions of (1.15) that oscillate with a single, pure frequency.
To find them try complex exponentials or, equally well,

qi(t) = Qi sin ω(t − t0) ,

where Q is independent of t. Substitution into the equations of motion gives

−ω2TijQj + VijQj = 0 (1.16)

or in matrix notation, with Q = {Q1, Q2, . . . , QN}T,

(−ω2T + V)Q = 0 . (1.17)

Since we are looking for a nonzero solution Q, linear algebra tells us that

det(−ω2T + V) = 0 . (1.18)

This is a polynomial of degree N in ω2. The solutions are the normal fre-
quencies squared. The normal frequencies must be real (their squares non-
negative), since we can multiply (1.16) by Qi and sum to give

ω2 =
VijQiQj

TijQiQj

,

12
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This expression2 is non-negative under our assumptions about T and V.
In the special case T = I, the solutions for ω2 are simply the eigenvalues of

the symmetric matrix V. So in the general case where T 6= I we’ll call them
the generalized eigenvalues of the problem (1.17), and the corresponding
vectors Q the generalized eigenvectors.3

Let the normal frequencies, defined as the positive square roots of the
generalized eigenvalues, be

ω1, ω2, ω3, . . . , ωN ,

and let the corresponding generalized eigenvectors be

Q(1), Q(2), . . . , Q(N)

each with ith component

Q(1)

i , Q(2)

i , . . . , Q(N)

i

(i = 1, . . . , N) so that the generalized eigenvalue for the mth normal mode
satisfies

ω2
m =

VijQ
(m)

i Q(m)

j

TijQ
(m)

i Q(m)

j

(1.19)

as already noted. Then we can write the general solution in the form

q(t) =
N

∑

m=1

A(m)Q(m) sin ωm(t − t(m)

0 ) , (1.20)

2The expression is known as Rayleigh’s formula, or Rayleigh’s quotient: for ω 6= 0
it has the useful ‘stationarity property’ of being O(ǫ2) accurate when Q is O(ǫ) ac-
curate. You don’t need to remember any of that for the examination. Just for fun,
though, consider the effect of replacing the true Q for a normal mode by slightly inac-
curate values Q + δQ, with small δQi all O(ǫ) as ǫ → 0. Rewrite Rayleigh’s formula
as ω2TijQjQi − VijQjQi = 0, using the symmetry of Tij and Vij . Small changes satisfy
2ωδωTijQjQi+2

(

ω2TijQj − VijQj

)

δQi = O(ǫ2), again using symmetry. But (1.16) shows

that the expression in brackets is zero and hence that δω = O(ǫ2). This is related to a
much more general principle of classical and quantum mechanics, the principle of least
action or stationarity of the so-called ‘action integral’

∫

L dt, and of quantum-mechanical
‘path integrals’. See Chapter 19 of Feynman’s great Lectures in Physics, vol. II.

3We can always reduce the problem to the case T = I, by making a rotation of coordi-
nates that diagonalizes the symmetric matrix T, and then rescaling the new coordinates
so that the diagonal entries in the new T are all 1. If a further rotation (which does not
affect T) is now made to diagonalize V, then the resulting new coordinates are normal
coordinates, as can easily be seen from the equations of motion.

13
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where the constant A(m) is the amplitude of the mth normal mode, and the
constant ωmt(m)

0 its phase. This assumes that none of the generalized eigen-
values ω2

m are zero.
For so-called zero modes, for which ω2

m = 0 by definition, the sine
function in the term A(m) sin ωm(t−t(m)

0 ) must be replaced by a linear function
B(m)(t − t(m)

0 ). This can be shown by taking the limit ωm → 0, with B(m)

defined as A(m)ωm and held constant.
The solution (1.20) is not, of course, generally periodic, just as the func-

tion in figure 3 on page 4 is not periodic. Only if all the frequency ratios are
rational do we have periodicity.

Remark on terminology : The polynomial equation (1.18) for the general-
ized eigenvalues ω2

m is sometimes called the ‘characteristic equation’.

1.2.3 Orthogonality

Suppose that two of the generalized eigenvectors, say Q(1), Q(2), have distinct
normal frequencies ω1 6= ω2. Then Q(1) is orthogonal to Q(2) in a certain
sense. From (1.17) we have

(−ω2
1T + V)Q(1) = 0

and
(−ω2

2T + V)Q(2) = 0 .

If we premultiply these equations by the row vectors −(Q(2))T and (Q(1))T

respectively and add the results, then the V terms cancel because of the
symmetry of V (which implies that Q(2)

i VijQ
(1)

j = Q(1)

i VijQ
(2)

j ). Similarly
using the symmetry of T we get

(ω2
1 − ω2

2) (Q(1))TTQ(2) = 0 .

Since (ω2
1 − ω2

2) 6= 0, we have (Q(1))TTQ(2) = 0. We say that Q(1) and Q(2)

are ‘orthogonal with respect to T’.
If ω2

1 = ω2
2 then the proof fails. But it can be shown from standard linear

algebra that there exist linearly independent Q(1) and Q(2). From these, an
orthogonal pair can always be constructed (‘Gram–Schmidt orthogonaliza-
tion’, see below). So by rescaling the Q(m) such that (Q(m))TTQ(m) = 1 for
each m, we finally have a set of generalized eigenvectors Q(m) that satisfy

(Q(m))TTQ(n) = δmn (1.21)

14
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where δmn is the Kronecker delta. We then say that the Q(m) make up an
orthonormal set of generalized eigenvectors.

These results are slight generalizations of the standard linear-algebra results about the
eigenvalues and eigenvectors of symmetric matrices V = VT. Indeed, in the important
special case T = I they are exactly the standard results, applied to the matrix V.

Just a reminder: first, the eigenvalues of a real symmetric matrix are real, and non-
negative if the matrix is non-negative in the sense that its quadratic form always > 0.
Pairs of eigenvectors e(m), e(n) corresponding to distinct eigenvalues are orthogonal and
can be rescaled to be orthonormal, (e(m))TI e(n) = (e(m))Te(n) = δmn.

Second, if there is a doubly repeated eigenvalue, ω2
1 say, then there is a whole plane

of eigenvectors spanned by a pair of linearly independent eigenvectors corresponding to
ω2

1 , say e(1), e(2). This means that three numbers β1, β2, γ can be found such that
β1e

(1) + β2e
(2) is orthonormal to γe(2) as well as to the eigenvectors for different

frequencies. If there is a triply repeated eigenvalue then the same applies except that
‘plane’ becomes ‘volume’, and so on. The general procedure can be found in textbooks
under the heading ‘Gram–Schmidt orthogonalization’.

Third and finally, when T 6= I then everything goes through with just one minor
modification. Whenever inner products of the form (e(m))Te(n) occur — also called
scalar products and written as e(m)· e(n) or (e(m), e(n)) — they are replaced by
generalized inner products of the form [e(m), e(n)] = (e(m))TTe(n) just as in
(1.21). It all works perfectly because of the positive-definiteness of T.

The idea of ‘generalized inner products’ will crop up again in the group-theoretic
sections. There, T will often be Hermitian, T = T†, where † means the transposed
complex conjugate, T† = T∗T.

1.2.4 Normal coordinates

Normal coordinates α(m)(t) are, as before, just those linear combinations of
the original generalized coordinates qj(t) that oscillate with the single, pure
frequency ωm, and satisfy the same simple-harmonic equation as the simple
pendulum. As soon as we are in possession of an orthonormal set of gen-
eralized eigenvectors Q(m) we can immediately find the normal coordinates.
For if we multiply the jth component of (1.20) by Q(n)

i Tij and use (1.21), we
immediately obtain

Q(n)

i Tijqj(t) = A(n) sin ωn(t − t(n)

0 ) , (1.22)

showing that the left-hand side is a normal coordinate for any choice of n.
Let us call this nth normal coordinate α(n)(t); i.e.,

α(n)(t) = Q(n)

i Tijqj(t) . (1.23)

15
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Alternatively, we can go through the whole derivation from first princi-
ples, as follows, underlining the fact that α(n)(t) satisfies the simple-pendulum
equation. Let

qi(t) =
N

∑

m=1

α(m)(t)Q(m)

i ,

which is possible because there are N linearly independent vectors Q(m)

i .
Then substituting into the equation of motion (1.15) gives

N
∑

m=1

[

α̈(m)(t)TijQ
(m)

j + α(m)(t)VijQ
(m)

j

]

= 0 ,

which on using (1.16) becomes

N
∑

m=1

[

α̈(m)(t) + ω2
mα(m)(t)

]

TijQ
(m)

j = 0.

Multiplying by Q(n)

i and using the orthonormality property (1.21) gives

α̈(m)(t) + ω2
mα(m)(t) = 0

with solution
α(m)(t) = A(m) sin ωm(t − t(m)

0 ) ,

echoing (1.22). That is, α(m)(t) are the normal coordinates. They can be
written in terms of qi(t) using orthonormality:

qi(t) =
N

∑

m=1

α(m)(t)Q(m)

i

⇒ qi(t)TijQ
(n)

j =
N

∑

m=1

α(m)(t)Q(m)

i TijQ
(n)

j

=
N

∑

m=1

α(m)(t)δmn

= α(n)(t) , (1.24)

reproducing (1.23) apart from renaming the indices.
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Administrative note: The next two examples will be only sketched in the lectures. I
recommend you try to solve them unseen, then use the following notes as worked examples.

The first example is simple and straightforward.

The second example is trickier. The key is to use symmetry, intuitively, to guess most
of the normal modes. Question 7 of the 2003 exam is about another example quite like it
(copies from www.maths.cam.ac.uk/undergrad/NST/).

Not lectured on: There follows a non-examinable section in small print on the ‘adia-
batic invariant’ for small oscillations under conditions (e.g. constraints) that are changing
slowly. This just for fun — a beautiful application of the stationarity property of the
Rayleigh quotient (1.19).

Example 1.4 Vibrations of the CO2 molecule

The problem is to find the normal frequencies and normal modes of the following
system of masses and springs, a simple model of the carbon dioxide molecule. (The mass
M of a real carbon atom is roughly three-quarters of the mass m of a real oxygen atom.)
Attention is restricted to the in-line or 1-dimensional vibrations.

m M m

kk

x1

x2

x3

Fig. 4: A simple model of a CO2 molecule.

Consider vibrations along the line of the molecule and let x1, x2 and x3 be the dis-
placements from equilibrium of the atoms. These are the generalized coordinates q1, q2

and q3 that are most convenient here. Then

T = 1
2mẋ2

1 + 1
2Mẋ2

2 + 1
2mẋ2

3 ⇒ T =





m 0 0
0 M 0
0 0 m





and

V = 1
2k(x2 − x1)

2 + 1
2k(x2 − x3)

2 ⇒ V = k





1 −1 0
−1 2 −1

0 −1 1



 .

17



C
op

yr
ig

ht
 ©

 2
01

0 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

To find the normal frequencies, we solve the characteristic equation (1.18), which in this
case becomes

det

[

−ω2





m 0 0
0 M 0
0 0 m



 + k





1 −1 0
−1 2 −1

0 −1 1





]

= 0

i.e.
∣

∣

∣

∣

∣

∣

k − ω2m −k 0
−k 2k − ω2M −k
0 −k k − ω2m

∣

∣

∣

∣

∣

∣

= 0

which, after a little algebra, reduces to

ω2(k − ω2m)(2km + kM − ω2mM) = 0 .

Thus the normal frequencies in ascending order are given by

ω2
1 = 0, ω2

2 = k/m, ω2
3 = k(2M−1 + m−1) .

To find the normal modes for each normal frequency, we solve equation (1.17).
For ω1, we have





k −k 0
−k 2k −k

0 −k k









Q(1)

1

Q(1)

2

Q(1)

3



 = 0

so, up to an overall multiple,

Q(1) ∝





1
1
1



 .

The overall multiple can be fixed by requiring

(Q(1))TTQ(1) = 1 .

Thus the normalized normal mode has generalized eigenvector

Q(1) = (2m + M)−
1
2





1
1
1



 .

This normal mode, a zero mode, is just a rigid translation of the system.

For ω2, we have




0 −k 0
−k 2k − kM/m −k

0 −k 0









Q(2)

1

Q(2)

2

Q(2)

3



 = 0

so that the normalized normal mode has generalized eigenvector

Q(2) = (2m)−
1
2





1
0

−1



 .

18
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This mode is invariant under the reflectional symmetry of the problem.

For ω3, we have





−2km/M −k 0
−k −kM/m −k

0 −k −2km/M









Q(3)

1

Q(3)

2

Q(3)

3



 = 0

so the normalized normal mode has generalized eigenvector

Q(3) = (2m + 4m2/M)−
1
2





1
−2m/M

1



 .

You should check that the three modes are pairwise orthogonal with respect to T, as they
must be because ω1, ω2 and ω3 are all distinct.

To find the normal coordinates, we may use (1.23). For α(1)(t) we have

α(1)(t) = xTTQ(1)

=
(

x1, x2, x3

)





m 0 0
0 M 0
0 0 m



 (2m + M)−1/2





1
1
1





=
mx1 + mx3 + Mx2√

(2m + M)
∝ sin ω1(t − t(1)0 ) .

Similarly,
α(2)(t) =

√

(m/2) (x1 − x3) ∝ sin ω2(t − t(2)0 )

and

α(3)(t) =
x1 − 2x2 + x3√
(2/m + 4/M)

∝ sin ω3(t − t(3)0 )
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Example 1.5 Normal modes of a 3-particle-spring system

q1q2
q3q4q5q6

1
23

1

Fig. 5: Coordinates for the 3 particle-spring system.

Three particles each of mass m are interconnected by identical springs of length l and
spring constant k. The equilibrium position is an equilateral triangle. Let x1, x2 and x3

be the cartesian coordinates of the three particles in the general motion.
(We could try to produce a neater system of equations by using more symmetrical

coordinates; polar coordinates for each particle, for example. Generally, unless there is a
really obvious set of coordinates, it is easier to bash through using cartesians.)

For the general motion, let

x1 = l(0, 1/
√

3) + (q1, q2)

x2 = l(1/2,−1/2
√

3) + (q3, q4)

x3 = l(−1/2,−1/2
√

3) + (q5, q6)

so that the origin is at the centre of the triangle and the generalized coordinates q1, . . .,
q6 are zero at the equilibrium position.

The kinetic energy of the system is

T = 1
2m(ẋ1.ẋ1 + ẋ2.ẋ2 + ẋ3.ẋ3)

= 1
2m(q̇2

1 + q̇2
2 + q̇2

3 + q̇2
4 + q̇2

5 + q̇2
6)
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so

Tij = mδij or T = m

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















= mI. (1.25)

Thus ω2 will be an eigenvalue of m−1V.
The potential energy is a little harder to calculate. We need to calculate the quadratic

approximation to

1
2k

[

|x1 − x2| − l
]2

+ etc.

Now
x1 − x2 = l(−1/2,

√
3/2) + (q1 − q3, q2 − q4) ,

which is of the form a + v where |a| = l ≫ |v|, so that the length is

∣

∣a + v
∣

∣ = (a · a + 2a ·v + v · v)1/2 = l(1 + a ·v/l2 + · · · )

and the contribution to the potential energy is approximately

1
2k

[

a ·v/l
]2

= 1
2k

[

(−1
2 ,

√
3

2 ) · (q1 − q3, q2 − q4)
]2

.

Doing the algebra gives

V = 1
2k

[

− 1
2 (q1 − q3) +

√
3
2 (q2 − q4)

]2

+1
2k

[

q3 − q5

]2

+1
2k

[

− 1
2 (q5 − q1) −

√
3
2 (q6 − q2)

]2

From this since V = 1
2Vijqiqj , we can read off the elements of V:

V =
k

4

















2 0 −1
√

3 −1 −√
3

0 6
√

3 −3 −√
3 −3

−1
√

3 5 −√
3 −4 0√

3 −3 −√
3 3 0 0

−1 −√
3 −4 0 5

√
3

−√
3 −3 0 0

√
3 3

















(1.26)

We need to find the eigenvalues of this rather unpleasant matrix. The characteristic
equation

det(V − ω2T) = 0

will be a polynomial of degree 6 in mω2/k. We could try to simplify this, but unless
something particularly nice happens we would not usually expect to extract the roots
without the help of a computer.
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Now comes the point of this example: because of the symmetry of the physical system,
something particularly nice does happen, which allows us to obtain the normal modes and
frequencies. With very little algebra, but some careful thought, we can in fact guess all
the six normal modes vectors.

First note that there are three independent motions of the system that do not involve
stretching the springs at all: the system moves as a rigid body. These are translations
(linear motion at constant speed) in the x1 direction and in the x2 direction, and a rotation
at constant angular speed about the origin.

For the translations in the x1 direction, the x2 coordinates of the particles remain the
same so q2 = q4 = q6 = 0 while the displacements of the particles in the x1 direction are
the same, so q1 = q3 = q5. We therefore expect two normal mode vectors of the form

Q(1) =

















1
0
1
0
1
0

















and Q(2) =

















0
1
0
1
0
1

















(1.27)

We can verify that these do indeed satisfy

VQ = ω2TQ, (1.28)

with ω = 0 as expected.
For the rotation, we see, using a bit of geometry, that the particles should set off in

the directions (1, 0), (− cos 60◦,− sin 60◦), (− cos 60◦, sin 60◦), i.e. to

Q(3) =

















1
0

−1/2
−√

3/2
−1/2√

3/2

















. (1.29)

This again corresponds to zero frequency. And again we see that VQ = 0.
By symmetry, we expect there to be a pure expansion, a mode of oscillation in which

each of the particles vibrates only along a radius vector. This gives a normal mode vector
of the form

Q(4) =

















0
1√
3/2

−1/2
−√

3/2
−1/2

















. (1.30)

Substitution into the normal mode equation (1.28) reveals that the corresponding normal
frequency is given by ω2 = 3k/m.

By symmetry, again, we expect to find three modes with reflection symmetries about
each of the ‘heights’ of the triangle. And again by symmetry these three modes will
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evidently have the same normal frequency. They cannot be independent, because we are
only allowed a total of 6 normal modes and we have already found 4. The fact that they
have the same frequency means that any linear combination will also be a normal mode,
and it turns out that the three modes sum to zero. To find the mode vectors, try

Q(5) =

















0
−1
β
γ
−β
γ

















,

which has reflection symmetry about the vertical. We could now find β and γ by substi-
tuting into (1.28), which would also determine ω. However, we can instead use the fact the
mode vectors are orthogonal (T being a multiple of the unit matrix). Taking the scalar

product with Q(2) and Q(4) gives γ = 1/2 and β =
√

3/2. Then substitution into (1.28)
shows that the corresponding frequency is given by ω2 = 3k/2m.

(Alternatively: recall that the eigenvalues of a matrix sum to the trace of the matrix
(i.e. the sum of its diagonal elements). Since the trace of V is 6k and four of its eigenvalues
are 0, 0, 0 and 3k, we see that the other two sum to 3k. Since they are known, by symmetry,
to be equal, they must each be 3k/2.)

For the last mode vector, we can use a vector with symmetry about one of the other
altitudes. Alternatively we find an orthogonal vector by trial and error. The last two
vectors are then

Q(5) =

















0
−1√
3/2

1/2
−√

3/2
1/2

















and Q(6) =

















1
0

−1/2√
3/2

−1/2
−√

3/2

















. (1.31)
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Q(1) Q(2)
Q(3) Q(4)
Q(5) Q(6)

1

Fig. 6: Normal mode vectors.

Adiabatic invariants (non-examinable)

An extension of small-oscillations theory leads to the idea of adiabatic invariance, of great
importance in physics and in theoretical chemistry. First we note the energy-conservation
theorem for small oscillations. By multiplying Lagrange’s equations in the form (1.15) by
q̇i and summing from 1 to N , using Tij = Tji and Vij = Vji, we easily find dE/dt = 0
where E is the total energy of the oscillatory motion, E = T + V. For a normal mode
qi(t) = Qi sin ω(t − t0) (Qi real), we have

E = 2T = 2V = 1
2ω2TijQiQj = 1

2VijQiQj ,

where the overbars denote time averaging. Notice the consistency with Rayleigh’s formula

(1.19) on page 13, and recall that cos2 ω(t − t0) = sin2 ω(t − t0) = 1
2 .

Now adiabatic invariants arise when we generalize the theory to cases in which the
coefficients Tij and Vij are no longer constant, but are allowed to be functions of time that
vary slowly relative to the timescale ω−1. (The word ‘adiabatic’ is often used in connection
with such slow variation, by extension from its original meaning in thermodynamics.) The
classic archetype is a simple pendulum whose length is made to change slowly, as with a
mass on a string slowly pulled through a small hole in the ceiling. Then ω will increase
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slowly, and so will E. (Part of the work done to pull the string goes into increasing E.)
But E/ω is constant. It is the adiabatic invariant:

d

dt

(

E

ω

)

= 0 . (1.32)

This is a general property of each normal mode of a vibrating system. It is easiest to
demonstrate using complex exponentials (taking us a step closer to the quantum ramifica-
tions; and notice that the dimensions of E/ω are the same as those of Planck’s constant.)
Assume that the motion takes the form of a slowly varying normal mode that depends on
a phase parameter α ,

qi = qi(t, α) = Re Qi(t) eiφ(t) + iα , (1.33)

where a real-valued function φ(t) has been introduced to represent the slowly-varying
frequency ω(t) = dφ(t)/dt and where the Qi(t) are slowly-varying functions of t, now
complex-valued. The symbol Re means ‘take the real part’ (necessary in the classical
problem though not in its quantum counterpart). The essential point is the invariance of
the oscillation problem with respect to α. That is, α does not appear in the Lagrangian
function L until the particular solution (1.33) is substituted into it. So if we have a solution
for one value of α, then we can pick any other value of α and still have a solution.

This seemingly trivial remark leads to a neat little bit of mathematical magic. We
multiply Lagrange’s equations not by q̇i but by ∂qi(t, α)/∂α = qi,α , say, remembering that
the first term of (1.15) now needs to be rewritten as d[Tij(t)q̇j ]/dt, with the d/dt staying
outside as dictated by Lagrange’s equations. Then we average not with respect to t but
with respect to α:

d

dt
(qi,αTij(t)q̇j)

α
= (q̇i,αTij(t)q̇j)

α− (qi,αVij(t)qj)
α

= 1
2∂ (L)

α
/∂α = 0, (1.34)

since (L)
α

is plainly independent of α. So (qi,αTij(t)q̇j)
α

is an exact constant of the
motion, an important fact in its own right. We have not yet had to use the slowly-varying
assumption! We finally use it twice, first to approximate qi,α by q̇i/ω, and second to

equate α-averaging with t-averaging. Then the constancy of (qi,αTij(t)q̇j)
α

implies (1.32),
the constancy of E/ω.
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Chapter 2

2. Groups

This chapter contains the second set of syllabus items, together with a few
items anticipating the third set:

Idea of an algebra of symmetry operations; symmetry operations on a square.
Idea of underlying vector space. Idea of conjugacy classes.

Definition of a group; group table.

Subgroups; homomorphic and isomorphic groups (including normal sub-
groups and cosets).

2.1 Symmetry properties and operations

Preamble (non-examinable)

Science works by fitting models to data, and symmetry properties powerfully constrain
the model-building. It hardly needs saying that a good model of something in the real
world, e.g. an electron or a CO2 or CH4 molecule, will have the same symmetry properties
as the real thing.

It is the simplicity of symmetry properties — in many cases where models have been
shown to fit data accurately — that accounts for what Eugene Wigner famously called
‘the unreasonable effectiveness of mathematics’ in science. The real world contains entities
with simple symmetry properties. It need not be so, but according to the evidence it is
so. Group theory is important because it gives us the tools to analyse, and classify, all
possible symmetry properties.1 Its usefulness extends beyond chemistry and physics, for

1Classic examples include not only fundamental particles and molecular vibrations but
also the great discoveries via X-ray crystallography, from the foundations laid by W. and
L. Bragg, Kathleen Lonsdale and others all the way to the discovery of DNA and protein
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example to issues in probability theory, statistical inference and risk assessment.2

Many symmetries of physical systems are usefully thought of, to begin
with, in terms of the invariance properties of simple geometrical objects:
square, triangle, sphere, cylinder, hexagon, etc. For instance the shape of
a square is invariant under in-plane rotation through a right angle, and the
shape of an equilateral triangle is invariant under in-plane rotation through
2π/3 radian or 120◦, a fact already made use of in the example of fig. 6.
Rotation may therefore reasonably be called a symmetry operation. An-
other symmetry operation is that associated with mirror symmetry, reflec-
tion about some line or plane. Groups are sets of mathematical entities —
any mathematical entities — that behave like symmetry operations.

(Each symmetry operation — ‘symmetry’ for short — involves a parame-
ter, or parameters, such as the angle rotated through. Such a parameter tells
how many times, or how much of, the symmetry operation is applied. The
parameter may take a continuous or a discrete range of values. The range
is continuous in cases like rotation through any angle. It is discrete in cases
like rotation through an integer number of right angles, or translation by an
integer number of interatomic spacings in a crystal. This course will deal
mainly with discrete cases.)

Symmetry operations can be combined. For instance one can rotate some-
thing and then reflect it. Several notations are in use for ‘symmetry operation
S1 followed by symmetry operation S2’, e.g.,

S2 ◦ S1 or S2 ∗ S1 or just S2S1 .

We’ll use the last for simplicity. This ‘composition’ or ‘product’, so called,
will also be a symmetry operation. In abstract mathematical language we say
that symmetries form an algebra. An algebra is any set of mathematical

structures. (There’s a nice DNA diffraction tutorial in Lucas, A. A., Lambin, P., Mairesse,
R., Mathot, M., 1999: Revealing the Backbone Structure of B-DNA from Laser Optical
Simulations of Its X-ray Diffraction Diagram, J. Chem. Educ. 76, 378–383.) For instance
group theory tells us that the number of different rotation–reflection symmetries possible
for regular crystal lattices is exactly 32, and of rotation–reflection–translation symmetries
exactly 230: details in Leech & Newman. These sets of symmetries are precisely described
by what are called the crystallographic ‘point groups’ and ‘space groups’ respectively.
Point group simply means that translations aren’t included: there’s always a point that
stays fixed.

2For the relevance of group theory to these tricky topics see pp. 373–382 of Edwin T.
Jaynes’ book Probability Theory: The Logic of Science (CUP 2003).
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entities equipped with a rule for combining or composing two entities, to
produce a third entity that is also a member of the set.

Note the order in which the operators S1 and S2 are written. We are
imagining that the symmetries operate on something to the right of them, so
that the rightmost symmetry is the first one done. (Watch out though: the
opposite convention is also used.)

There are three further points to be made about symmetry operations.
First, there is always a trivial operation that does nothing; we call it the
identity operation and denote it here3 by I. (Trivially, everything is in-
variant under I.) Second, given any symmetry operation S there is always
a reverse or inverse operation, denoted S−1, that undoes the effect of S. In
symbols, S−1S = I .

It is obvious that the inverse will always exist. After changing the position
and orientation of any rigid geometrical object in any way, one can always
move it back to its original position and orientation. By performing the first
move again we see moreover that

SS−1 = I .

Third and finally, we always have associativity, which says that

S3(S2S1) = (S3S2)S1 .

This is true of symmetry operations because both sides evidently mean the
same thing, ‘S1 followed by S2 followed by S3’. These rules are the defining
properties of groups. That is, a group is an associative algebra4 that has an
identity and inverses. For a formal statement, see p. 39.

What about commutativity? The commutative rule does not, in general,
hold for symmetries. That is, we generally have

S2S1 6= S1S2 .

To illustrate this let S1 = R, again meaning clockwise rotation through a
right angle, applied to a square:

3Other symbols are in use, common choices being ι, e, or E.
4There are non-associative algebras. A familiar example is the algebra of 3-dimensional

physical vectors a, b, c under vector multiplication: generally a × (b × c) 6= (a × b) × c.
(This by the way is quite different from the ‘wedge product’ of exterior algebra, which is
associative, a ∧ (b ∧ c) = (a ∧ b) ∧ c , and meaningful in any number of dimensions > 2.)
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A B

CD

R
-

D A

BC

Let S2 be another symmetry operation on the square, reflection or flipping
about the vertical axis of symmetry. Call this m1:

A B

CD

m1
-

B A

DC

We defined m1R to mean first R then m1 ; this produces

A B

CD

R
-

D A

BC

m1
-

A D

CB

whereas Rm1 means first m1 then R ,

A B

CD

m1
-

B A

DC

R
-

C B

AD
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so the result is indeed different, m1R 6= R m1 . Let’s follow this up now by
discussing the symmetries of a square more systematically.

Example 2.1 Symmetries of the square, and some basic terminology

R

m

m

m m1

2

3 4

Fig. 7

Plainly the square is invariant under rotations by 0◦, 90◦, 180◦, and 270◦,
denoted respectively by I, R, RR, RRR or

I, R, R2, R3 ,

and invariant under reflections in the vertical and horizontal axes and in the
two diagonals. We call these reflections

m1, m2, m3, m4

respectively, as noted in fig. 7. Each of these last four is its own inverse:
m1

2 = m2
2 = m3

2 = m4
2 = I.

(We can think of the m’s either as true reflections within 2-dimensional space, or as
180◦ rotations or ‘flips’ in 3-dimensional space, about the axes shown.)

The 8 symmetries are not all independent; for instance m1m2 = m2m1 =
m3m4 = m4m3 = R2. Again, m2m4 = m4m1 = m1m3 = m3m2 = R, and
m3m1 = m1m4 = m4m2 = m2m3 = R−1 = R3. Evidently there must be, in
this case, a minimal subset from which all other symmetries can be obtained
by composition. We say that the complete set of symmetries — i.e., the
group — is generated by such a subset, and the members of the subset are
called generators. In this case we need exactly two generators.
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For we need no more than one rotation R, or R3, since all the other
rotations are just multiples of R or R3, including the inverses, e.g. R−1 =
R3. We obviously need at least one reflection (to turn the square over);
and exactly one is sufficient because all the other turned-over positions can
evidently be reached by a rotation R, R2 or R3. For instance if we choose
m1 as a generator then we can derive m2 = R2m1, m3 = R3m1, m4 = Rm1,
which comes down to saying ‘turn the square over then rotate it as necessary’.

So, in summary, this particular group is generated by just one minimal
rotation, R or R−1, together with just one reflection. For instance the subset
{R, m1} generates the group as follows:

{I, R,R2, R3,m1,m2,m3,m4} = {I, R,R2, R3,m1, R
2m1, R

3m1, Rm1} .

This group of symmetries is often called the 4-fold dihedral group and
denoted here by the symbol D4. The corresponding group of symmetries of
a regular polygon with n sides is similarly denoted5 by Dn. All these groups
are point groups, meaning that all the group operations leave one point
fixed. In these examples the fixed point is the centre of the polygon.

Definition: The order |G| of a group G is the number of elements it con-
tains. So we have |D4| = 8. It is easy to check that |Dn| = 2n ; see q. 6 of
Sheet 1.

Definition: The order of a group element g ∈ G is the least integer q
such that gq = I. Because a group is an algebra, {I, g, g2, . . . gq−1} are all
elements of G. Therefore, for any finite group, q 6 |G|.

In the case of D4, for instance, all the elements other than R, R3 and I
have order 2, while R and R3 have order 4.

Remark: If an element g has order q, then g−1 = gq−1. (So all the elements
of D4 are self-inverse except R and R3. For the latter we have R−1 = R3

and (R3)−1 = R.

5Also, commonly, by Dihn. The term ‘dihedral’, meaning 2-sided, comes from the
3-dimensional view in which all the symmetry operations are regarded as rotations in
3-dimensional space, with the m’s as 180◦ (2-fold) rotations, or flips, about the in-plane
symmetry axes, and in which the polygon is therefore regarded as having distinct front
and back surfaces like a real cardboard polygon. In crystallography other symbols are
used. Unfortunately there is no single symbolic convention.
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We can define the structure of a group by exhibiting its group table or
multiplication table, so called, showing how all pairs of elements combine.
For D4 we have

Identity: I R2 R R3 m1 m2 m3 m4

180 ◦rotation: R2 I R3 R m2 m1 m4 m3

R R3 R2 I m4 m3 m1 m2
90 ◦rotations:

R3 R I R2 m3 m4 m2 m1

m1 m2 m3 m4 I R2 R R3

square flips:
m2 m1 m4 m3 R2 I R3 R

m3 m4 m2 m1 R3 R I R2

diagonal flips:
m4 m3 m1 m2 R R3 R2 I

By convention, the symbols in the first column show the first factor in the
written-out product, and those in the first row show the second factor of
the product, e.g. Rm1 = m4 and m1R = m3. (So N.B., the symbols along
the top show the first operation performed, and the symbols on the left the
second operation performed.)

Remark: Every row of the table is a complete rearrangement of every
other row. Each element, without exception, has moved to another position.6

This is true of any group table. It follows at once from the defining properties
of groups. (For we cannot have g1g = g2g if g1 and g2 are different elements.
Since every element g has an inverse g−1, the statement that g1g = g2g can
be postmultiplied by g−1 to give g1 = g2, which would be a contradiction.
Notice how this argument uses associativity.)

One can write the products the other way round and premultiply by the
inverse. So, not surprisingly, the same ‘complete rearrangement’ property
is true of columns also. All this is useful to remember when checking the
correctness of a group table.

Definition: A subgroup of a group G is a subset of G that is also a group.

The table shows that D4 has five subgroups of order 2, namely {I,m1},
{I,m2}, {I,m3}, {I,m4}, and {I, R2}. D4 also has three subgroups of

6Pure mathematicians who work on combinatorics have a special term, ‘derangements’,
for such complete rerrangements. (E.g. sudoku arrays, most of which aren’t group tables.)
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order 4, namely {I, R,R2, R3}, {I, R2,m1, m2} and {I, R2,m3, m4}. The
order-4 subgroup {I, R,R2, R3} is for obvious reasons called a cyclic group.
It will be denoted here7 by C4. The other two order-4 subgroups are examples
of what’s known as the ‘Klein four-group’ or ‘Vierergruppe’.

Definition: If all the elements of a group G commute with each other
(g1g2 = g2g1 for all g1, g2 ∈ G), then the group is said to be commutative or
abelian.8 E.g., C4 and the Vierergruppe are abelian, but D4 is non-abelian.

Definition: a 1–1 mapping between two groups of the same order is called
an isomorphism if it preserves the group operations, namely composition
and taking inverses.

If such a mapping exists, then we say that the two groups are isomor-
phic, which means literally that they have the same shape or structure. More
precisely, it means that they have the same group table. The elements of
the two groups may well be different mathematical entities. But the isomor-
phism means that we may think of them, from an abstract viewpoint, as
being the same group.

Remark: The groups {I, R,R2, R3}, {I, R2,m1, m2}, and {I, R2,m3, m4}
are all abelian, but only the last two are isomorphic.

Example 2.2 A set of matrices isomorphic to D4

Define

I =

(

1 0
0 1

)

, R =

(

0 1
−1 0

)

, R2 =

(

−1 0
0 −1

)

, R3 =

(

0 −1
1 0

)

,

m1 =

(

−1 0
0 1

)

, m2 =

(

1 0
0 −1

)

, m3 =

(

0 −1
−1 0

)

, m4 =

(

0 1
1 0

)

.

These 8 mathematical entities — these 8 matrices — do indeed make up a
group provided that composition is defined as matrix multiplication. Their
group table exactly matches the table on page 32 above. In other words this

7Another commonly-used notation is Z4.
8after the great Norwegian mathematician Niels Henrik Abel (1802–1829).
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set of 8 matrices forms a group that is isomorphic to D4. Make sure you
check this. Speed tip: remember the pattern

„

0 •

• 0

« „

0 •

• 0

«

=

„

• 0
0 •

«

.

Definition: If a group G is isomorphic to some set of n× n matrices that
form a group under matrix multiplication, then the set of matrices is called
an n-dimensional faithful representation of G.

Remark: Any such set of matrices must be invertible: their determinants
must not vanish. (Why?)

Remark: (g1g2)
−1 = g−1

2 g−1
1 for any g1, g2 ∈ G.

Proof : (g1g2)(g
−1
2 g−1

1 ) = g1(g2g
−1
2 )g−1

1 = g1Ig−1
1 = g1g

−1
1 = I.

(Notice how the proof depends on associativity. This property of inverses will be used
repeatedly.)

Definition: Two group elements g1, g2 ∈ G are said to be conjugate to
each other — written g1 ∼ g2 — if there exists any group element g ∈ G
such that

g2 = gg1g
−1 , (2.1)

or equivalently g2g = gg1.

Remark: Conjugacy is an equivalence relation, in the usual mathematical
sense. This means that

(1) g1 ∼ g1 always (because we can choose g = I),

(2) g1 ∼ g2 ⇒ g2 ∼ g1 (because we have inverses), and

(3) g1 ∼ g2 and g2 ∼ g3 ⇒ g1 ∼ g3

where as usual ⇒ means ‘implies that’. These properties imply that the
conjugacy relation partitions any group G into disjoint classes of elements.
They are called conjugacy classes.

Example 2.3 The conjugacy classes of D4

These correspond to the verbal categories shown at the left of the table on
page 32. Thus for instance the identity I is in a conjugacy class by itself.
(With g1 = I on the right-hand side of (2.1), all choices of g give g2 = I.) The
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180◦ rotation R2 is in a class by itself. The square flips make up a different
class of their own. So do the diagonal flips and the 90◦ rotations.

(Important for subsequent developments: make sure you check that the partitioning shown
on page 32 is correct. To show this you must check that none of the 8 elements of D4,
when substituted for g on the right of (2.1), are able to eject any element g1 from its
class, for instance to give g2 = m3 when g1 = m1. For all choices of g, when g1 = m1,
(2.1) must, and does, always give either g2 = m1 or g2 = m2.)

Remark: The identity of any group is in a class by itself. Each element of
an abelian group is in a class by itself. A group element and its inverse, if
different, may or may not be in the same class. Abelian groups illustrate the
latter case. D4 illustrates the former because of its class {R, R3}.

Remark: For any group G of rotations in 3-dimensional space, two rotations
g1 and g2 are in the same class if they rotate through the same angle about
two different axes, provided that there is another rotation g available in G that
can rotate the one axis into the other. (‘Same angle’ means same magnitude
and same sign.)

The diagonal flips in D4 are a case in point when viewed in 3-dimensional space. Not
only are they both 180◦ rotations but, also, there are other elements available in D4,
namely R and R3, that can rotate one diagonal axis into the other. So doing m4 to the
cardboard square is the same as rotating it 90◦ anticlockwise, doing m3, then rotating it
90◦ clockwise. So (2.1) does apply with g chosen as R: specifically, m4 = Rm3R

−1.

Similarly, for the square flips in D4, we have m2 = Rm1R
−1. And for the 90◦

rotations we have R3 = mRm−1 = mRm where m stands for any one of the four flips,
since they all serve equally well to flip the rotation axis normal to the plane of the square,
which turns clockwise rotation into anticlockwise rotation.

Notice that the partitioning shown on page 32 does not apply to the separate sub-
groups, because within a subgroup — if we exclude the trivial ‘subgroup’ consisting of D4

itself — there are fewer choices of g available for use in (2.1). For instance, if we consider
the diagonal flips within the Vierergruppe {I,R2,m3, m4}, then each one is in a class by
itself. The 90◦ rotations are no longer available for use in (2.1).

Definition: A normal subgroup H of a group G is a subgroup that consists
entirely of conjugacy classes of G.

(Trivially, G is a normal subgroup of itself. To exclude that trivial case, we sometimes
speak of a proper subgroup or of a proper normal subgroup of a group G, meaning
a subgroup smaller than G itself.)

(Note also that every subgroup of an abelian group is normal.)
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Example 2.4 D4

The three order-4 subgroups of D4 are normal, as is the order-2 subgroup
{I, R2}. The other four order-2 subgroups of D4 are not normal. However,
for instance, {I, m1} and {I, m2} are normal subgroups of the Vierergruppe
{I, R2,m1, m2}. There are fewer elements g available for use in (2.1).

2.2 The underlying vector space

There’s another way to describe symmetry operations, such as those of D4,
that will prove important.

Imagine some vectors x drawn on the square, with their tails at the centre
but otherwise arbitrary:

A B

CD

©©©©*
³³³³1

6

»»»»9 ¢
¢

¢¢®

A
A
AAU

Representing them as column vectors (x1, x2)
T =

(

x1

x2

)

, we can consider

matrix products such as
(

0 1
−1 0

) (

x1

x2

)

=

(

x2

−x1

)

.

The right-hand side is the same vector rotated clockwise through a right
angle. That is, premultiplication by this particular 2 × 2 matrix rotates
all the vectors clockwise through a right angle. (We are thinking of the
coordinate axes as being fixed, while the coordinate values x1, x2 change.)
So we can imagine the square itself being carried around with the vectors
and thus rotated as well.

It’s easy to see that all the symmetry operations in D4 can be represented
in this way. The isomorphism noted earlier is no accident! Premultiplication
of any x = (x1, x2)

T by the same set of matrices as on p. 33,

36



C
op

yr
ig

ht
 ©

 2
01

0 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

I =

(

1 0
0 1

)

, R =

(

0 1
−1 0

)

, R2 =

(

−1 0
0 −1

)

, R3 =

(

0 −1
1 0

)

,

m1 =

(

−1 0
0 1

)

, m2 =

(

1 0
0 −1

)

, m3 =

(

0 −1
−1 0

)

, m4 =

(

0 1
1 0

)

,

performs the same symmetry operations, I, R,R2, R3,m1,m2,m3,m4 respec-
tively, as seen within 2-dimensional space.

The action of, for instance, m4 on x = (x1, x2)
T is to turn it into (x2, x1)

T.
And the fact that m4 = Rm3R

−1, noted earlier, implies that the action of
Rm3R

−1 on x must be the same. So the isomorphism says that we must
have m4x = Rm3R

−1x, which written out is
(

0 1
1 0

) (

x1

x2

)

=

(

0 1
−1 0

) (

0 −1
−1 0

) (

0 −1
1 0

)(

x1

x2

)

=

(

x2

x1

)

,

which can easily be checked to be true. [Again, remember
„

0 •

• 0

« „

0 •

• 0

«

=

„

• 0
0 •

«

.]

Now consider the subsets

I =

(

1 0
0 1

)

, R2 =

(

−1 0
0 −1

)

, m1 =

(

−1 0
0 1

)

, m2 =

(

1 0
0 −1

)

and

I =

(

1 0
0 1

)

, R2 =

(

−1 0
0 −1

)

, m3 =

(

0 −1
−1 0

)

, m4 =

(

0 1
1 0

)

.

Each set of four gives a 2-dimensional faithful representation of the Vier-
ergruppe. (Check the isomorphisms.)

Remember : One can think of the vectors x as elements of the 2-dimensional vector
space R

2. You should check that they satisfy the rules for vector spaces, with scalars
in R.

Notice, now, that the first representation of the Vierergruppe leaves in-
variant the two subspaces of R

2 consisting of scalar multiples of the vectors
(1, 0) and (0, 1). The second representation leaves invariant the two sub-
spaces of R

2 consisting of scalar multiples of the vectors (1, 1) and (−1, 1).
(Check this!)

The idea of subspaces invariant under the action of a matrix rep-
resentation of a group has far-reaching importance, as we’ll see.
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Example 2.5 Worked example: the 3-fold dihedral group D3

Construct the group table for the dihedral group D3, that is, the symmetries of a 2-sided
equilateral triangle. Show that there are three order-2 non-normal subgroups and one
order-3 normal subgroup, and show the partitioning into conjugacy classes. By consider-
ing the group actions on vectors in R

2, or otherwise, find a 2-dimensional faithful repre-
sentation of D3. Show that within R

2 there are subspaces invariant under the actions of
each order-2 subgroup.

Answer : We take the centroid of the triangle as origin and the vertices of the triangle at
(0, 1), (

√
3/2, −1/2) and (−√

3/2, −1/2). By analogy with the notation for D4, denote
the group elements of D3 by {I,R,R2,m1,m2,m3} where R means a clockwise rotation
through 120◦, m1 means a flip about the vertical or x2 axis, and m2 and m3 respectively
the flips about axes rotated 120◦ and 240◦ clockwise from the vertical, that is, axes with
unit vectors (

√
3/2, −1/2) and (−√

3/2, −1/2). The group table works out as follows:

Identity: I R R2 m1 m2 m3

R R2 I m3 m1 m2
rotations:

R2 I R m2 m3 m1

m1 m2 m3 I R R2

flips: m2 m3 m1 R2 I R

m3 m1 m2 R R2 I

It is straightforward to check from (2.1), remembering to try all possible g ∈ D3, that
the three flips form one conjugacy class, and the two rotations another, as indicated in
the table. As always, the identity I is in a class by itself. As for the subgroups, we see
from the I’s on the far diagonal of the table that the three order-2 subgroups are {I,m1}
{I,m2} and {I,m3}, all non-normal because the set {m1} isn’t a conjugacy class in D3,
nor {m2} nor {m3}. The order-3 subgroup, the only such, is the cyclic group C3 made
up of {I,R,R2}. This is a normal subgroup of D3 because {R, R2}, {I} are classes in D3.

To find a 2-dimensional faithful representation of D3, the easiest way is to remember
that a 2-dimensional rotation matrix for clockwise rotation through an angle θ is

(

cos θ sin θ
− sin θ cos θ

)

and that cos 120◦ = −1/2 and sin 120◦ =
√

3/2. So taking the corresponding ro-
tation matrices to represent R and R2, and playing around with the signs to convert to
flips (regarding them as reflections within our 2-dimensional space), we end up with the
isomorphism

I, R, R2 ↔
(

1 0

0 1

)

,

(

−1
2

√
3

2

−
√

3
2 −1

2

)

,

(

−1
2 −

√
3

2√
3

2 −1
2

)

, (2.2)

m1, m2, m3 ↔
(

−1 0

0 1

)

,

(

1
2 −

√
3

2

−
√

3
2 −1

2

)

,

(

1
2

√
3

2√
3

2 −1
2

)

. (2.3)
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The subspaces of R
2 invariant under the actions of the three order-2 subgroups are

six in number. They are, respectively, scalar multiples of (1, 0) and (0, 1) for {I,m1},
of (1/2,

√
3/2) and (−√

3/2, 1/2) for {I,m2}, and of (
√

3/2, 1/2) and (−1/2,
√

3/2) for
{I,m3}.

2.3 More on the general concept of ‘group’

Let’s now take stock and summarize the basic concepts as seen so far. This
is partly because we have been a bit cavalier about one or two issues. For
instance we talked about ‘the’ inverse, and ‘the’ identity, as if these elements
were always uniquely defined.

However, by revisiting the rules very carefully we can see that the inverse
and identity are, in fact, uniquely defined. The following is partly summary
and revision, and partly pinning down the elementary concepts and making
them precise, in the full generality of abstract group theory:

Definition: A group G is a set of elements, say

G = {g1, g2, g3, . . .}
together with a rule for combining them — we’ll continue to use the words
‘product’, ‘composition’, and ‘multiplication’ in this connection — such that
the following conditions or axioms are all satisfied:

1. Closedness or closure: the product gigj ∈ G (i.e., G is an algebra),

2. Associativity: the product satisfies (gigj)gk = gi(gjgk),

3. Existence of an identity, I ∈ G such that Ig = gI = g for all g ∈ G,

4. Existence of an inverse, for each g ∈ G an element g−1 such that

g−1g = gg−1 = I .

Remark: The identity is unique.

Proof : Suppose that there exist two elements I and I ′ each having the prop-
erties specified in Axiom 3. Then

II ′ = I ′ , since I has the properties specified

and
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II ′ = I , since I ′ has the same properties .

The left-hand sides of these equations are the same, and so I ′ = I.

Remark: Inverses are unique.

Proof : Suppose both h and k are inverses of a given element g. Then Axiom 4
implies that, in particular,

gh = I and kg = I. (2.4)

Then (premultiplying the first of these by k and using Axiom 3) we have

k(gh) = k ,

i.e. (by Axiom 2)
(kg)h = k .

But kg = I, by the second of (2.4). So using Axiom 3 again we have h = k.

(The two proofs just given typify the sort of proof required in abstract pure mathe-

matics. The name of the game is to work from the axioms and from the axioms alone,

and to make all the logical steps explicit, no matter how trivial. In this game, appeals to

intuition aren’t allowed, even if something seems obvious. The purpose is not to ‘see’ that

something ‘must’ be true, but rather to prove it — in the mathematician’s rigorous sense

— so we can be sure that the proof applies in the abstract and really does include all the

possibilities, not just some special cases we might have in mind, and for which we might

or might not have a reliable intuition. Actually, most people with powerful scientific or

mathematical intuitions have gone through harsh experiences in which intuition, always

hazardous, is corrected, refined and developed by confrontation with counterintuitive facts

established by meticulous experimental observation, or by rigorous mathematical proof.)

2.4 Cosets and Lagrange’s theorem

2.4.1 Cosets

Definition: Given a group G, a subgroup H = {I, h1, h2, . . . } of G, and an
element g in G, we call the set

gH={g, gh1, gh2, . . .}
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a left coset of H in G. Similarly, we call the set

Hg={g, h1g, h2g, . . .}

a right coset of H in G.

Remark: The left and right cosets of any subgroup H are identical if G is
abelian.

Remark: The left and right cosets of any normal subgroup H are always
identical. (Proof below).

Remark: gH and Hg each contain |H| elements. (This follows from in-
vertibility, which implies that the elements g, gh1, gh2, . . ., are distinct, and
similarly g, h1g, h2g, . . ., because I, h1, h2, . . . are distinct.)

Remark: The subgroup H and its left cosets partition G. That is, they
divide G into disjoint subsets. The subgroup H and its right cosets also
partition G, though differently unless G is abelian or H normal. It is a
partitioning because

(i) Two cosets are either disjoint or identical.

(ii) Two cosets Hg1 and Hg2 are identical if and only if g1g
−1
2 ∈ H.

(iii) Every element of G is in some coset.

Proof of (i): Suppose that the cosets Hg1 and Hg2 have one element in
common, which we can write either as h1g1 or as h2g2, for some h1 and h2 in
H. Then

Hg1 = Hh−1
1 h2g2 = Hg2,

since h−1
1 h2 ∈ H. So if there is one element in common, the cosets are

identical.

Proof of (ii): If g1g
−1
2 ∈ H, then let g1g

−1
2 = h. We have

Hg1 = Hhg2 = Hg2

as required.
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Conversely, suppose Hg1 = Hg2. Then Hg1g
−1
2 = H, which means that

hg1g
−1
2 ∈ H for all h ∈ H, including h = I, which proves the result.

Proof of (iii): Since H contains I, then for any element g ∈ G, the coset Hg
contains g.

Notice the consequence that ‘being in a coset’ is an equivalence relation. This
is not, of course, the same equivalence relation as conjugacy.

A further consequence is that we may pick out any element of a coset as its
‘representative’. That is, we may specify which coset we are talking about
merely by naming one of its elements. Furthermore, we may multiply such
an element by any h ∈ H, and it will still represent the same coset.

Proof that the left and right cosets of any normal subgroup H are identical :
Let H be normal. For any g ∈ G, we need to show that gH and Hg are the
same coset. We use the fact that, since H is normal, the conjugate ghg−1 of
any h ∈ H is also in H, for any g ∈ G. The proof is as follows:

Let g ∈ G be given, and let k ∈ gH. Then k = gh for some h ∈ H. Let
h1 = ghg−1. Then h1 ∈ H (because H is normal), and h = g−1h1g. So we
have k = gh = g(g−1h1g) = (gg−1)h1g = h1g. But this says that k ∈ Hg.

So for any given g ∈ G, k ∈ gH ⇒ k ∈ Hg. A similar chain of
reasoning proves that k ∈ Hg ⇒ k ∈ gH. So the the left and right cosets
of H are identical.

2.4.2 Lagrange’s theorem

Let G be a finite group and let H be a subgroup of G (not necessarily normal).
Lagrange’s theorem says that |H| divides |G|. That is, |G| = n|H| where n
is an integer.

This result follows immediately from the ‘partitioning property’ of cosets.
Suppose that there are n distinct right cosets of H, counting H itself as one
of them (the trivial right coset HI). Then all the right cosets are disjoint,
and each has the same number of elements, namely |H|. Each element of G
is in exactly one coset. Thus |G| = n|H|, as required.
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(Of course we could equally well have used left cosets.)

An immediate corollary of Lagrange’s theorem is the following

Remark: The order of every element of G divides |G|.

This follows from Lagrange’s theorem and the fact that each element gen-
erates a cyclic subgroup, whose order is equal to the order of its generating
element.

Example 2.6 The group D4 as an illustration of Lagrange’s theorem

Within D4 we have the cyclic subgroup C4 generated by R or by R3. This
has order 4, as do the elements R and R3 themselves. And 4 does indeed
divide |G|, which is 8. Again, D4 has two copies of the Vierergruppe, whose
order is 4, as subgroups.

The elements R2, m1, m2, m3, and m4 all have order 2 and generate
subgroups of order 2; and 2 also divides 8.

Example 2.7 Worked example: all possible order-4 groups

Prove that every order-4 group G is isomorphic either to C4 or to the Vierergruppe.

Answer : Let G = {I, g1, g2, g3}, all distinct. Lagrange’s theorem and its corollary tell us
that each element of G must have order 1, 2 or 4, because these are the only divisors of 4.
So there are two possibilities:

(1) G contains an element of order 4. Then that element generates the whole group G.
In other words, G is cyclic and has the same group table as C4, i.e., is isomorphic to C4.

(2) G contains no element of order 4. Then g1, g2, g3 must each have order 2, since the
only other possibility is an element of order 1, which is the identity I. So g2

1 = g2
2 = g2

3 = I.
Now consider g1g2. We cannot have g1g2 = g1, because premultiplication by g1 gives a
contradiction, g2 = I. Similarly, we cannot have g1g2 = g2. Therefore g1g2 = g3.
Similarly, g2g1 = g3, and g2g3 = g3g2 = g1, g3g1 = g1g3 = g2. So the group table is
exactly that of the Vierergruppe, to which G is therefore isomorphic.

2.5 Homomorphisms and their kernels

A homomorphism is a map between groups that preserves group operations
but is not necessarily 1–1. (So if the homomorphism is 1–1, then it’s also an
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isomorphism.) If it’s not 1–1 then there’s a nontrivial subgroup of the first
group that maps to the identity in the second, i.e. target, group. That subset
of the first group is called the kernel of the homomorphism. The kernel will
be shown to be a normal subgroup.

Let’s fill in the details and note some examples. Let G and H be any
two groups. (In this section, G and H are arbitrary groups. So H might or
might not be a subgroup of G.) A map or mapping Φ from G to H is a rule
that associates an element of H, the target group, with each element of G.
We write

Φ : G −→ H

for the map, and
Φ(g)

for the element in H to which the element g of G is mapped. We call Φ(g)
the image of g. We are interested in maps that preserve group operations.

Definition: The map Φ is called a homomorphism from G to H if and
only if

Φ(g1g2) = Φ(g1)Φ(g2) (2.5)

for any g1 and g2 in G. That is, the image of the product is the product of
the images.

If the map Φ is 1–1 then it is also an isomorphism. The rest of this
section applies to homomorphisms in general. We note next that if products
are preserved then it follows that other group operations are preserved:

Remark: Setting g2 = IG (the identity of the group G) in the defining
property (2.5) shows that for all g1 ∈ G

Φ(g1) = Φ(g1)Φ(IG), ⇒ Φ(IG) = IH

(identity maps to identity); and setting g1 = g and g2 = g−1 in (2.5) shows
that

Φ(IG) = IH = Φ(g)Φ(g−1), ⇒
[

Φ(g)
]−1

= Φ(g−1)

(inverses map to inverses).

Example 2.8 Φ : R −→ U(1)
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Let G = R, the group of real numbers x under addition, and let H = U(1),
the multiplicative group of unit-magnitude complex numbers. Let the map
Φ be defined by

Φ(x) = eix.

This is a homomorphism because

Φ(x + y) = ei(x+y) = eixeiy = Φ(x)Φ(y).

Note that many elements in G map to each element in H:

Φ(x + 2Nπ) = Φ(x), where N is any integer .

Maps with this property are called many-one.

There are further simple examples in q. 4 of Sheet 2. They will be important for the
work on representation theory.

Remark: The image of G, i.e. the set {Φ(g)}|g∈G need not cover the target group H.
NB: there is an example of this in the 2004 examination, question 9 of paper 2.

For a many-one homomorphism, more than one element (including the
identity) will map to the identity.

Definition: Given a homomorphism Φ : G → H, the set of all elements
k ∈ G such that Φ(k) = IH is called the kernel of Φ, denoted here by K.
In other words,

k ∈ K ⇔ Φ(k) = IH . (2.6)

In Example 2.8, K = {2Nπ} = {. . . , −2π, 0, 2π, 4π, . . .}.

Remark: The kernel K is a subgroup of G.

This is because

1. It is closed. (If k1, k2 ∈ K then, by the defining property (2.5) of a
homomorphism, Φ(k1k2) = Φ(k1)Φ(k2) = IHIH = IH ⇒ k1k2 ∈ K
as required.)

2. IG ∈ K. (Φ(IG) = IH because Φ is a homomorphism).

3. If k ∈ K, then k−1 ∈ K. (For Φ(k−1) =
[

Φ(k)
]−1

= I−1
H = IH .)

45



C
op

yr
ig

ht
 ©

 2
01

0 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Remark: K is a normal subgroup of G.

Proof : We need to prove that k ∈ K ⇒ gkg−1 ∈ K for any g ∈ G, i.e., that
Φ(k) = IH ⇒ Φ(gkg−1) = IH . This follows from (2.5) and associativity,

giving Φ(gkg−1) = Φ(g)Φ(k)Φ(g−1) = Φ(g)IH

[

Φ(g)
]−1

= IH , as required.

Example 2.9 Worked example: cosets in D3

List all the cosets of all the subgroups D3.

Answer : In the notation of page 38, we see from the group table that the left and right
cosets of the order-3 subgroup {I,R,R2} are both {m1,m2,m3}. (So the subgroup
{I,R,R2} is a normal subgroup, as noted earlier.)

(Any order-3 subgroup of any order-6 group has to be normal, of course, as does an
order-n subgroup of any order-2n group — for instance all three of the order-4 subgroups
of D4 — simply because the cosets partition the group and in each such case there’s room
for only one nontrivial coset.)

Now to the order-2 subgroups of D3. (As also noted earlier, they’re not normal. So
we’ll find that their left and right cosets are distinct, providing different partitionings of
D3.) For instance, the two left cosets of the order-2 subgroup {I,m3} are

R {I,m3} = m2 {I,m3} = {R,m2} , R2 {I,m3} = m1 {I,m3} = {R2,m1},

while the two right cosets of {I,m3} are

{I,m3}R = {I,m3}m1 = {R,m1} , {I,m3}R2 = {I,m3}m2 = {R2,m2}.

Similarly, we find that

the left cosets of {I,m1} are {R,m3} and {R2,m2};

the right cosets of {I,m1} are {R,m2} and {R2,m3};

the left cosets of {I,m2} are {R,m1} and {R2,m3};

the right cosets of {I,m2} are {R,m3} and {R2,m1}.

Definition: The product of two cosets is the set of all products of two
elements with one from each coset.

Example 2.10 Products of the order-3 cosets that partition D3: The cosets
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{I, R, R2} and {m1, m2, m3} have a product consisting of the set {Im1,
Im2, Im3, Rm1, Rm2, Rm3, R2m1, R2m2, R2m3}, which is the same as the
set {m1, m2, m3}. Similarly, {m1, m2, m3}2 = {I, R, R2}2 = {I, R, R2}.

Remark: For any normal subgroup K of any group G, the product of any
two of the cosets of K, say g1K and g2K (g1, g2 ∈ G), is the same as the
coset (g1g2)K. (So the product is no bigger than the cosets we started with.
Even though there are |K|2 possible two-element products to be considered
in forming the product of the cosets, as in the case |K| = 3 just noted, these
element products are not all distinct and, in fact, yield only |K| distinct
elements if the subgroup K is normal.) This is easy to prove:

Proof : g ∈ product of g1K and g2K ⇔ g = g1k1g2k2 for some k1, k2 ∈ K
⇔ g ∈ (g1g2)K. The last step makes use of the assumption that K is normal:
g = g1k1g2k2 = g1 (g2g

−1
2 ) k1g2k2 = g1g2 (g−1

2 k1g2) k2 = (g1g2)(k3k2) for
some k3 ∈ K, because K is normal. And k3k2 ∈ K.

Remark: Any normal subgroup K and its cosets in G form a group under
the definition of the product just given. This is called the quotient group,
denoted by G/K. (In Example 2.10, G/K = D3/{I, R, R2} and consists
of the two objects {I, R, R2} and {m1, m2, m3}. Under the definition of
the product they form a group isomorphic to C2, which of course is the only
possibility for a group of order 2.)

Corollary: If K is the kernel of a homomorphism Φ : G → H and the image
of Φ contains all of H, then G/K is isomorphic to H.

(The proof is left as a simple exercise. We may summarize it by saying that,
with the above definition of product, the quotient group ‘inherits’ its group
operations from the ‘parent’ group G.)

(In Example 2.10, the mapping D3 → C2 specified by {I, R, R2, m1, m2, m3}
7→ {1, 1, 1, −1, −1, −1}, with C2 represented as {1, −1}, is a homomor-
phism (check this!). It has kernel K = {I, R, R2}. So the above Corollary,
with G = D3 and H = C2, says again that D3/K is isomorphic to C2, or
equivalently that D3/C3 is isomorphic to C2.)

Remark: Products of cosets of a non-normal subgroup H need not have |H|
elements. (In particular, products of the order-2 cosets in D3 need not be of
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order 2. For instance, {R,m1}{R2,m2} = {RR2, Rm2, m1R
2, m1m2} =

{I, m1, m3, R}. So this product contains not 2, but 4, elements.)

We now turn to a fundamental category of groups traditionally called
‘symmetric’ groups and also, more aptly, general permutation groups.
They will be denoted here9 by ΣN (N = 1, 2, 3, . . .) . They are fundamental
because they contain as subgroups every other finite group.

More precisely, every order-N finite group is isomorphic to a subgroup of
ΣN . This is sometimes called Cayley’s theorem. It follows at once from
the ‘complete rearrangement’ property of group tables. The elements of ΣN

consist of all possible rearrangements of N objects. Complete rearrangements
are the special cases seen in group tables. And if a set of complete rear-
rangements comes from a group table, then it automatically respects group
operations and forms not merely a subset, but a subgroup, of ΣN .

For example, we’ll see in a moment that D4, which has order 8, is a
subgroup of Σ8 (and in fact of Σ7, Σ6, Σ5, and Σ4 also).

2.6 The general permutation group ΣN

Consider N distinct objects occupying N prescribed positions. The four
labelled corners of our square on page 29 would be one example, with N = 4.
If we take the square away, leaving only the labels {A,B,C,D} and consider
them to be 4 separate objects in their own right, then there are still further
ways to rearrange them. We may put A into any one of the 4 available
positions, then B into one of the 3 remaining, etc. There are just 4×3×2×1 =
4! = 24 = |Σ4| possible such arrangements. That is, there are just |Σ4| = 24
possible rearrangement operations, or permutations.

Exactly as with the original problem of the square, we can reconfirm that
permutations are group operations. We have closure: two successive
permutations make another permutation. There is an identity, a do-nothing
permutation. There is an inverse: we can do a permutation then undo
it. Successive permutations obey the associative law: when we do three
successive permutations it doesn’t matter whether we think of the first two
together and then the last, or the first by itself and then the last two together.

9Another commonly-used notation is SN .
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‘Three given permutations in succession’ has a unique meaning regardless of
whether two of them are bracketed together. The brackets are superfluous.

Remark: ΣN−1 is a subgroup of ΣN for all N > 2. (For if we always leave one
of the objects fixed, then permutations of all the others still form a group.)
Indeed, Cayley’s theorem says that any smaller group is a subgroup of ΣN .

Remember, ΣN concerns any set of N distinguishable objects occupying
N prescribed positions. (Quantum objects are different!) A pack of cards
would be another example, with N = 53, counting the joker. Notice that
the idea of the pack carries with it the idea of a set of definite positions,
top, second top,... bottom. We may therefore speak of permutation — alias
shuffling — in exactly the required sense. The number of permutations is
53! ≈ 4 × 1069, about four thousand million trillion trillion trillion trillion
trillion. Permutation groups such as ΣN can be seriously large.10

Now let’s zoom in on some more detail. It’s convenient to specify a given
permutation using the notation

(

1 2 3 · · · N
3 5 2 · · · 1

)

,

which means that the object originally in the first position is moved to the
third position, the object originally in the second position is moved to the
fifth position, etc. [Health warning: these symbols are not matrices.] It’s

10Think about the number of rearrangements of the 3 × 109 base pairs in the human

genome, 4(3×109) > 10109

. The accusation that science depicts life as ‘mere machinery’ —
with the unconscious assumption that ‘machinery’ means something simple, like clockwork
— is profoundly wrong. That’s why life can be so awesomely wonderful, varied and un-
predictable. Combinatorial largeness, the largeness of quantities like 10N or N ! as N gets
large, seems unknown to governments but is crucial to understanding. Understanding, in
turn, brings with it respect and humility regarding complex systems and complex problems,
including IT and software ergonomics, and genetic engineering — ‘wicked problems’, as
they’re called by some systems analysts. Such respect includes respect for the combinatori-
ally large numbers of ways for things to go wrong, reversibly or irreversibly. With large IT
projects (reversible to some extent) this means only the familiar dysfunctionality, security
breaches, and billion-pound cost overruns. With genetic engineering (perhaps irreversible
—and even the programming language is largely unknown) it might or might not mean a
permanently altered biosphere that makes a few billion pounds look like peanuts. That’s
why keeping science open is so momentously important — the massively-parallel prob-
lem solving that can make headway with complex problems. Open-source software is one
successful example (Halloween Documents etc).
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best to think of the moves as simultaneous: all the objects begin moving
from their original positions to their new positions at the same moment, and
arrive in their new positions at some later moment. (If one imagines moving
the objects in succession, then there is a danger of forgetting the distinction
between original positions and new positions; remember, the first row of the
symbol refers only to original positions, and the second row to new positions.)
The inverse operation, in this notation, can be written

(

3 5 2 · · · 1
1 2 3 · · · N

)

.

The order in which the columns are written is immaterial. Remember that
the numbers refer to positions — the fixed positions from which, and into
which, the objects are moved. The numbers do not refer to the objects
themselves, which will continue to be denoted by {A,B,C, ...}. For example,
a group operation (permutation operation) in Σ5 , such as

(

1 2 3 4 5
2 3 1 5 4

)

,

applied to the five objects {A,B,C,D,E}, will rearrange them into the dif-
ferent sequence {C,A,B,E,D}. Again, the product written on the left-hand
side of

(

1 2 3 4 5
4 1 2 3 5

) (

1 2 3 4 5
2 3 1 5 4

)

=

(

1 2 3 4 5
1 2 4 5 3

)

(in which, remember, the permutation written second acts first) will rear-
range {A,B,C,D,E} into {C,A,B,E,D} and then into {A,B,E,C,D}.
You should check that the permutation on the right-hand side also takes
{A,B,C,D,E} into {A,B,E,C,D}.

The identity permutation can be written, in our notation, as

I =

(

1 2 3 · · · N
1 2 3 · · · N

)

,

though to save writing we’ll just continue to call it I. It’s natural to save
writing in some other ways as well:

First shorthand convention: A permutation that rearranges only some
of the objects {A,B, ...}, such as
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(

2 3 1 5 4
3 1 2 5 4

)

,

is often written in the shorthand form
(

2 3 1
3 1 2

)

, (2.7)

whose meaning is clear provided we remember we’re talking about permuta-
tions in Σ5 . For a general permutation in ΣN , that is, the convention says
that any positions not shown contain objects that stay where they are.

Definition: An nnn-cycle in ΣN (n 6 N) is a permutation that acts only on
the positions pr (r = 1, 2, ...n) — i.e. acts only on a subset of the full set of
positions 1, 2, ..., N — and has the special tail-biting form

(

p1 p2 p3 · · · pn

p2 p3 p4 · · · p1

)

.

Second shorthand convention: The notation

(p1 p2 p3 · · · pn)

means the same n-cycle. The order in which the positions are shown now
matters. By convention, the objects are moved, from each position shown,
to the next position on the right except that the object in the last position
shown moves to the first position shown. (A better notation would be to
display the positions in a circle, but that would waste paper.)

Notice that the symbol in the display (2.7) above depicts a 3-cycle. With
our conventions, it could equally well be depicted as

(

1 2 3
2 3 1

)

or (1 2 3) or (2 3 1) . (2.8)

This particular 3-cycle takes {A,B,C,D,E} into {C,A,B,D,E}.

Remark: Any permutation can be decomposed uniquely into disjoint cycles.

For consider the general permutation in ΣN , fully written out as, say,

(

1 2 3 · · · N
p1 p2 p3 · · · pN

)

. (2.9)
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In this notation we can rearrange the N columns in any way whatever, with-
out changing the meaning. So, starting from the left, we can rewrite the
same permutation as

(

1 p1 pr · · ·
p1 pr ps · · ·

)

,

continuing until there is a subset of columns on the left that has been rear-
ranged into tail-biting form, with position 1 at the bottom of the last column
in the subset. If this last column is the N th then we are finished: the subset
is the complete set and we have shown that (2.9) is an N -cycle. If not, then
the process is repeated until the complete set of columns has been partitioned
into successive tail-biting subsets — that is, partitioned into disjoint cycles
— as was to be shown. Apart from the order in which the subsets of columns
are written, which is irrelevant, this partitioning is evidently unique.

Example 2.11 A permutation in Σ6

The following permutation partitions (uniquely) into a 2-cycle and a 4-cycle:

(

1 2 3 4 5 6
2 5 6 1 4 3

)

= (1 2 5 4) (3 6) = (3 6) (1 2 5 4) .

(The disjointness of the two sets of positions involved, positions 1, 2, 4 and
5 on the one hand, and positions 3 and 6 on the other, obviously means that
the two cycles commute.) (Notice also that this example happens to be a
complete rearrangement.)

A 2-cycle is also called a transposition, because it just exchanges two
objects and leaves the rest alone. Plainly a 2-cycle is its own inverse. Notice
that Σ2 consists of I and just one 2-cycle. It is isomorphic to — from an
abstract viewpoint is the same group as — the cyclic group C2.

Remark: An n-cycle can be decomposed into (n − 1) 2-cycles, for instance
via

(p1 p2 . . . pn) = (p1 pn) (p1 p2 . . . pn−1)

= (p1 pn)(p1 pn−1) . . . (p1 p3) (p1 p2) .

(Never forget that the pr denote positions and not objects.) These 2-cycles
are not disjoint, and we lose uniqueness in general. There are many other
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such decompositions. Recalling the previous remark, we now see that any
permutation can be decomposed (though not uniquely) into 2-cycles
or transpositions.

Definition: A permutation is said to be odd or even if, respectively, it is a
product of an odd or even number of 2-cycles or transpositions.

Example 2.12 Worked example: Show that oddness and evenness in this sense are well-
defined, despite the non-uniqueness.

Answer : This is because one cannot replace a single transposition by two transpositions.
Call the two transpositions S and T . There are only three types of possibility: first, that
S and T act on the same pair of positions, in which case S = T and ST = I, plainly
not a transposition; second, that S and T act on disjoint pairs of positions, in which
case ST moves 4 objects and is plainly not a transposition; and third, that S and T act
on pairs p1, p2 and p2, p3 with just one position p2 in common (p1 6= p3), in which case
ST = (p1 p2)(p2 p3) = (p1 p2 p3) , which is a 3-cycle and not a transposition.

Remark: n-cycles are even if n is odd, and odd if n is even.

Example 2.13 Worked example: The alternating group AN as a subgroup of ΣN

Show that the subset AN of ΣN consisting of all even permutations forms a group,
but that the subset consisting of all odd permutations does not. Show that AN is a
normal subgroup of ΣN and that |AN | = 1

2N ! (AN is called the alternating group
on N letters). Show that the dihedral group D3 is isomorphic to Σ3, and that the
cyclic group C3 is isomorphic to A3. Show that the symmetries of a tetrahedron in
3-dimensional space, including reflections (mirror images), form a group isomorphic to Σ4

and that the same without reflections (the rigid rotations of a tetrahedron) is isomorphic
to A4. Show that Σ3, Σ4 and A4 are all non-abelian.

Answer : First, AN is closed because each even permutation can be expressed as the prod-
uct of an even number of transpositions. Two such products, when multiplied together, will
give a product consisting of a larger, but still even, number of transpositions. Second, AN

includes the identity I, because I = T 2 where T is any transposition. Third, AN includes
inverses because each transposition T is its own inverse, and a product T1T2T3...Tn of
transpositions has the inverse T−1

n T−1
n−1T

−1
n−2...T

−1
1 = TnTn−1Tn−2...T1. AN is therefore

a subgroup of ΣN . It is a normal subgroup because the inverse of an even permutation
is even, and similarly for an odd permutation; so conjugation by any element g ∈ ΣN

preserves evenness. (That is, with h ∈ AN , i.e. h even, we have ghg−1 even, regardless
of whether or not g is even. Or, AN is the kernel of the homomorphism from ΣN to
C2 = {1,−1} defined by even 7→ 1, odd 7→ −1 (this does preserve products). So there is a
quotient group ΣN/AN isomorphic to C2 and therefore of order 2, so |AN | = 1

2 |ΣN | = 1
2N !

(reminding us that there is no room within ΣN for more than one nontrivial coset.)
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(Here’s an independent proof of |AN | = 1
2N ! — that is, exactly half the elements of

ΣN are even. Let o and e be the number of distinct odd and even permutations respectively
(so that o + e = N !). If g1 and g2 are any two distinct odd permutations, then (1 2)g1

and (1 2)g2 are distinct even permutations, distinct because (1 2) has an inverse (itself).
So, extending this to all the odd permutations in ΣN , we see that to all the o distinct
odd permutations there must correspond o distinct even permutations; so e > o. But we
can equally well start with even permutations and show that o > e. Therefore e = o, as
required.)

The isomorphisms between D3 and Σ3, and between C3 and A3, follow from
the facts that rotating a triangle in 3-dimensional space can permute its three vertices in
any manner whatever, and rotating a triangle in 2-dimensional space permutes its three
vertices cyclically — remember that n-cycles are even if n is odd, as with the 3-cycle
(1 2 3).

The isomorphisms between the tetrahedron symmetries and Σ4 and A4 can be shown
by constructing the group tables, or again from considering the geometry, as follows.

If we start with the vertices coincident with fixed spatial positions labelled 1, 2, 3, 4,
then the even permutations are (1 2)(3 4) and two similar permutations, each of which
rotates the tetrahedron by 180◦ about the perpendiculars bisecting opposite pairs of edges,
together with (1 2 3), (1 3 2) and three similar pairs, eight 3-cycles in all, which rotate the
triangular faces of the tetrahedron in their own planes about their centroids by 120◦ and
240◦. This exhausts A4 since |A4| = 1

24! = 12 = 1+3+8. And if mirror images are allowed,
then each of the foregoing even permutations acquires a distinct mirror-image counterpart,
which is odd. For instance, taking the reflection plane lying in one edge, and perpendicular
to the edge opposite, exchanges two vertices while leaving the other two alone. This is a
transposition and therefore an odd permutation. So every odd permutation in Σ4 produces
a mirror image of the tetrahedron rotated somehow.

(These symmetries are important to understanding the small oscillations and other
properties of a methane molecule, CH4.)

Σ3 is non-abelian since D3 is non-abelian. Since Σ3 is a subgroup of ΣN for N > 3 (re-
mark on page 49), Σ4 is non-abelian. A4 is non-abelian since, for example, (1 2 3)(1 3 4) =
(2 3 4) 6= (1 3 4)(1 2 3) = (1 2 4).

Definition: The cycle shape of an element of ΣN is the set of numbers
{n2, n3, . . .} specifying the number of 2-cycles, 3-cycles, . . . in the unique
decomposition of that element into disjoint cycles. In simple cases such as
{2, 1, 0, 0, . . .} we can use the alternative notation (· ·)(· ·)(· · ·) to show the
cycle shape. This means the same thing as (· · ·)(· ·)(· ·), or (· ·)(· · ·)(· ·),
because the decomposition is unique and disjoint.

Thus, for instance, the example in the display (2.7) above has cycle shape
{0, 1, 0, 0, . . .}, equivalently (· · ·), since it is simply a 3-cycle. The example
(3 6) (1 2 5 4) on p. 52 has cycle shape {1, 0, 1, 0, . . .}, equivalently (· ·)(· · · ·).
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Warning: the decomposition into 2-cycles is irrelevant here, because in that
case the 2-cycles are neither disjoint nor unique.

Remark: Within ΣN (though not within AN), the conjugacy classes are
exactly the cycle shapes.

The proof is easy, and left as an exercise. Essentially, within ΣN all pos-
sible permutations are available as conjugating elements for use in (2.1). So
any permutation with a given cycle shape applies to any set of elements of
ΣN displayed in any order. That is, conjugation allows us to substitute any
elements whatever, for the dots in any of the cycle-shape patterns such as
(· ·)(· · · ·).

Now do Sheet 2 q. 3. Note also that D3 also illustrates the point, because
it’s isomorphic to Σ3. The cycle shapes are (· · ·) for the conjugacy class
{R, R2}, and (· ·) for the conjugacy class {m1, m2, m3}.
The material on this page is non-examinable this year:

A4 is interesting for another reason, besides tetrahedron rotations. It’s the smallest
group showing that the converse of Lagrange’s theorem is false. We have |A4| = 1

24! = 12
but there’s no subgroup of order 6. The subgroups of A4 are all of order 2, 3 or 4. In
fact they consist of the identity with {(123), (132)}, {(124), (142)}, {(134), (143)}, and
{(234), (243)} — i.e., the four copies of C3 corresponding to the ±120◦ in-plane rotations
of the four faces of the tetrahedron — together with the three flips {(12)(34)}, {(13)(24)},
and {(14)(23)}. So there are three copies of C2 making up one copy of the Vierergruppe.
This last is the only normal subgroup of A4. The nontrivial conjugacy classes consist
of the three flips, the four +120◦ rotations and the four −120◦ rotations. The flips can
interchange the 120◦ rotation axes but can’t convert between clockwise and anticlockwise.

Definition: If a group G has two normal subgroups H and J , then we say that G is the
direct product of H and J provided that

1. G is generated by the elements of H and J alone, and

2. H and J are not only normal, but are also disjoint apart from the identity.

(That is, H and J share no element other than the identity.)

Notation: the direct product is usually written G = H × J = J × H.

Remark: If G is the direct product of H and J , then each element of H commutes with
each element of J .
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Proof : If h ∈ H and j ∈ J , then hj(jh)−1 = hjh−1j−1 = (hjh−1)j−1. But this belongs
to J because J is normal. Similarly, hjh−1j−1 belongs to H because H is normal. So by
condition 2 above, hj(jh)−1 must be the identity. So hj = jh.

Example: The Vierergruppe is the direct product of any two of its subgroups, so has the
structure C2 ×C2. By contrast, C4 does not have that structure; recall Example 2.7, and
note that C4 has only one distinct, albeit normal, C2 subgroup.

Remark: If G = H × J then the quotient groups G/H and G/J are isomorphic to J and
H respectively. (Both quotient groups exist because of the fact that H and J are both
normal in G, as is implied as soon as we write G = H × J .)

Proof : Consider for instance G/H. By condition 1, we have G/H = {jH|j ∈ J}. The
mapping from J to G/H defined by j 7→ jH is a homomorphism, because H is normal,
⇒ j1j2H = (j1H)(j2H). To prove that the mapping is 1–1, and therefore an isomorphism,
it’s enough to prove that for any j1, j2 ∈ J such that j1 6= j2 we must have j1H 6= j2H,
i.e., the cosets j1H and j2H are distinct. Suppose, on the contrary, that j1H = j2H.
Then we would have j−1

2 j1H = H, implying that j−1
2 j1 ∈ H. But j−1

2 j1 ∈ J . So
condition 2 now implies that j−1

2 j1 = I and therefore that j1 = j2, which is a contradiction.

There are useful lists of small abelian and non-abelian groups and their properties, includ-
ing their direct-product decompositions if any, at

http://en.wikipedia.org/wiki/List of small groups

— note that ΣN is denoted there by SN , and the Vierergruppe by Dih2.
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Chapter 3

3. Representation theory

This chapter contains the third and final set of syllabus items:

Representation of groups; reducible and irreducible representations; basic
theorems of representation theory.

Classes and characters. Examples of character tables of point groups. *Ap-
plications in Molecular Physics*.

Remember, ‘point groups’ mean symmetry groups, such as D3 and D4, that leave a point
fixed in space. (Groups that leave no point fixed, such as translation groups, are also of
interest especially in crystallography, but are not treated here.) Some detailed applica-
tions to molecules are included for completeness but, as indicated by the asterisks, are
non-examinable.

3.1 Motivation

The representation of finite symmetry groups by nonsingular matrices has
important and well-established applications in chemistry and physics. Ex-
amples are the small oscillations of molecules with symmetries, such as CO2,
H2O, NH3, CH4, etc., especially when it comes to quantum rather than clas-
sical models. Other examples include the behaviour of crystal lattices.

With simple small-oscillation problems such as the equilateral triangle
problem of Example 1.5, the symmetry considerations are intuitively obvious.
However, representation theory comes into its own when we are confronted
by the more complicated problems involved in building models of things the
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real world. These include crystal lattices as well as real molecules.1 For many
of these problems, intuition is liable to fail.

Representation theory investigates systematically the possible forms that
can be taken by the matrices representing a given group. We already know
that some finite symmetry groups can be represented by matrices. This was
evident from the examples, which brought in the concept of the underlying
vector space. We saw on page 37 that reorienting or reflecting objects in
physical space can be thought of as linear operations on arbitrary vectors x
within the vector spaces R

2 or R
3.

But the real power of representation theory lies in two facts. The first
is that, as will be proved next, any finite group whatever can always be
represented by matrices.2 The second is that the underlying vector space
can be any vector space in any number of dimensions, with real or complex
coordinates.

An example is the real vector space {Q(m)} of generalized eigenvectors of
a classical small-oscillations problem. So representation theory is a natural
tool for discerning the qualitative features of such problems that arise from
symmetries. For instance, symmetries can give rise to repeated eigenvalues,
or ‘degeneracy’, as it is called — i.e., to sets of normal modes sharing the same
frequency. Representation theory shows how to find these in a completely
general way.

It turns out that finding the possible forms of the matrices is closely
related to finding the invariant subspaces of the underlying vector space,
where, as always, ‘invariant’ means invariant under group actions.

1For instance CO2, H2O, and CH4 are all important greenhouse gases in the atmo-
sphere. Unlike O2 and N2, they are not transparent to infrared radiation. This is because
of the way some of their small oscillations interact with infrared photons.

2Not all infinite groups can be so represented, though many can. Important examples
that can are SO(3), the group of continuous rigid rotations in three dimensions — that
is, rotations through any angle about any axis — and SU(2), the group of continuous
unitary transformations with determinant 1, or ‘complex rigid rotations’ in two complex
dimensions. SU(2) arises in elementary quantum mechanics, for spin- 1

2 particles such as
electrons. It has a quotient group SU(2)/C2 isomorphic to SO(3).
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3.2 The regular representation

We next prove that any finite group whatever can always be represented by
matrices. The idea is to use the ‘complete rearrangement’ property of group
tables.

The proof is by construction. Suppose we are given the group table for
any finite group G. Let |G| = N . Consider the N × N unit matrix I .
From I we may form a set of (N −1) other matrices, simply by subjecting its
rows to a set of complete rearrangements corresponding to those in the group
table. Denote by D(g) the rearranged matrix corresponding to the row in the
table that starts with the group element g−1. The resulting matrices D(g)
provide a faithful representation of G called the regular representation.
How it works is easiest to see from an example.

Example 3.1 Worked example: Write down the regular representation of D3 and Σ3.

Answer : In the group table for D3 seen on page 38 the first row is I, R, R2, m1, m2, m3.
The row starting with the group element R−1 = R2 is the third row, R2, I, R, m2, m3, m1.
We can think of this third row as resulting from a complete rearrangement of the first row;
so for instance the first element of the first row becomes the second element of the third
row. The rule for constructing the matrix D(R) says that, correspondingly, the first row
of I becomes the second row of D(R). Similarly, the second row of I becomes the third row
of D(R), the third row of I becomes the first row of D(R), the fourth row of I becomes
the last row of D(R), and so on. After doing the same for the other group elements,
reading off the rearrangements from the second, fourth, fifth and sixth rows of the table
on page 38, we have, with dots in place of zeros for legibility,

D(I)=

















1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

















, D(R)=

















· · 1 · · ·
1 · · · · ·
· 1 · · · ·
· · · · 1 ·
· · · · · 1
· · · 1 · ·

















, D(R2)=

















· 1 · · · ·
· · 1 · · ·
1 · · · · ·
· · · · · 1
· · · 1 · ·
· · · · 1 ·

















,

D(m1)=

















· · · 1 · ·
· · · · 1 ·
· · · · · 1
1 · · · · ·
· 1 · · · ·
· · 1 · · ·

















,D(m2)=

















· · · · 1 ·
· · · · · 1
· · · 1 · ·
· · 1 · · ·
1 · · · · ·
· 1 · · · ·

















,D(m3)=

















· · · · · 1
· · · 1 · ·
· · · · 1 ·
· 1 · · · ·
· · 1 · · ·
1 · · · · ·

















.

It is easy to check that the entire group table is reproduced by multiplication among
these matrices. That is, the correspondence between the matrices and the original group
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elements is an isomorphism. So the matrices provide a faithful representation of D3 and
therefore of Σ3, which we already know is isomorphic to D3.

Remark: The traces all vanish except for Tr (D(I)) = Tr (I) = 6. The
determinants are ±1 with the first three positive and the last three negative.
This is a consequence of the evenness of R, R2 regarded as elements of Σ3, i.e.
as the 3-cycles (1 2 3) and (3 2 1), and the oddness of m1, m2, m3 regarded
similarly as the 2-cycles (2 3), (3 1) and (1 2).

Remark: We have now seen three different faithful matrix representations
of D3 and Σ3 — of sizes 2× 2, 3× 3, and 6× 6. The first two appeared
in q. 1 of Sheet 2. Make sure you’ve done that question.

Remark: The construction of D(g) in the regular representation is read off from the
group-table row starting with g−1, rather than g. In case this seems surprising, the
reason is essentially the distinction noted in Section 2.6 between rearranging positions
and rearranging objects. A general proof that the construction works is as follows.

Proof (non-examinable) that the regular representation faithfully represents any G: With
|G| = N , consider the first row of the group table, consisting of the elements of G laid out
in some definite order beginning with I = g1, say. Consider also the row of the table that
results from multiplying the first row by some element g−1 6= I. The two rows are

G = {g1, g2, ..., gN} and g−1G = {gpg(1), gpg(2), ..., gpg(N)} , (3.1)

where an integer-valued function pg(i) is introduced in order to describe the rearrangement
of the group elements. By definition, the group element originally located at the pg(i)

th

position in the first row of the table migrates to the ith position in the row g−1G. In
particular, since g1 = I we have gpg(1) = g−1. Completeness of the rearrangement implies
that pg(i) 6= i for all i . Also, as with any other permutation the function pg(i) is invertible,
with inverse function p−1

g (i) say.

The elements of D(g) can now be specified using the Kronecker delta. The unit matrix
I has entries Iij = δij , so applying the complete rearrangement to its rows produces

Dij(g) = δ
pg(i) j

= δ i p−1
g (j) , (3.2)

which takes the value 1 when pg(i) = j, equivalently when i = p−1
g (j), and 0 otherwise.

Thus defined, the matrices multiply exactly as required in order for them to provide a
faithful representation of G. For we have

Dij(g)Djk(h) = δ
pg(i) j

δ
j p−1

h
(k)

= δ
pg(i) p−1

h
(k)

= δ
ph{pg(i)} k

= Dik(gh) ,

where the summation convention applies with indices running from 1 to N . Remember
that (gh)−1 = h−1g−1 and note that, in terms of rows in the group table labelled by their
first element, h−1g−1{g-row} = {h−1-row}, i.e., h−1g−1{gp−1

g (i)}i=1,..N = {gph(i)}i=1,..N so

that, replacing i by pg(i) — which merely rearranges the ordering of the elements on both
sides — we finally have h−1g−1{I-row} = {gph{pg(i)}}i=1,..N as required.
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Of course the regular representation may well consist of very large ma-
trices indeed, for instance 53! × 53! for Σ53, the group of permutations of a
pack of cards.3

Remark: From the proof just given, the trace TrD(g) = Dii(g) = 0 unless
g = I, in which case we have TrD(I) = Dii(I)) = |G| = N , when D(g) is
the regular representation of G.

(Notice that the traces exhibit different patterns in the other faithful representations that
we have seen. For instance, the 3-dimensional representation in q. 1 of Sheet 2 has traces
3, 1, 1, 1, 0, 0 (taking I as the first matrix).

Remark: For the regular representation, for any g ∈ G the matrix product
of D(g) with itself, repeated N times, must give the unit matrix: D(g)N = I .
That fact would hardly be obvious by inspection. But it follows
immediately from the isomorphism g 7→ D(g) and the fact that the N th

power gN = I for every g in G. This in turn restricts the determinants
|D(g)| of the regular representation. For groups of odd order, all the de-
terminants |D(g)| = 1. For groups of even order, |D(g)| = ±1, with sign
according to the evenness or oddness of the group-table rearrangements.

3Another example, of somewhat smaller order than |Σ53| but theoretically intriguing,
and famous among group theorists, is the ‘Monster Group’ discovered in 1980. Accord-
ing to Wikipedia, the open-source online encyclopaedia — which usually seems reliable
regarding mathematical questions since they are apolitical on the whole — the ‘Mon-
ster Group’, also known as the ‘Fischer-Griess Monster, or the ‘Friendly Giant’, has or-
der just under 1054. The order is exactly 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71,
= 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000. So,
for the Monster Group, the ‘very large matrices indeed’ that make up its regular repre-
sentation are 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ×
808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 matrices. It is
known that the Monster has a smaller faithful representation, whose matrices have entries
that are complex numbers. These matrices are only 196, 883 × 196, 883. (If one replaces
the complex numbers by the elements of the “order-2 field”, namely 0 or 1 (mod 2), then
one can obtain a 196, 882 × 196, 882 faithful representation.) The Monster Group is sim-
ple, where ‘simple’ has a technical meaning (!) — namely, that it has no nontrivial proper
normal subgroups.
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3.3 Equivalence and inequivalence

It is one thing to know that any finite group can be represented by a set
of matrices. It is another to find a set that’s efficient, in the sense of being
no bigger than necessary, and to make practical use of it. The key to doing
this, in a systematic way, is to consider how a matrix representation changes
under similarity transformations. These correspond to changes of basis
in the underlying vector space.

Definition: Two sets of matrices {D}, {E} are called equivalent if they
are in 1–1 correspondence under a single similarity transformation, i.e. if

D = SES−1 (3.3)

for a single invertible matrix S and for all the matrices D and E. If no such
S exists, then the sets {D} and {E} are called inequivalent.

Remark: Equivalence ⇒ isomorphism. A similarity transformation cannot change the
group table. (For DlDm = Dn ⇔ SDlS

−1SDmS−1 = SDnS−1.) But the converse is
false: it’s possible to have inequivalent sets of matrices faithfully representing the same
group, as will be seen in Example 3.4 below. First, two examples of equivalence:

Example 3.2 Two faithful representations of the Vierergruppe

These are the two examples on p. 37; we give them new names,

D1 =

(

1 0
0 1

)

, D2 =

(

−1 0
0 −1

)

, D3 =

(

−1 0
0 1

)

, D4 =

(

1 0
0 −1

)

and

E1 =

(

1 0
0 1

)

, E2 =

(

−1 0
0 −1

)

, E3 =

(

0 −1
−1 0

)

, E4 =

(

0 1
1 0

)

.

These two sets are equivalent because they are related by (3.3) with, for
example,

S =

(

1 1
−1 1

)

, S−1 = 1
2

(

1 −1
1 1

)

.

(Of course it’s easiest to check that DS = SE for each pair of matrices.
Notice that it makes no difference if we multiply S by any number.)

We could have anticipated this result from the remark about invariant
subspaces on page 37. The similarity transformation corresponds to rotating
the axes by 45◦ (also rescaling, which is irrelevant) to bring them parallel to
the invariant subspaces of {D} or of {E}, as the case may be.
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Example 3.3 Two faithful representations of C4:

D1 =

(

1 0
0 1

)

, D2 =

(

0 1
−1 0

)

, D3 =

(

−1 0
0 −1

)

, D4 =

(

0 −1
1 0

)

and

E1 =

(

1 0
0 1

)

, E2 =

(

i 0
0 −i

)

, E3 =

(

−1 0
0 −1

)

, E4 =

(

−i 0
0 i

)

.

These two sets are equivalent because they are related by (3.3) with, for
example,

S =

(

1 1
i −i

)

, S−1 = 1
2

(

1 −i
1 i

)

.

Notice how complex numbers enter naturally, and necessarily. In fact,
the most general possible choice can easily be shown to be

S =

(

a b
ia −ib

)

for any nonzero numbers a, b . Notice that the two sets are both faithful
representations of C4. Notice also that the determinant |S| = −2iab 6= 0.

Example 3.4 C4 again:

D1 =

(

1 0
0 1

)

, D2 =

(

0 1
−1 0

)

, D3 =

(

−1 0
0 −1

)

, D4 =

(

0 −1
1 0

)

and

E1 =

(

1 0
0 1

)

, E2 =

(

i 0
0 i

)

, E3 =

(

−1 0
0 −1

)

, E4 =

(

−i 0
0 −i

)

both faithfully represent C4. But these two sets are inequivalent. This is
easy to show by trying to find

S =

(

a b
c d

)

; (3.4)

it is a simple exercise to show that no choice of the numbers a, b, c, d will
suffice. One can make DS = SE for each pair of matrices, but there is no
choice of a, b, c, d that gives a nonzero determinant |S| 6= 0. (To show this
it is enough to calculate D2S and SE2.)
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Example 3.5 The quaternion group Q

Q is an order-8 group having some features in common with D4, though not
all. Like D4 it can be faithfully represented by 2 × 2 matrices, though with
complex entries. The elements of Q can be denoted {±I, ±I, ±J , ±K}
where I is the unit matrix and where I, J , K can be defined by

I =

(

0 1
−1 0

)

, J =

(

0 i
i 0

)

, K =

(

i 0
0 −i

)

,

which are related to the Pauli spin matrices.4 You should check (a) that
Q has three order-4 subgroups each isomorphic to C4 (whereas D4 has only
one such), (b) that Q has only one order-2 subgroup (whereas D4 has five),
and (c) that all the subgroups of Q are normal (whereas only the order-4
subgroups of D4 are normal).

The neatest way to verify all this is to show that I, I, J , K satisfy
Hamilton’s relations I2 = J 2 = K2 = IJK = −I (with matrix mul-
tiplication understood, as usual). From these one may show further that
IJ = K = −JI and three similar relations. Like D4, Q is not abelian!

The order-2 subgroup of Q is {±I}, with cosets {±I}, {±J }, and {±K}
(left and right). An order-4 subgroup is {±I, ±I} (isomorphic to C4) with
coset {±J , ±K}. Similarly, we have a subgroup {±I, ±J } with coset
{±K, ±I}, and a subgroup {±I, ±K} with coset {±I, ±J}.
Remark: It is easy to show, by seeking a similarity transformation as in
(3.4), that these eight matrices are inequivalent to the eight matrices rep-
resenting D4 on page 33. Indeed, the result follows, with no need for calcu-
lation, simply from the fact that Q and D4 are not isomorphic and therefore
have different group tables. (As noted above, a similarity transformation
cannot change the group table.)

It is crucial to remember that equivalence always refers to the complete
set of matrices, not just to one or to any subset of them.

Remark: Generalizing the notation U(1) above, in Example 2.8, we use the
notation U(n) to denote the group of unitary n × n matrices. Recall that a
unitary matrix D has complex entries and that its inverse is its transposed
complex conjugate, implying that the determinant |D| = ±1. Notice that
I, I, J , K ∈ U(2).

4In terms of the standard notation σ1, σ2, σ3 for the spin matrices (e.g. Jones chapter 8,
p. 140) we have I = iσ2, J = iσ1, and K = iσ3. (Remember, footnotes aren’t examinable.)
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Remark: U(n) is a subgroup of the group GL(n, C) of all nonsingular
n × n matrices with complex entries.

(Make sure you check that GL(n, C) and U(n) are indeed groups.)

The letters GL stand for ‘General Linear’, referring to the way that the
matrices act on vectors as linear transformations, within the underlying vec-
tor space which is of course C

n, the nnn-dimensional vector space with
complex numbers as scalars. This means that matrix entries and vector
components are all complex numbers.

GL(n, C) is the basic scaffolding for building representation theory. As
Example 3.3 on page 63 demonstrates, complex scalars arise naturally
and inevitably, even though there are particular cases where attention can
be confined to real scalars. (Then we sometimes consider GL(n, R), the real
counterpart of GL(n, C), and a subgroup of GL(n, C). So then we have
real scalars, real matrix entries and real vector components.)

3.4 The character of a representation

Definition: The character of a representation is the set of traces of its
matrices.

The traces can be real or complex numbers. They form important patterns, or fingerprints,
both of group structure and of particular representions of that structure. By convention,
the first element of a character is taken from the unit matrix. Then one can read off the
dimension of the representation as the first element of its character. The characters of the
representations encountered so far in this course are as follows:

Regular representation of any finite group G (page 60): {|G|, 0, 0, 0, 0, 0, 0, 0, . . . 0}
Representations of D3 and Σ3 in Sheet 2 q. 1: {3, 1, 1, 1, 0, 0}
Representation of D3 and Σ3 in Example 2.5 {2,−1,−1, 0, 0, 0}
Representation of D4 in Example 2.2 {2, 0,−2, 0, 0, 0, 0, 0}
Representation of Q in Example 3.5: {2,−2, 0, 0, 0, 0, 0, 0}
Rep’ns of the Vierergruppe in Example 3.2, D’s and E’s: {2,−2, 0, 0}
Representations of C4 in Example 3.3, D’s and E’s: {2, 0,−2, 0}
Representation of C4 in Example 3.4, D’s only: {2, 0,−2, 0}
Representation of C4 in Example 3.4, E’s only: {2, 2i,−2,−2i}

Notice that the elements of each character add to zero, except in the first two examples.
The reasons for this will be discussed in the next section.

Notice also that the characters are the same for all the pairs of equivalent representions,
and different for inequivalent representions. For instance the characters differ for D4 and
Q, and for the D’s and E’s in Example 3.4. This is not accidental. We will note next
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that characters are invariant under similarity transformations — one reason why they’re
important fingerprints. (That invariance was illustrated in Sheet 2 q. 1.)

Remark: Characters are invariant under similarity transformations.

This is because Tr (ABC) = AijBjkCki = Tr (BCA), the cyclic property of
traces, implies that

Tr (SDS−1) = Tr (DS−1 S) = Tr (D) . (3.5)

Here’s another reason:

Remark: Characters are invariant within a conjugacy class.

For if two elements are conjugate — recall the definition (2.1) — then in any
representation their matrices, D1 and D2, say, must be related by

D2 = DD1D
−1 (3.6)

where D is some other matrix in the representation. But the cyclic property
of traces then implies, in exactly the same way as above, that

Tr (D2) = Tr (DD1 D−1) = Tr (D1 D−1 D) = Tr (D1) . (3.7)

3.5 Reducibility and irreducibility
Examples 3.2 and 3.3 illustrate reducibility.5 In 2 dimensions, reducibility
means simply that all the matrices in a representation can be diagonalized
by a single similarity transformation. Thus, in Example 3.3 the D matrices
get reduced to the purely diagonal E matrices, and in Example 3.2 it’s the
E matrices that are reduced to the purely diagonal D matrices.

Such reduction is far more than the ordinary diagonalization of a single
matrix. Again the idea is to consider all the matrices together, because
again we want insight into the structure of the group they represent. And
remember, yet again, that the (single) similarity transformation can’t change
that structure because it can’t change the group multiplication table:

DlDm = Dn ⇒ SDlS
−1SDmS−1 = SDnS

−1 . (3.8)

(That is, equivalent representations are isomorphic.)

5In some texts reducibility, as defined here, is called ‘complete reducibility’.
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Remark: A 2-dimensional non-abelian representation is irreducible.

For if it were reducible, then its group table would be the same as when the matrices are
all diagonal. And diagonal matrices commute with each other, which would be a con-
tradiction. So our 2-dimensional matrix representations of D3, D4 and Q are all
irreducible.

What does reducibility mean when the dimensionality is 3 or greater? By
definition it means block-diagonalization, understood to include elementwise
diagonalization:

Definition: For any number of dimensions, reducibility means reducibil-
ity by a similarity transformation to block-diagonal form such that every
nonzero matrix element is confined within the same block-diagonal shape.

The 3-dimensional example of Sheet 2 q. 1 illustrates this. The last set of matrices (third
display on the example sheet) have their nonzero elements confined within a single block-
diagonal shape, which in this case has 1 × 1 matrices at upper left and 2 × 2 matrices at
lower right. In this example, we know that further reduction to three 1 × 1 matrices on
the diagonal, i.e., elementwise diagonalization, is not possible. By the Remark above, the
2 × 2 matrices at lower right are irreducible because the group is non-abelian.

Notice that the elements of each character add to zero for each 2-dimensional
representation listed on page 65. In particular, they add to zero for the
2-dimensional representations of D3, D4 and Q, which are all irreducible
as already remarked. This turns out to be a general property of irreducible
representations of any dimension — indeed, a special case of what I’ll call
their ‘gridlock orthogonality properties’, §§3.8ff.

By contrast, the character of the regular representation has elements that never add up
to zero. We saw that they add up to |G|. That will allow us to prove that the regular
representation must always be reducible. (That’s hardly surprising in view of its vast size.)
Also reducible is the 3-dimensional case of Sheet 2 q. 1, whose character is {3, 1, 1, 1, 0, 0}.
And, sure enough, the elements add up to a nonzero value, 6.

Remark: Reducibility means that the underlying vector space has
invariant subspaces.

If the underlying vector space is 2-dimensional, and if the 2× 2 matrices
of a representation are all in diagonal form, then plainly they leave invariant
just two 1-dimensional subspaces. These are the two subspaces spanned
by column vectors (1, 0)T, (0, 1)T — multiplied, of course, by any scalar
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we please, which includes complex scalars when we are working within
GL(n, C).

In the case of Example 3.2, those subspaces are real 1-dimensional sub-
spaces of the vector space R

2. In the case of Example 3.3, the invariant sub-
spaces of the D’s are complex 1-dimensional subspaces of the vector space
C

2. These particular subspaces happen to be invisible within R
2.

If the underlying vector space has more than 2 dimensions, then plainly
it can have invariant subspaces of more than 1 dimension. The dimensions
of such subspaces match the sizes of the matrices on the diagonal after the
matrices have been reduced, i.e., put into block-diagonal form.

Remark: In Examples 3.2 and 3.3, the invariant subspaces are mutually
orthogonal provided that we define orthogonality of two vectors x, y using a
scalar or inner product (x , y) of Hermitian type, namely

(x, y) = x∗
j yj = x† y , (3.9)

with summation convention over the components. The asterisk denotes the
complex conjugate and the dagger the transposed complex conjugate.

Orthogonality has, of course, no meaning unless one says with respect to what inner or
scalar product. Two vectors are orthogonal, by definition, if their inner product vanishes.
You should check that this holds in both the examples mentioned — Example 3.3 as well
as 3.2 — provided that one remembers the complex conjugate in (3.9). Without it, the
invariant subspaces of the E’s in Example 3.3 won’t transform to orthogonal invariant
subspaces of the D’s. (Notice that in this example S =

√
2 times a unitary matrix.)

3.6 The group-invariant inner product [x, y]

This is also called the group-invariant scalar product, or just the invariant in-
ner product or invariant scalar product. It is key to some of the most beauti-
ful theorems of representation theory and generalizes the ordinary Hermitian
inner product as follows:

Definition: Let (x , y) be the ordinary Hermitian inner product defined by
(3.9). Let the matrices in a representation of a given group G be the set
{D(g)}. Define

[x , y] =
∑

g∈G

(

D(g)x , D(g)y
)

, (3.10)
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where the round brackets mean the same as in (3.9) and where the sum-
mation is over all the group elements g.

Remark (the invariance property): For any fixed h ∈ G, we have

[D(h)x , D(h)y] = [x , y] . (3.11)

This result follows at once from the complete rearrangement property of
group tables, after substitution into (3.10). The sum over group elements
doesn’t care about the order in which the elements are taken. (This device
of summing over group elements will come up repeatedly.)

Implication: Any given representation of a given group G becomes uni-
tary if the inner product is redefined as in (3.10) (and one changes basis
in the underlying vector space to be orthonormal with respect to (3.10) —
another similarity transformation, of course).

So all finite groups can be seen as groups of generalized rotations and
reflections within a complex vector space, representable by unitary
matrices. Generalized rotations and reflections mean group actions, on the
underlying vector space, that preserve the lengths and mutual orthogonality
of vectors.6 ‘Length’ can be defined as (x , x)1/2 or [x , x]1/2. If we take

it as [x , x]1/2 — which has all the standard properties of inner or scalar
products — then the whole of representation theory for GL(n, C) can be
developed within U(n), with similarity transformations and group actions
all described by unitary matrices. (Example 3.3 illustrates this.)

(The standard properties are positive definiteness, [x , x] > 0 when x 6= 0, Hermitian
symmetry, [x , y] = [y , x]

∗
, and linearity [x , ay + bz] = a[x , y] + b[x , z], all easily

verified from (3.10). When (3.10) is used to define ‘length’ and ‘orthogonality’, all the
standard derivations of matrix eigenvector-orthogonality, etc., go through in a way that
closely parallels the case of real generalized inner products recalled on page 15.)

In particular, when (3.10) is used, to define ‘length’ and ‘orthogonality’,
then every invariant subspace has an orthogonal complement, and all invari-
ant subspaces can be taken to be mutually orthogonal — not just particular
cases like those of Examples 3.2 and 3.3.

Summary: Reducibility ⇔ mutually orthogonal invariant sub-
spaces ⇔ reduction possible as defined here, to block-diagonal form.

6Mathematicians call these ‘isometries’, meaning operations that preserve lengths or
distances, in any sense that satisfies the triangle inequality.
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Of the faithful representations we’ve seen, it’s only the irreducible rep-
resentations whose characters have elements guaranteed to add up to zero.
The representations in Example 3.4 have the characters {2, 0,−2, 0} and
{2, 2i,−2,−2i}, whose elements do both add up to zero. The first does so
essentially because it’s irreducible within GL(n, R) even though not within
GL(n, C). The second does so only because it’s made up of two identical
copies of a 1-dimensional irreducible representation.

3.7 Unfaithful representations

So far we have dealt only with faithful representations, which by definition
are isomorphic to the group G they represent. However, we may also consider
sets of matrices, including 1× 1 matrices, that are merely homomorphic
to G. For the moment I’ll call these ‘unfaithful representations’.

You already know some relevant examples, from q. 4 of Sheet 2. The first
is a homomorphism from D4 to the trivial group consisting of the identity
only — let’s call it C1 — represented by a single 1× 1 matrix (1), the same
thing as the ordinary integer 1:

{I, R,R2, R3,m1,m2,m3,m4} 7→ {1, 1, 1, 1, 1, 1, 1, 1}

(So the kernel of this homomorphism is the whole of D4.) Then there are
three nontrivial homomorphisms, mapping D4, in three different ways, to a
faithful representation of C2 consisting of the two 1×1 matrices (1) and (−1):

{I, R,R2, R3,m1,m2,m3,m4} 7→ {1, 1, 1, 1, −1, −1, −1, −1}
{I, R,R2, R3,m1,m2,m3,m4} 7→ {1, −1, 1, −1, 1, 1, −1, −1}
{I, R,R2, R3,m1,m2,m3,m4} 7→ {1, −1, 1, −1, −1, −1, 1, 1}

You will already have checked that these mappings preserve group multi-
plication and are therefore homomorphisms. (Their kernels are the three
normal subgroups of D4, namely C4 and two copies of the Vierergruppe.)

But what’s the point in considering representations of C2, let alone of C1,
as ‘representations’ of a much bigger group such as D4? They represent only
some aspects of D4, so we are throwing away information! How can this
be useful?
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It’s like a chess gambit.7 One throws away information but gets back
much more in return. The payoff comes from considering all the irreducible
representations together, faithful and unfaithful. So by convention
they’re all called ‘representations’, regardless of how much or how little
information each one contains. So, in particular, the trivial representation
{(1)}, which contains no information at all, and faithfully represents only
the trivial group C1, is nevertheless called a ‘representation’ of, for instance,
D4, or indeed of any finite group whatever.

What do equivalence and irreducibility mean for 1-dimensional rep-
resentations? The key is to notice that 1-dimensional similarity transforma-
tions are powerless to do anything: SDS−1 = D if the matrices are 1× 1.
(In a 1-dimensional vector space there can be no changes of basis beyond
rescaling.) It follows that

All 1-dimensional representations are irreducible, and that

Any two distinct 1-dimensional representations are inequivalent.

Remark: The character of a 1-dimensional representation is the same thing
as the representation itself, because the traces of 1-dimensional matrices
are trivially the single entries in such matrices. Therefore, the images of
the above homomorphisms are also, of course, the characters of these four
1-dimensional representations of D4.

Remark: These four are the only 1-dimensional representations of D4.

(You can take this on faith, or easily prove it. You need only show that no other choices
of ±1 qualify as homomorphisms, nor do any other sets of numbers, real or complex.)

Remark: Similarly, the only 1-dimensional representations of D3 are

{I, R,R2,m1,m2,m3} 7→ {1, 1, 1, 1, 1, 1} (3.12)

{I, R,R2,m1,m2,m3} 7→ {1, 1, 1,−1,−1,−1} . (3.13)

The trivial representation (3.12) has already been given a sneak preview, at upper left in
the second 3-dimensional representation of D3 or Σ3 in Sheet 2 q. 1.

Remark: The rule that the elements of a character add to zero holds for ev-
ery nontrivial 1-dimensional representation shown above. The general theo-
rems to be stated and proved in Section 3.9 below establish that this addition

7The great mathematician J. E. Littlewood called it ‘impudence’ in mathematics. See
Littlewood’s Miscellany, ed. B. Bollobás, 1986, Cambridge University Press, 200 pp.
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rule is true in general, as a special case of a remarkable set of ‘gridlock or-
thogonality properties’ that hold for the complete set of inequivalent ir-
reducible representations — ‘IRs’ or ‘irreps’ for brevity.

The general theorems also prove that the complete set of inequivalent
irreps for D3 and D4 consists of the 1-dimensional irreps just displayed to-
gether with the 2-dimensional faithful irreps already found, in Example 2.2
and in Example 2.5, Eqs.(2.3). In both cases there are, indeed, no more in-
equivalent irreps. (Of course there are lots more 2-dimensional equivalent
irreps obtainable by similarity transformation.)

Associated with the complete set of inequivalent irreps for every finite
group are certain patterns implied by the general theorems, the patterns as-
sociated with ‘gridlock orthogonality’. It’s easy to see what these are like,
from simple examples. A good way to begin to see the patterns is to sum-
marize the characters of all the irreps in a ‘character table’.

The character tables for D3 and D4 are enough to convey the idea. I’ll
show them, therefore, before discussing the general theorems.

3.8 The character tables for D3 and D4

For D3, we denote the trivial irrep by d(1), meaning either the whole set of
1× 1 matrices, or the homomorphism from the group to the set of matrices,
given by (3.12) in this case (see Remark on p. 77 re notation). Similarly,
the next 1-dimensional irrep, given by (3.13), is denoted by d(2), and the
remaining irrep, the 2 × 2 faithful irrep given in Example 2.5, is denoted by
d(3). The corresponding characters will be denoted by χd(1) χd(2) , and χd(3) :

Example 3.6 Character table for D3

I R R2 m1 m2 m3

χd(1) 1 1 1 1 1 1

χd(2) 1 1 1 −1 −1 −1

χd(3) 2 −1 −1 0 0 0
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The last row, showing the character χd(3) , whose elements are the traces
of the 2 × 2 matrices in Eqs.(2.3), is laid out in the same order as in those
equations and as on pages 65 and 38. The partitioning into conjugacy classes
is shown by vertical rules. Notice the invariance of character elements within
conjugacy classes, as dictated by (3.7).

Similar conventions are used for D4. We have the four 1-dimensional
irreps shown on page 70, and will denote them by d(1), . . . , d(4). We have
the one faithful 2-dimensional irrep shown on page 33 (Example 2.2), and
will denote it by d(5). Its traces appear in the bottom row of the table:

Example 3.7 Character table for D4

I R2 R R3 m1 m2 m3 m4

χd(1) 1 1 1 1 1 1 1 1

χd(2) 1 1 1 1 −1 −1 −1 −1

χd(3) 1 1 −1 −1 1 1 −1 −1

χd(4) 1 1 −1 −1 −1 −1 1 1

χd(5) 2 −2 0 0 0 0 0 0

Not only do all the horizontal rows add to zero except the first, as noted
earlier, but every row, regarded as a |G|-dimensional vector, is orthogonal
to every other row. Moreover, every column is orthogonal to every
other column that belongs to a different conjugacy class. (Therefore
character tables are often shown with the conjugacy classes lumped together
into single columns; then every column is orthogonal to every other column,
as suggested by the word ‘gridlock’.)

It can be proved that these are completely general properties of the char-
acter table of any finite group whatever, provided only that in cases where
complex values arise (a) one uses a unitary representation, as (3.11) shows
we can if we wish, and (b) interprets orthogonality in the Hermitian sense.

And yet more is true: the gridlock is even tighter. Not only does it
constrain the character table, but also the individual elements of the irreps
of dimension 2 or greater. Details in the next section. Once again the key
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device is summation over all the group elements, as in (3.10), taking
note of the complete rearrangement property.

And from the gridlock come some remarkable constraints on the number
and sizes of irreps, as follows. For any given finite group G we can prove:

Theorem 1: The number of inequivalent irreps — including the trivial irrep
— equals the number of conjugacy classes. (Both the above character tables
illustrate that fact.)

Theorem 2: If the dimensions of the inequivalent irreps are denoted by
n1(= 1) and n2, . . . , nN , then

N
∑

α=1

n2
α = |G| .

Notice how this pins down the number of inequivalent irreps! For D3, we
have

12 + 12 + 22 = 6 ;

and so there are indeed no other possibilities. We really have found all the
inequivalent irreps, and the character table on page 72 really is complete.

Similarly for D4, we have

12 + 12 + 12 + 12 + 22 = 8 ;

so its character table on page 73 is also complete. There can be no more
inequivalent irreps of D4.

For small groups one can often determine the entire character table from the foregoing
constraints alone, assuming that one has previously determined the irrep or irreps having
more than one dimension.8 The latter can usually be found from geometric intuition as
we did for D3 and D4.

Corollary of Theorem 2:

Every irrep has dimension 6
(

|G| − 1
)1/2

, for |G| > 1.

Thus for instance no group of order less than 5 can have a 2-dimensional or higher-
dimensional irrep, so no group of order less than 5 can be non-abelian. In fact the smallest

8An example is the quaternion group Q (p. 64). Using Theorem 2 we can easily show
that its character table must be the same as for D4. (Note that Q has a homomorphism
onto the Vierergruppe whose 2-dimensional matrices are, however, reducible as we saw in
Example 3.2, so can’t enter the character table.) Another nice example is Σ4 (p. 87).

74



C
op

yr
ig

ht
 ©

 2
01

0 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

such is of order 6, namely D3 and its isomorph Σ3. (Because 5 is prime, the only order-5
group is C5.) For Σ53, there can be no irrep with dimension greater than (53! − 1)1/2.

We also note for completeness

Theorem 3: The dimension nα of each irrep divides |G|.
The proof of this last theorem is well beyond our present scope.9 What’s

usually most important in practice, though — for instance in analysing the
small oscillations of symmetric molecules — is the use of Theorems 1
and 2 to pin down the nature of the irreps of small groups. It turns out for
instance that the numbers of degenerate normal modes (distinct modes
with the same normal frequency) are just the dimensions of the irreps.

The proofs of Theorems 1 and 2 are relatively easy, but too long for a
10-lecture Easter-term course. However, I’ll give them in the non-examinable
sections below, after showing where gridlock orthogonality comes from.

3.9 The orthogonality theorems for irreps

This is the fundamental theorem from which Theorems 1 and 2 are derived.
It depends on the following remark, called Schur’s lemma:

Remark: Given any finite group G, consider two of its inequivalent irreps
with underlying vector spaces V1 and V2. Let f : V1 → V2 be a linear mapping
from V1 to V2 that preserves not only all the vector-space operations — as
any such linear mapping must — but also all the group operations. Then

f must be either zero or a vector-space isomorphism (3.14)

(meaning a 1–1 mapping that preserves all vector-space operations). Fur-
thermore if V1 and V2 are isomorphic, the second case of (3.14), then

f must be a scalar multiple of the identity map. (3.15)

Here’s a sketch of the proof (non-examinable). Because f preserves group operations,
its kernel (the subspace of V1 that maps to the zero vector in V2) is a (group-)invariant

9The proof depends on recognizing that the underlying vector space can be replaced by
a structure known in linear algebra as a ‘module over a commutative ring’. This exposes
some consequences of the fact that, in finite group representations, the inverse matrices
can be obtained by matrix multiplication and that therefore no numerical (arithmetical)
divisions are required — contrary to what one might think from the standard formulae for
matrix inverses.
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subspace. Similarly, its image in V2 is an invariant subspace of V2. But irreducibility
says that there can be no invariant subspaces other than the zero subspace or the whole
space, and (3.14) follows.

If V1 and V2 are isomorphic, the second case of (3.14), then we can regard them as the
same vector space. Then (3.15) follows from the fact that f cannot have an eigenspace
other than the whole vector space. Recall that the eigenspace of a linear mapping is the
subspace spanned by a degenerate set of eigenvectors, i.e. all with the same eigenvalue.
(Recall ‘Gram–Schmidt orthogonalization’ etc.) But, under our assumptions, such an
eigenspace is another (group-)invariant subspace. So irreducibility says that it can
only be the whole vector space, with only one eigenvalue, the scalar multiple referred to in
(3.15). (The theory of eigenspaces is simplest for orthogonal and unitary transformations,
and in view of (3.11) this is sufficient, though strictly speaking not needed.)

These results translate into matrix form as follows. If the linear mapping
f is described by some matrix T, then group operations are preserved if
and only if T commutes with the irreps, in an appropriate sense. More
precisely:

Given any finite group G, let two of its inequivalent irreps be denoted by
d(α)(g) and d(β)(g), with dimensions respectively nα and nβ. Suppose also
that T is an nα× nβ matrix independent of g ∈ G and such that

d
(α)
ij (g)Tjl = Tik d

(β)
kl (g) for all g ∈ G .

(No other assumption is made about T; for instance its elements could all
be zero.) Then Schur’s lemma says that

T = 0 if α 6= β (i.e. different irreps) (3.16)
and

T = λ I if α = β (i.e. same irrep, & ∴ same dim.) (3.17)

for some scalar number λ, real or complex.

These two remarks are sometimes called Schur’s first and second lemmas,
in some order. From them we can derive the fundamental orthogonality
theorem, which I’ll label ‘Theorem 0’ because it’s the foundation-stone of
the whole ‘gridlock edifice’:

Theorem 0: Let G be a given finite group with |G| elements. Let d(1), . . .,
d(N) be the inequivalent irreps of G, with dimensions n1, . . .,nN , respectively.
Then for any two of these, say d(α) and d(β), the matrix elements satisfy

∑

g

d
(α)
ij (g)d

(β)
kl (g−1) =

|G|
nα

δαβ δil δjk (3.18)
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(no summation over α).

The key to proving this and subsequent results is the fact previously made use of to get
(3.11), that the summation over all group elements g ∈ G doesn’t care about the
order in which the elements are taken. That is, for instance, for any function f(·)
and any fixed g1 ∈ G we have

∑

g

f(g) =
∑

g

f(g−1) =
∑

g

f(g1g) =
∑

g

f(g−1
1 g) , etc.

Proofs from here on are non-examinable.

Proof of the fundamental orthogonality theorem: For convenience let Sil,kj denote the
array on the left of (3.18):

Sil,kj =
∑

g

d
(α)
ij (g) d

(β)
kl (g−1) .

Because of the summation over group elements, this is independent of g . Initially we

regard j, k as fixed and consider i, l as matrix indices. Because d
(α)
ii′ (g1) d

(α)
i′j (g) = d

(α)
ij (g1g)

(homomorphism preserves group multiplication) we have for any fixed g1 ∈ G

d
(α)
ii′ (g1)Si′l,kj =

∑

g

d
(α)
ij (g1g) d

(β)
kl (g−1)

=
∑

g

d
(α)
ij (g) d

(β)
kl ((g1

−1g)−1)

=
∑

g

d
(α)
ij (g) d

(β)
kl (g−1g1)

=
∑

g

d
(α)
ij (g) d

(β)
kl′ (g−1) d

(β)
l′l (g1)

= Sil′,kj d
(β)
l′l (g1) .

The second line uses the complete rearrangement property — invariance when the order
of summation is changed — and the fourth line again uses the homomorphism property.

Since the foregoing holds for all g1 ∈ G, Schur’s lemma implies that

Sil,kj ∝ δil , α = β ,

Sil,kj = 0, α 6= β .

By a similar argument
d

(β)
kk′ (g1)Sil,k′j = Sil,kj′ d

(α)
j′j (g1) ,

giving
Sil,kj ∝ δjk when α = β .
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Altogether we have, therefore, for some constant C,

Sil,kj =
∑

g

d
(α)
ij (g)d

(β)
kl (g−1) = C δαβ δilδjk .

For α = β, summing over j = k gives, since d
(α)
il (gg−1) = d

(α)
il (I) = δil ,

|G| δil = C δil δkk ⇒ C = |G| /nα

since δkk sums to nα. This gives the orthogonality theorem (3.18).

Remark: If the representation d(β) is unitary, we may take

d
(β)
kl (g−1) = d

(β)
kl (g)−1 = d

(β)
lk (g)∗ (3.19)

where ∗ denotes the complex conjugate.

Corollary of Theorem 0 (character ‘row orthogonality’, or ‘gridlock
mark 1’): If we set i = j and k = l in the orthogonality relation (3.18) and
sum over the repeated indices using δjlδjl = δjj = nα, the result is

∑

g

χd(α)(g) χd(β)(g
−1) = |G| δαβ , (3.20)

or equally well (because, yet again, the sum over group elements doesn’t care
about the order in which the elements are taken)

∑

g

χd(α)(g
−1) χd(β)(g) = |G| δαβ . (3.21)

In the unitary case these become, respectively,
∑

g

χd(α)(g)χ∗
d(β)(g) = |G| δαβ (3.22)

using the trace of (3.19) (note that the right-hand side is real), and
∑

g

χ∗
d(α)(g)χd(β)(g) = |G| δαβ , (3.23)

which is the same thing rearranged (and, in any case, a real quantity).

Finally, since the character values are the same for each group element in
a given conjugacy class, we can rewrite these orthogonality relations in the
form exemplified by

∑

Ci

|Ci| χd(α)(gi)χd(β)(g
−1
i ) = |G| δαβ , (3.24)
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the sum now being over the classes Ci and |Ci| the number of elements in
the class Ci , with gi any representative of Ci , i.e. any single element in Ci .

Remark: One may think of a ‘representation’ (faithful or unfaithful, reducible or irre-
ducible) in two slightly different ways. The first way is, as above, to think of it simply as
the set of matrices, such as D(g) or d(g) (lower-case for irreps) with components Dij(g)
or dij(g), to which a group G is isomorphic or homomorphic. For any one representation
there are of course |G| of these matrices, as g runs over the whole group G. The second
way10 is to think of the ‘representation’ as the mapping itself, the homomorphism, between
G and the set of matrices. The mapping is often denoted by D(g) or d(g).

Please note: Everything from here on is non-examinable — including the
section on molecular oscillations, as per schedule.

In order to prove Theorem 2, we need to consider first the

3.9.1 Decomposition of a reducible representation

Given any finite group G, let us suppose that we know its irreps, say homomorphisms
d(1), d(2), . . . , d(N), and matrices d(1), d(2), . . . , d(N) in some basis. Let D be any
reducible representation of G. This means that D must be decomposable as a block-
diagonal ‘direct sum’

m1d
(1) ⊕ m2d

(2) ⊕ · · · ⊕ mNd(N) ,

where the mk are integers called the multiplicities. The term direct sum and the symbol
⊕ simply mean, by definition, the concatenation of irreps down the main diagonal of
each block-diagonal matrix of D, produced by some similarity transformation S. The
multiplicities mk are the number of times each irrep is repeated in the direct sum, i.e., the
number of copies of each irrep that appears on the main diagonal.

Symbolically, we may say the same thing as follows. Let D(g) be the matrix corre-
sponding to some group element g ∈ G in an arbitrary basis. Then the reduction can be
written symbolically as

SD(g)S−1 = I(m1)⊗d(1)(g) ⊕ I(m2)⊗d(2)(g) ⊕ · · · ⊕ I(mN )⊗d(N)(g) , (3.25)

where the symbol ⊗ is shorthand for block matrix multiplication, with I(m1), the m1×m1

unit matrix, acting on d(1) as if it were a scalar and thus creating m1 copies of it con-
catenated down the diagonal, and similarly with d(2), . . . , d(N).

10This second way of thinking tends to be favoured by pure mathematicians.
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Now remember that the character value χD(g) of the representation matrix D(g) is
invariant under similarity transformations. Therefore, taking the trace of (3.25), we have

χD(g) = m1χd(1)(g) + m2χd(2)(g) + · · · + mNχd(N)(g) . (3.26)

We can use this result to find m1, m2, . . ., mN without having to find the similarity
transformation S. Multiply (3.26) by χd(α)(g

−1), sum over all classes in G, and use the
orthogonality relation (3.24):

mα =
1

|G|
∑

Ci

|Ci|χD(gi)χd(α)(g
−1
i ) , (3.27)

and similarly for m2, . . ., mN .

3.9.2 Decomposition of the regular representation, and
proof of Theorem 2

Given any finite group G, we denote its regular representation by D(R), and the individual
matrix corresponding to group element g ∈ G by D(R)(g). Recall first that the character
of D(R) has only one nonzero character element, that corresponding to the identity:

χD(R)(I) = |G| , χD(R)(g) = 0 , g 6= I . (3.28)

(This was shown on page 60 to follow from the complete rearrangement property, which
holds for the particular row-permutations of I that make up the matrices D(R)(g).)

To decompose D(R) into the irreps of G we use the orthogonality relation for characters,
(3.24), and its consequence (3.27). For any irrep we have χd(α)(I) = nα, with nα its
dimension, so, using (3.28) in (3.27) and noting that |Ci| = 1 when gi = I,

RHS (3.27) =
1

|G|
∑

Ci

|Ci| χD(R)(I) χd(α)(I) = nα .

Thus (3.27) tells us that the dimension, nα , of each irrep is equal to the multiplicity, mα ,
of its occurrence in the regular representation D(R). So

D(R) = n1d
(1) ⊕ n2d

(2) ⊕ · · · ⊕ nNd(N) .

This means that for some similarity transformation S the individual matrices D(R)(g) of
the representation must all satisfy

SD(R)(g)S−1 = I(n1) ⊗ d(1)(g) ⊕ I(n2) ⊗ d(2)(g) ⊕ · · · ⊕ I(nN ) ⊗ d(N)(g) . (3.29)

Now substitute g = I, the identity element. By counting down the diagonal we immedi-
ately get

∑

α

n2
α = |G| ,

which is Theorem 2.
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3.9.3 Proof of character ‘column orthogonality’
or ‘gridlock mark 2’

This finally leads to the proof of Theorem 1. And now, for the first time, it’s essential
to use unitarity, which (3.10)ff. assures us is always possible (by choosing basis vectors
that are orthonormal with respect to the group-invariant inner product).

First we evaluate (3.29) for two group elements g = g1 and g = g−1
2 , multiply the

results together, and take the trace. For the left-hand side we have

(

SD(R)(g1)S
−1SD(R)(g−1

2 )S−1
)

ii
=

(

SD(R)(g1)D
(R)(g−1

2 )S−1
)

ii
=

(

SD(R)(g1g
−1
2 )S−1

)

ii

= SijD
(R)
jk (g1g

−1
2 )S−1

ki = D
(R)
jk (g1g

−1
2 )δjk

= D
(R)
jj (g1g

−1
2 ) = |G| or 0 according as g1 = g2 or g1 6= g2) .

by (3.28). Denote this by |G| δg1,g2 , extending the Kronecker delta notation in an obvious
way.

The right-hand side is the trace of a block-diagonal matrix product in which each term
of the form Tr

(

d(α)(g1)d
(α)(g−1

2 )
)

occurs with multiplicity nα. So altogether we have

|G| δg1, g2 =
∑

α

nαTr
(

d(α)(g1)d
(α)(g2

−1)
)

=
∑

α

nαd
(α)
ij (g1)d

(α)
ji (g2

−1) (summed over i, j)

=
∑

α

nαd
(α)
ij (g1) d

(α)
ij (g2)

∗ (by unitarity) . (3.30)

Now for any fixed i, j, α one can regard the matrix elements

d
(α)
ij (g1), d

(α)
ij (g2), d

(α)
ij (g3), . . .

as the components of a |G|-dimensional vector. The orthogonality theorem (3.18) says that
such vectors coming from different irreps and also from different positions in the matrix
(different ij) are orthogonal. The result (3.30) shows that these vectors form a complete
set in this |G|-dimensional vector space. In general, for C

n with a basis of orthonormal
vectors vr (r = 1, . . . n), satisfying (vr , vs) = vr

†vs = δrs, there’s a completeness

relation that takes the form
∑

r

vr vr
† = I(n), saying that the vectors span all of C

n.

And now a similar completeness relation may be obtained for characters. The charac-
ter orthogonality relation (3.24) corresponds to orthogonality of N c-dimensional vectors
where c is the number of conjugacy classes and N is the number of irreps. The associated
completeness relation will then require that N = c, giving Theorem 1.

To derive it we let g1 → gg1g
−1 in (3.30), second-bottom line, then fix g1 and g2 and

sum over all g ∈ G as well as over α, i and j,
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|G|
∑

g

δgg1g−1, g2
=

∑

g

∑

α

nαd
(α)
ij (gg1g

−1) d
(α)
ji (g2

−1)

=
∑

α

nα

∑

g

d
(α)
ik (g)d

(α)
kl (g1)d

(α)
lj (g−1)d

(α)
ji (g2

−1)

= |G|
∑

α

δij δkl d
(α)
kl (g1)d

(α)
ji (g2

−1)

= |G|
∑

α

χd(α)(g1)χd(α)(g2
−1)

= |G|
∑

α

χd(α)(g1)χd(α)(g2)
∗ ,

where the third step uses Theorem 0, the full orthogonality relation (3.18). Now as g
runs over the whole group G, with g1 and g2 fixed, gg1g

−1 runs (more than once) over
the conjugacy class C1 containing g1, whose size |C1| < |G|. If C1 differs from the class
C2 containing g2, then the delta function on the left is always zero. If C1 = C2 then some
of the terms on the left are nonzero, because conjugation by some element or elements of
G must send g1 to g2. There must be at least one such element, g̃ say. Then g2 = g̃g1g̃

−1.
If there is any other such element, g̃′ say, then it must satisfy g2 = g̃′g1g̃

′−1 = g̃g1g̃
−1,

which can be rewritten as hg1h
−1 = g1 where h = g̃−1g̃′. But the set of all h with

hg1h
−1 = g1, for fixed g1, is a subgroup of G, say Hg1 (Sheet 2 q. 6) because if k ∈ Hg1

then kg1k
−1 = g1, ⇒ k−1kg1k

−1k = k−1g1k ⇒ g1 = k−1g1k, so k−1 ∈ Hg1 ; and,
again, if k, ℓ ∈ Hg1 then (kℓ)g1(kℓ)−1 = k(ℓg1ℓ

−1)k−1 = kg1k
−1 = g1, so kℓ ∈ Hg1 . So

the set of elements {g̃, g̃′, g̃′′, . . . } that send g1 to g2 is in 1–1 correspondence with the set
g̃−1{g̃, g̃′, g̃′′, . . . }, which is just Hg1 . So the (co)set {g̃, g̃′, g̃′′, . . . } has size |Hg1|. Now
g2 can be any element of C1, including g1 itself (which is sent to itself by conjugation
with any h ∈ Hg1). So G can be partitioned into |C1| disjoint sets each of size |Hg1|. So
|C1||Hg1| = |G|. Therefore

∑

gδgg1g−1, g2
= |Hg1|δC1,C2 =

(

|G|/|C1|
)

δC1,C2 hence, finally,
column orthogonality for characters, in turn implying Theorem 1:

∑

α

χd(α)(g1)χd(α)(g2)
∗ =

|G|
|C1|

δC1,C2 . (3.31)

3.10 Applications to normal modes
An important application of representations and their decompositions is to simplify the
analysis of normal modes and their associated normal frequencies. We may also determine
the degeneracy. The degeneracy of a normal frequency is the number of distinct modes
that share this frequency.

Following Chapter 1 we assume a general Lagrangian

L = 1
2 q̇TTq̇ − 1

2 qTVq .

If the system has a symmetry then the action of the symmetry transformation g on the
generalized coordinates q is

q −→ D(g)q ,
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where, if there are N degrees of freedom so that q is an N -component column vector,
D(g) is a N ×N matrix. For a symmetry, L must be invariant and this requires

D(g)T TD(g) = T , D(g)T VD(g) = V .

For real coordinates we may take the matrices D(g) to be orthogonal, or D(g)TD(g) = I,
so that this becomes11

D(g)−1TD(g) = T , D(g)−1VD(g) = V . (3.32)

The representation provided by the matrices D(g) may be decomposed into irreps.
For simplicity we’ll assume at first the multiplicities are all 1. Then after a similarity
transformation, SD(g)S−1 for some nonsingular S, we have

SD(g)S−1 =













d(1)(g)

d(2)(g)
. . .

d(N)(g)













(3.33)

with all irreps different. Since (3.32) must be true for all group elements g we must then
have, by Schur’s lemma,

STS−1 =













t1I
(n1)

t2I
(n2)

. . .

tNI(nN )













(3.34)

and

SVS−1 =













v1I
(n1)

v2I
(n2)

. . .

vNI(nN )













(3.35)

where the tα and the vα are scalar numbers, and where I(nα) is the nα × nα unit matrix,
nα being the dimension of the irrep d(α). Note that

I =













I(n1)

I(n2)

. . .

I(nN )













. (3.36)

11The normal mode frequencies are given by the eigenvalues of T−1V and without
requiring D(g) to be orthogonal we have D(g)−1T−1VD(g) = T−1V.
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With the diagonal form for T and V given by (3.34) and (3.35) finding the normal fre-
quencies is easy; they are just ωα

2 = vα/tα with degeneracy nα, the dimension of the
irrep.

The normal mode generalized eigenvectors just span the invariant subspace (of the
underlying vector space) acted on by the relevant irrep of the symmetry group.

More generally, the same irrep may occur more than once in the decomposition of D.
This is the situation where multiplicities can be 2 or greater.

If the irrep d(α) occurs with multiplicity mα, then the scalar numbers tα and vα are
replaced by mα × mα matrices T(mα),V(mα). Schur’s lemma now gives

STS−1 = T(m1) ⊗ I(n1) ⊕ T(m2) ⊗ I(n2) ⊕ · · · ⊕ T(mN ) ⊗ I(nN ) ,

SVS−1 = V(m1) ⊗ I(n1) ⊕ V(m2) ⊗ I(n2) ⊕ · · · ⊕ V(mN ) ⊗ I(nN ) ,

In this case T and V are not completely diagonal but finding the normal frequencies
reduces to solving, for each α, det(ω2T(mα)−V(mα)) = 0 and the mα frequencies obtained
from this equation each have degeneracy nα.

The degeneracy of any normal frequency is then the dimension of the associated irrep of
the symmetry group. (There may be extra degeneracy, which is either accidental (boring),
or due to a hitherto unsuspected symmetry, perhaps an exciting new discovery.)

Example 3.8 The CO2 molecule

There are three particles on a line, and the system is symmetric under reflections, so the
symmetry group is

G = {I,m},
where m2 = I. The action of the group is given by a representation D, where

D(m)





x1

x2

x3



 =





−x3

−x2

−x1



 so D(m) =





0 0 −1
0 −1 0

−1 0 0



 .

The character of this representation has the values

χD(I) = 3, χD(m) = −1.

Since the order of the group is 2, there can only be 2 irreps, each of dimension 1 (so that
12 + 12 = 2). To be consistent with equation (3.27), we must have

D = d(1) ⊕ 2d(2).

(We need χD(I) = m1 × 1 + m2 × 1 and χD(m) = m1 × 1 + m2 × (−1).) Mode 1
is symmetric (m is represented by +1) with x2 = 0, x1 = −x3, and modes 2 and 3 are
antisymmetric (m represented by −1) with x1 = x3.
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Example 3.9 Oscillations of an equilateral triangle

The symmetry group is Σ3. Choosing the coordinates as in Example 1.5, the permutation
(23), for example, acts on the coordinates according to

q1 → −q1, q2 → q2, q3 ↔ −q5, q4 ↔ q6,

so

D((23)) =

















−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0

















.

The permutation (123) corresponds to a rotation when (q3, q4) is given by (q1, q2) rotated
through 120◦ and similarly for (q5, q6) and (q1, q2). This is given by the matrix

D((123)) =

















0 0 0 0 −1/2
√

3/2
0 0 0 0 −√

3/2 −1/2
−1/2

√
3/2 0 0 0 0

−√
3/2 −1/2 0 0 0 0
0 0 −1/2

√
3/2 0 0

0 0 −√
3/2 −1/2 0 0

















.

Exercise: with V given by (1.26) show that D((23))V = VD((23)) and D((123))V =
VD((123)).

With the above results χD(I) = 6, χD((23)) = 0, χD((123)) = 0. Applying the
orthogonality theorem shows that

D = d(1) ⊕ d(2) ⊕ 2d(3),

using the notation of page 72 for the irreps of Σ3.

The two translations of the system account for one of the d(3)’s (which have degeneracy
2), and the rigid rotation accounts for the d(2) (since the mode is unchanged by cyclic
permutation but its sign is changed by reflections). The remaining d(3) represents a pair
of degenerate nonzero modes and d(1) (non-degenerate) represents the dilation mode.

This is demonstrated by the transformation of the normal mode eigenvectors found in
Chapter 1. For the two translational modes given by (1.27)

D((23))
(

Q(1) Q(2)
)

=
(

Q(1) Q(2)
)

(

−1 0
0 1

)

D((123))
(

Q(1) Q(2)
)

=
(

Q(1) Q(2)
)

(

−1/2
√

3/2
−√

3/2 −1/2

)

,
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generating a two dimensional representation. For the rotation and dilation modes given
by (1.29) and (1.30) we have

D((23))Q(3) = −Q(3) , D((123))Q(3) = Q(3) ,

D((23))Q(4) = Q(4) , D((123))Q(4) = Q(4) .

The remaining modes, as given in (1.31),
(

Q(6) Q(5)
)

transform exactly as
(

Q(1) Q(2)
)

.

Example 3.10 The CH4 molecule

CH4 has hydrogen atoms at the vertices of a tetrahedron, so the symmetry group is
Σ4. This group acts on the 5 × 3 coordinates and the corresponding 15-dimensional
representation D satisfies

χD(I) = 15, χD((12)) = 3, χD((123)) = 0,

χD((1234)) = −1, χD((12)(34)) = −1.

This reduces to d(1) ⊕ d(3) ⊕ 3d(4) ⊕ d(5). The three rigid translations and three rigid
rotations account for one d(4) and the d(5), leaving 9 modes with degeneracies 1, 2, 3,
and 3. I’ll show how to work out the full character table for Σ4, but leave the rest as an
exercise since these notes are getting FAR too long!!

There are 5 conjugacy classes with typical elements, in disjoint cycle notation,

I, (12), (123), (1234), (12)(34).

As remarked on page 55, the cycle shapes determine the conjugacy classes since this is
a full ‘symmetric group’ or permutation group, being the symmetric group on 4 letters.
Every other element can be written in one of these shapes. The numbers |Ci| (i = 1, . . . , 5)
of elements in each of these conjugacy classes are respectively

1, 6, 8, 6, 3.

By Theorem 2, the dimensions of the irreps satisfy

n2
1 + n2

2 + n2
3 + n2

4 + n2
5 = 24

the only solution of which is

n1 = n2 = 1, n3 = 2, n4 = n5 = 3.

The two 1-dimensional irreps are easy to identify: d(1) is (as always) the trivial irrep,
and d(2) is −1 for odd permutations and +1 for even permutations. (This obviously
gives a representation, i.e. qualifies as a homomorphism, and since we know that there are
no other 1-dimensional irreps we need look no further.) At this stage, we can fill in the
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first column of the character table, and the first two rows below the |Ci| (see below), that
is, the rows for d(1) and d(2).

One of the 3-dimensional irreps, d(4) say, corresponds to rotation matrices in R
3

that preserve the tetrahedron. The matrix corresponding to (12) is just a reflection, so
χd(4)((12)) = +1 (because the eigenvalues of a reflection matrix are +1, +1 and −1, and
the trace is the sum of the eigenvalues). The cycle (123) represents a rotation by 2π/3, so
χd(4)((123)) = 0, because the trace of a rotation matrix is equal to 1 + 2 cos θ, where θ is
the angle of rotation.

And now we can use orthogonality to complete the d(4) row of the table. (We could
nearly have done it without finding χd(4)((123)), using the orthogonality theorem (3.24)
with α = β. But because this gives a quadratic equation for the unknown character
values, there are two solutions, only one of which is the required one.)

Surprisingly, the d(3) row is then completely determined by the orthogonality theorem.
(The final equation is quadratic, but has one repeated root.) The d(5) row is then similarly
determined.

So we can finally pin down the entire character table to be the following. To save
space, in the conventional way, it’s laid out with the conjugacy classes lumped into single
columns. The numbers in the second row are not character elements, but the sizes |Ci| of
the classes:

I (12) (123) (1234) (12)(34)

|Ci| 1 6 8 6 3

χd(1) 1 1 1 1 1

χd(2) 1 −1 1 −1 1

χd(3) 2 0 −1 0 2

χd(4) 3 1 0 −1 −1

χd(5) 3 −1 0 1 −1

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ END OF NOTES ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
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