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PREFACE

This volume is a selection of peer-reviewed contributions to the Second Herman
Minkowski Meeting on the Foundation of Spacetime Physics, which took place
in Albena, Bulgaria, 13-16 May 2019. Contributing manuscripts have been classified
into three main categories, i.e.,

1. New Aspects of Black Hole Physics and Modified Gravity

11. Fundamental Aspects of Spacetime: Becoming, Passing
Time and Locality

III. Gravity from a different point of view

Part I treats some aspects of black hole physics. It is now commonly believed that the
general relativistic description of a black hole is not the complete picture of the physical
aspects of the black hole. At our moment in time, we observe that in the centre of any
galaxy there is a Kerr black hole, i. e., a rotating massive black hole. It is the final
state of collapse of matter and therefore one of the most important analytical solutions
of Einstein’s general relativity theory. However, the features of the black hole in the
early stages of our universe and the final fate of the black hole are far from understood.
At the tiniest scales, quantum mechanical aspects should be incorporated. Further,
the black hole will not live forever: it will evaporate by Hawking radiation. Spinning
compact objects are of interest in general relativity, because there are only a very few
of these objects which are asymptotically flat. Further, incorporation of spin implies
that there is a connection with conformal field theory and holographic dualities and
Maldacena’s AdS/CFT correspondence. In these models, the 3-dimensional Banados-
Teitelboim-Zanelli black hole solution plays a prominent role. The big advantage of
studying lower dimensional solutions in general relativity, is the fact that quantum
effect can be incorporated. Vacuum spacetime is locally flat in 3D. Often, one modifies
gravity in order to get interesting black hole solutions, such as the Lifshitz black hole.
Thermodynamical parameters will then be constraint in order to fulfil stability.

Zoltan Keresztes and Balazs Mikoczi consider the evolution of spinning bodies
moving on zoom-whirl orbits. At the closest approach distance of the central rotating,
singular /regular black hole, the body crossed the ergosphere. In the considered numer-
ical simulations the initial values were chosen such that the relatively small mass body
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without spin would have moved in the equatorial plane. However since the initial spin
was not aligned or anti-aligned with the rotation axis of the central black hole, the
body moved out of the equatorial plane. They discuss also the signs of the different
black hole spacetimes occurring in the spin precessional dynamics. Specifically, the spin
precessional angular velocity depends on three parameters, i.e., the black hole rotation
parameter, the charge parameter and the initial spin angle of the approaching body.
Restrictions on these parameters are described.

Reinoud Slagter investigated conformally invariant gravity and find a new solution
for the uplifted BTZ spacetime, without a cosmological constant. The solution shows
some different features with respect to the standard BTZ solution. In the non-vacuum
situation, where a scalar-gauge field is present, a numerical solution is presented on a
spacetime where one writes the metric as g,, = w? Juv, With w a dilaton field, to be
treated on equal footing with the scalar field and g, an “un-physical” spacetime. As
soon as it w is fixed (by the global spacetime after choosing the coordinate frame),
the local observer experiences scales. The effect of w on the behavior of the solution
is evident. An outgoing wave-like initial value for the scalar field induces a wave-like
response in the dilaton field and pushes the apparent horizon closer to p = 0. The
solution depends critically on the shape of the potential. The solution can be used
to investigate what happens with the spacetime of an evaporating black hole through
Hawking radiation. In the vacuum situation in Eddington-Finkelstein coordinates, an
exact solution is found for the (241)-dimensional case as well as for the uplifted sit-
uation. The “un-physical” §,, (BTZ) solution has a non-zero Ricci scalar, while is
flat. There is possibly a link with the antipodal identification. Antipodal mapping is
inevitable if one wants maintain unitarity during quantum mechanical calculations on
the Hawking particles. The antipodal identification can be represented as a confor-
mal transformation generated from the pseudo-orthogonal matrices of O(3), i.e., the
conformal group. Each conformal transformation in this group can be presented by a
pair of antipodal matrices. The great advantage of the method is the avoiding of “the
other side” of the black hole, i.e., the maximally extended Penrose diagram. Even an
Einstein-Rosen bridge is not necessary (“ER=EPR”). In the antipodal approach there
is no inside of a black hole.

Tsvetan Vetsov treats dark matter and dark energy phenomena in our Universe
and the interesting correspondence between gravitational and quantum gauge theories
in three and lower dimensions. A statistical approach towards the thermodynamics
of gravitational models in three and four dimensions respectively is presented. He
includes the 4D Deser-Sarioglu-Tekin higher-derivative gravity black hole solution and
the 3-dimensional stationary Lifshitz black hole solution of massive gravity. Using the
formalism of Thermodynamic Information Geometry , he obtains several non-trivial
restrictions on the gravitational parameters in both models. When considering the
3D stationary Lifshitz solution of New Massive Gravity he finds that the simplest
positive definite thermodynamic metric is given by the Hessian of the Gibbs free energy.
Together with the Sylvester criterion of local and global thermodynamic stability, this
approach leads to the restrictions on the parameters of the model. This in contrast to
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the DST black hole, where the positive definiteness of the TIG metric appeared in the
unstable region. In the case of the Lifshitz solution one can go further to look at the
regions where the thermodynamic curvature has different signs.

Ruben Arjona discusses in detail the effective fluid approach and perturbation theory
in the context of modified gravity (f(R)) , dark matter and surviving classes of the
Horndeski model. He demonstrates that the plethora of modified gravity and dark
energy theories, where each model has its own structure, equations and parameters,
are very difficult to analyse at a technical level in an Einstein Boltzmann solver code. He
presents a modification of the “Cosmic Linear Anisotropy Solving System” (CLASS)
and finds in a simple and straightforward way a less error-prone result. Only three
variables are needed to compute and describe the fluid, i. e., an equation of state, the
sound speed and the anisotropic stress. Experimental results on detected gravitational
waves and gravitational lensing effects could deliver decisive answers on f( R) models
and put restrictions on the involved parameters.

Part II of the volume treats the fundamental questions about the Minkowski space-
time, Lorentz transformations and the notion of time. These questions interface with
philosophy. Any model in theoretical physics will be based on assumptions of “first
principles”. Particular, this demands unambiguity, simplicity, efficiency and finiteness.
In general, Nature will choose out of different models, the simple one (Occam’s rule).
Quantum mechanics (QM) relies on locality, unitarity, causality, complementarity and
Hilbert space controlled by operator equations. General relativity (GR) relies on the
mathematical concept of curvature. In order to find a “grand unified theory”, one tries
to extend the Poincaré gauge group of spacetime with the Yang-Mills gauge group of
particle physics. However, many problems are encountered. One of them is the initial
state of the universe, because we live in an evolving universe controlled by GR ( It is
suggested that even QM should be an emergent feature of our universe).

The philosophical study of ontology, the concept of becoming, is still an actual subject
in modern physics. Ontological states evolve into other ontological states. In QM,
the information as to which quantum states form the ontological states, could be con-
served in time. Mixed states then does not correspond to ontological states. Could
this principle solve the well known EPR-Bell paradox? If the relation between the
ontological basis and the conventional quantum state of a particle system is complex,
one will encounter also quantum-entangled systems. An orthonormal transformation
will turn ontological states into entangled states. However, problems like the “hidden
variables” still remain. Conspiracy, i.e., miraculous correlations, take place at the on-
tological states at ¢t = 0 and manifests itself in the distant future. The same problem
is encountered for the black hole complementarity issue. Pure states evolve into mixed
states (Hawking radiation). The problem in the black hole model is the maximally
extended Penrose diagram. Is there an “inside” of the black hole? An Einstein-Rosen
bridge (ER)? Famous is Maldacena’s slogan “ER=EPR”.
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Vesselin Petkov treats the question: “Can there be becoming in spacetime™ He
believes that the question of the reality of spacetime should come after Minkowski’s
arguments have been addressed and refuted. He believes that the way to reconcile
the notions of becoming and time ow with spacetime physics, is by first recognizing
the fact that these notions do not represent true features of the external world (since
they are not based even on a single piece of experimental evidence) and then (following
Eddington and Weyl) by seeking the origin of our perceptions of becoming and time flow
in the very interaction of our sensory receptors with the external world, the processing
of the obtained information by the brain and the way it is realized by the mind. He
also involves Minkowski’s viewpoints on four-dimensional spacetime, “local becoming”
and eternalism (or block universe), i.e., the idea that present, past and future events
are equally real.

Steven Savitt contribution deals with two notions of time. He explains the difference
between the notions of “passing” and “succession”” related to spacetime slicing. He
first explains that the notion of “time flows” is double-meaning. Secondly, he concludes
that the notion of time contains a present or now, i.e., a universe wide hyperplane of
simultaneous events happening everywhere. The passage of time is then the successive
occurrence of sets of simultaneous events. Further, he discusses the ideas of Pooley and
Dieks (et al.) about events that become “more past” and temporal passage in the bock
universe model. He compares the philosophic notion of passage with the scientific view
of time, starting with Einstein’s special theory of relativity. Starting from Bergson’s
aphorism “time is succession”, he tries to explain what we mean by “succession” in a
post-1905 world.

Rein Saar and Stefan Groote present a historical overview of the group structure
for massless particles. The subgroups of the Lorentz and Poincaré group are treated,
i. e., the SO(3) and Borel group. They formulate some theorems on the subgroup
structure of the Lorentz group. Further, they treat the representations of Lie groups
and algebras in relation to spacetime degrees of freedom and internal forms acting on
charge-like degrees of freedom. They also give some examples from particle physics.
Special attention is given to the neutrino in the helicity representation (Weinberg-
ansatz).

Jan Pilotti explains superluminal Lorentz transformations in six dimensions and the
possibility that Minkowski already has the notion of this possibility. He also wonders if
this model is just a mathematic trick or could be connected with real new physics. His
treatment consists of 6 paragraphs, i. e., experimental search, history of superluminal
systems, mathematical interludes, derivations of the Lorentz transformation missing
v > ¢ and the possibility of new physics from six dimensional spacetime. He explains
the ideas of Weyl and Petkov in connection with 4D block universe and the notion
of consciousness and relativity. He ends with a mathematical conjecture that “a N-
dimensional structure can in no sense create (produce or emerge) a (N +1) dimensional
structure”.



Joseph Cosgrove reviews “simultaneity without cosmology”. He starts with Aristo-
tle’s Physics: “actuality qua potential” and sees potential as becoming. Then he treats
the subjects: clock synchrony, preferred cosmological frames, and frame-relativity and
gravity. He ends with some notes on Smolin’s treatment on global time and preferred
cosmological rest frames. To his opinion, Smolin fails to break through the psycholog-
ical barrier of taking arguments for reality of time seriously. There is no basis for the
assumption that global time requires preferred cosmological rest frames. He suggest
that global simultaneity relation is real apart from cosmological considerations.

Part III consists of two contributions, i.e., a different approach to quantization of
general relativity and modelling spacetime using transition state theory.

Tom McClain presents an overview of the polysymplectic approach to covariant
Hamiltonian field theory and the geometric quantization of classical particle theories.
He conclude that no difficulties arise when the extended Kostant-Souriau quantization
map is applied to general relativity. There are, however, some problems left. For ex-
ample, the Legendre transformation fails in the covariant Hamiltonian analysis. But
this problem also exists in all covariant Hamiltonian field theories. A second problem
is the global time coordinate, which is a physical problem, rather than a mathematical
one.

Bruce M. Boman considers the flow of spacetime as a spontaneous flow by extrapolat-
ing from progressive chemistry processes. Using the “transition state theory”, he is able
to design a mathematical model to describe the flow of spacetime. Quasi-equilibrium
then exists between future events and now events. In this quasi-equilibrium , an event
will exist in both the future and the now, which established a superposition state.
There must be enough entropy and energy during the transition state to progress to a
past event.

The editors, R. J. Slagter and Z. Keresztes, September, 2020
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8 How MINKOWSKI COULD HAVE
DISCOVERED SUPERLUMINAL LORENTZ
TRANSFORMATIONS AND SIX
DIMENSIONAL SPACETIME

JAN PI1LoTTI

Abstract The history and rationale for the discovery of superluminal Lorentz
transformations is given. The analyses of how Einstein, Minkowski,
Cunningham, Born, Pauli and three more didn’t find the possibility
of v > ¢, at least show that we must be cautious in our interpretation
of the principle of relativity and symmetry and how we mathemati-
cally describe “rotation” in the non-Euclidean Minkowski spacetime,
not to implicitly exclude v > c. It is also shown how Minkowski al-
ready 1908 could have discovered a six dimensional spacetime, with
three space and three "timelike" dimensions, which allows super-
luminal LT. Is this just a mathematical possibility? Or can it be
related to the apparently insurmountable contradictions, between
block universe in the theory of relativity and our everyday experi-
ence of change and the flow of time, and between determinism and
indeterminism in relativity vs. quantum theory and to the relation
between consciousness and physical reality?

8.1 Introduction

Before Einstein scholars studied superluminal particles, as e.g. Sommerfeld who pub-
lished a paper “Ueber Lichtgeschwindigkeits und Ueber-Lichtgeschwindigkeits-Elektronen”
[1], just a couple of months before Einstein’s seminal paper 1905. As is well known
from two basic postulates

PI: The laws of physics are the same in all inertial reference frames,

PII: The velocity of light in vacuum c is the same in all inertial frames,
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Physics, dedicated to the 110th anniversary of the publication of Minkowski’s paper “Space and
Time,” 13-16 May 2019, Albena, Bulgaria (Minkowski Institute Press, Montreal 2020). ISBN
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