A deductive physical theory should in principle be a pure mathematical
theory together with an identification of certain quantities/concepts
("observables”) in the theory and corresponding observable entities in the
real world. This identification — the “interpretation” of the theory — should
be unproblematic, both for the theoretician and the experimentalist. A
general basis for a deductive physical theory, comprising both classical and
guantum physics in a unified way, is proposed. The theory is based on
successive confidence estimates on quantum-mechanical wave functions
corresponding to space-localizations of particles. This allows a direct and
simple way of describing both macroscopic and microscopic phenomena by
means of the same basic concepts. Central in the axiomatics of the outlined
theory is a concept called equiangular sequences of projection operators.
It describes a successive sequence of “collapses of the wave function”. The
proposed theory gives a basis for a general theory of irreversible processes
based directly on quantum mechanics. It gives an alternative definition of
entropy and an alternative derivation of entropy increase in irreversible
processes.
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Preface

The principal object of the following theory is to treat and develop theoretical
physics as a deductive science.

Common theoretical physics, although deductive in certain parts or steps, gen-
erally displays an apparent lack of deductiveness. There are excellent examples of
completely deductive theories such as e.g. Newtonian point mechanics, but they
appear as small isolated and widely separated islands when considered in rela-
tion to our complete physical knowledge. Practically every theoretical discussion
frequently introduces extra, often implicit, assumptions depending on the specific
problem under concern, without deriving the validity of these extra assumptions
from basic postulates. In some cases these extra assumptions are more or less ob-
vious or natural (although they might be difficult to prove). In some cases they
are rather doubtful. However, it is a remarkable fact that derivations of such ex-
tra assumptions are often missing in the literature even in cases where it would
be a straightforward task to work out a rigorous proof. For example, we will not
take for granted, but derive rigorously, the fact that light propagates along straight
lines and with the “velocity of light” c. A rigorous and complete formulation and
proof of this statement needs a thorough consideration of confidence estimates on
wave packets. Although quite nontrivial, it is obtained by a rather elementary ex-
ercise in Fourier transform theory. It ought to be found in any thorough theoretical
discussion on light.

A similar situation appears when one theory is a special case of another more
general theory. There are seldom any attempts to derive in a more definite way the
validity of the basic principles of the special theory from the more general theory.
The task of working out such derivations, connecting different theories, is of a
central interest in the following theory. Let us note that such a derivation is not only
a matter of formality. It is in fact intimately related to the problem of finding the
exact conditions under which the special theory is applicable and such conditions
have an immediate physical significance. Often the special theory appears as an
approximation of the more general theory and one also wants to know the degree of
accuracy of this approximation, which also has an obvious physical significance.
The lack of derivations discussed means that important physical questions are left
outside the theoretical treatment.

A consequence of this general lack of deductiveness is also that it makes it
practically impossible to apply the mathematical method effectively. The central
position of proofs in the mathematical method is intimately connected to the func-
tion of mathematics as an “art of computation”. Computations are in fact examples
of the deductive method. There is no principal difference between a proof, which
in a deductive way leads to a qualitative prediction and a computation, which in a
deductive way leads to a quantitative prediction. Thus, we see again that deduc-
tiveness is not only a question of formality but has a practical importance. It is
only when we have complete deductiveness that we can fully exploit the power of
the theoretical method.

Parallel to the lack of rigorous proofs there is in common theoretical physics a
pervading lack of precise definitions of important concepts used in the theories.



This indicates that the apparent lack of deductiveness is connected to general con-
ceptual problems of theoretical physics. In order to develop a general deductive
theoretical physics we have to solve the following two problems:

1) Establish a general conceptual basis for deductive theoretical physics.

2) Establish a formulation of quantum mechanics with general and unproblem-
atic applicability to physical problems.

These two problems are closely connected since the solution of one of them
presupposes a solution of the other. Classical theoretical physics is composed of
a set of disconnected theories, mechanics, the electromagnetic theory, thermody-
namics, etc., and the only theory which offers the possibility of a general theory,
encompassing these classical theories, is quantum mechanics. On the other hand
we claim that a solution of the controversial conceptual problems of quantum me-
chanics presupposes a general conceptual deductive framework. Our proposal for
solving these two problems is the embedding of the Schrodinger equation for-
malism in a general “physico-logical” structure which we shall call “stochastic
event structure”. This structure provides basic concepts for direct descriptions
both of classical and quantum phenomena in a unified and objectivistic way. The
Schrodinger equation then complements this descriptive structure with a general
dynamics generalizing and encompassing the classical theories.

The theory proposed in part II below is at the same time a mathematical theory
and a physical theory. As a physical theory it has of course a phenomenological
character. Thus, the mathematical theory below is suggested by speculations on
quantum mechanics, which in turn has its origin in the physical phenomenology,
and the purpose of the theory is to describe the physical reality. As any physical
theory it then ultimately stands or falls depending on its further success in describ-
ing, analyzing and predicting physical phenomena. We can thus distinguish three
different steps in the development of a physical theory.

1) Axiomatize the theory. This means that we establish the basic mathematical
concepts which are to describe the basic physical concepts of the theory and
establish in a mathematical form the basic laws connecting these concepts.
The axiomatization thus results in a specific mathematical theory.

2) Develop this mathematical theory.
3) Compare results obtained in the mathematical theory with the physical reality.

Itis important for the deductiveness of the theory that we are in a position where
steps 1 and 3 present no problems and we can deal mathematically with step 2 in
a free way, undisturbed by unformalized physical questions. We claim that the
theory proposed below meets this demand.

The purpose of the following exposition is to give the general principles of the
theory i.e. establish step 1) above. For the mathematical development of the the-
ory, step 2) above, we refer to the self-contained, purely mathematical exposition
given in Part III.
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Introduction

In the following we shall give the conceptual foundations of a mathematical for-
mulation of quantum mechanics based on confidence estimates instead of mean
values and density operators, used in conventional quantum mechanics and quan-
tum statistical mechanics.

A mathematical formulation of this theory — an approximation theory of
L2-functions of several variables, applied to sequences of interrelated subspaces
of solutions to the many-particle Schrédinger equation — is given in Part III. The
exposition in Parts I and II can be considered as a physical motivation and a mathe-
matical outline of this theory. For proofs of theorems cited below and for further
development of the mathematical technique needed in this theory, we refer to Part
1.

The main purpose of this exposition is to describe the basic principles of the
theory, in the following called “the confidence theory”.

A second and complementary purpose is to discuss the difference between the
theory and the conventional formulation of quantum theory and statistical mechan-
ics. Although we reject the Copenhagen interpretation and the formalism built on
it, we shall, due to its present overwhelming position, recapitulate it in chapter
2 and criticize it in chapter 3. Conventional statistical mechanics is discussed in
chapter 4 (4.1).

The two main purposes of the confidence theory are the following:

1) To modify the conventional theory to give an unambiguous, deductive theory.

2) To propose a general theoretical basis for the treatment of, generally non-
stationary, macroscopic systems.

The most important of these is the second. We consider the first purpose, although
it has its own conceptual interest, mainly as a means to achieve the (more prag-
matical) second purpose.

Since the exposition in Parts I and II is mainly conceptual, it is important to
emphasize the mathematical technical character of the confidence theory. The
confidence theory is not in first hand a philosophical-logical discussion on the
subject “quantum mechanics without the observer”. It consists of a mathematical
technique, the above mentioned approximation theory, whose main motivation is
the second purpose stated above.

Chapters 1-4 mainly have the purpose of supporting the heuristic derivation of
the confidence theory given in chapter 5. An axiomatic exposition of the theory
is given in chapters 6 and 7. The systematic exposition of the theory given in
chapters 6-7 is “self-contained” in the sense that it does not formally or logically
presuppose chapters 1-5.

By a confidence estimate we shall mean an estimate of the form

/le(x,t)|2dx21—e

where y(x,t) is a normalized wave function of the time variable ¢ and the con-
figuration space variables x for a set of elementary particles. € should be a very
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small positive number and 1 — ¢ is called the “confidence level”. According to
the statistical interpretation of the wave function, the above estimate means that
the particles are, with practical certainty (probability > 1 — ¢) confined to the
region R at time 7. A reason for using confidence estimates rather than exact lo-
calization statements comes from the fact that a wave function y(x,?), localized
exactly at time ¢ to aregion R, (i.e. vanishing outside R;), will, according to the
Schrodinger equation, generally spread out in space so that it cannot be localized
exactly to any finite region at another time #,. On the other hand, we can under
certain assumptions obtain estimates

fR2 lw(x,1)?dx>1-¢

at time ¢, with finite region R, and very small .

The most general basic question of a physical theory is the study of the macro-
scopic distribution of matter in space at different instants of time. Even if we are
studying an experiment observing a single elementary particle, the situation can
and should ultimately be described by macroscopic, directly observable, quanti-
ties. Thus, the task of establishing an interpretation of the quantum-mechanical
wave functions and the task of describing and understanding macroscopic pro-
cesses from an underlying atomistic point of view are closely connected.

The macroscopic distribution of matter in space can be instantaneously de-
scribed by the localization of the configuration space variables for the constituting
elementary particles to suitable intervals or regions, which are small from a macro-
scopic, but large from a microscopic point of view. For a quantum-mechanical
wave function this means that it has (at a given instant of time) its support in that
region i.e. vanishes outside the region. The set of all such wave functions consti-
tute a (closed) subspace of the Hilbert space of wave functions. We shall describe
the macroscopic distribution of matter by means of sequences of such subspaces
(or equivalently by their corresponding projection operators).

By the preceeding argument, the use of confidence estimates will allow us to
describe, with a sufficiently high degree of accuracy, the macroscopic behaviour
of systems by consequently using only such subspaces (projection operators). The
confidence theory is a theory developed consequently along these lines.

The confidence theory thus gives, in a direct way, a connection between wave
functions and macroscopic quantities and therefore presents an alternative to the
ensemble (density operator) methods of statistical mechanics. We shall criticize
the conventional (classical and quantum) statistical mechanics in chapter 4 and
propose an alternative theory based directly on phase-space region localizations.
The confidence theory is a quantum-mechanical generalization of this phase-space
region theory.

Parts I and II is an attempt to describe the theory (and its relation to the con-
ventional theory) in qualitative, intuitive, verbal terms. Due to the structural and
conceptual complexity of the subject, it consists of a network of different aspects
and more or less precise arguments. A completely rigorous discussion can of
course only be given in an axiomatized mathematical exposition (see Part III).

12



Part 1

Heuristic Derivation



Chapter 1

Interpretations of the Wave
Function

In all classical physical theories, the concept of state is fundamental. The state of
the system under concern is described by basic physical quantities of the theory
(e.g. positions of particles, components of fields as functions of space coordinates
etc.) and the change of state in time is governed by the fundamental dynamical
equations of the theory. This means that we have a simple and obvious one-to-one
correspondence between basic quantities in the theory and tangible, observable
quantities in the physical reality. Such a correspondence is at hand in all clas-
sical theories — classical mechanics, continuum mechanics, the electromagnetic
field theory, classical macroscopic thermodynamics and also in the special and
the general theory of relativity. The existence of such a correspondence means
that there is no problem with the interpretation of the theory.

The situation is quite different in quantum mechanics. Here one is faced with
a situation of having a differential equation (the Schrédinger equation) for a cer-
tain wave function, but the interpretation is no longer trivial. It soon turned out
that there is no one-to-one correspondence between a wave function and the con-
secutive states of the system. The spreading of the wave function in scattering
processes, together with the indivisible nature of elementary particles, forced a
statistical interpretation of the wave function and the considering of stochastic
transitions between different wave functions.

Thus, one very soon found the correct dynamical equation of quantum mechan-
ics, namely the Schrodinger equation, but its interpretation raised considerable
difficulties. It is quite obvious, that the Schrodinger equation is correct in some
sense despite the difficulties of interpretation. It is the basic dynamical equation
both in the conventional and in the present theory.

In the following, we shall discuss three different interpretations of the wave
function:

Interpretation 1: “The primitive statistical interpretation”.

This is the original interpretation of quantum theory. It consists primarily of
Born’s interpretation of |y (x,7)|2 for given time 7 as a probability density for the
configuration space variable x. Together with this, one has some kind of corre-
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spondence between physical quantities and operators. One expression for this cor-
respondence is that the possible values of a physical quantity (e.g. the energy) are
given by the eigenvalues of the corresponding operator. From the configuration
space probability distribution above, one can derive (or at least make plausible)
other distributions, e.g. that | (k,?)|2, where ¥ denotes the Fourier transform,
is in some sense a probability density for the wave-number k, connected with the
momentum variable p by means of the de’ Broglie relation p = Aik. (See e.g. Bohm

).

Interpretation 2: The Copenhagen Interpretation

This interpretation, described in chapter 2, constitutes the “conventional formula-
tion” of quantum mechanics.

Interpretation 3: The Interpretation of the Confidence Theory

In this theory, the interpretation is established by means of the concept of ““stochas-
tic event structure”.

Interpretation 1 can easily be criticized for being vague and incomplete. Obvi-
ously it does not constitute a complete satisfactory theory. However, one important
positive credit to it should be pointed out. It is sufficient for many practical pur-
poses (e.g. calculation of bound state energies or scattering cross-sections) and
then gives correct results. We shall now point out two basic problems of interpre-
tation of wave functions.

The first we shall here call “the state-observable dualism”. In the mathematical
formalism occurs both elements, namely wave functions y:s, and corresponding
Hilbert space vectors “¥':s”, (see section 7.5 below), which have the “character
of states” and elements, operators, x, p, = ifid, etc., corresponding to real-valued
physical quantities (“observables”). In the classical theories, the states are just
described by real-valued physical quantities. In quantum mechanics, the two con-
cepts has split into separate mathematical concepts. This is really a dualism since
states and observables should describe the same physical reality. It is obviously
a conflict. Both cannot stand in a one-to-one relation to reality since there is no
obvious general one-to-one relation between themselves, i.e. between the “¥:s”
(“states”) and the operators (“observables”), (although they are closely related in
different ways). Dualisms are not preferable from a reductionist’s point of view.
Here it even means a manifest inconsistency which has to be resolved.

For the second we shall here use the term “the arbitrariness problem”. It con-
sists of three closely connected parts — the “arbitrariness of states”, the “arbitrari-
ness of observables” and the “arbitrariness of collapses (transitions)”. The first
two mean simply that there is no restriction in the formalism (theory) on which
momentary wave functions are allowed or which operators as describing observ-
ables are allowed. Perhaps the most striking and well-known consequence of the
arbitrariness of states is the Schrodinger cat paradox (see below). The crucial point
in this paradox is that a state which is a superposition of a living and a dead cat is
not forbidden by the theory.

The occurrence of stochastic quantum transitions implies that the change of
state of a system from one time to another is not completely described by the

15



time-dependent Schrodinger equation. One also has to consider so called “col-
lapses” of the wave functions i.e. we have one Hilbert space vector ¥, before
the transition and another ¥, after. The transition probability is then given by the
square-modulus of the scalar product

p=1(¥, )2

(where ¥ and ¥, are properly normalized and taken at the same time). The ar-
bitrariness problem can then also be expressed as the arbitrariness of collapses”.
There is no rule that tells us which collapses can and will occur.

In case of the cat paradox one has a thought situation with an initial state (a
living cat together with a stochastic poisoning apparatus) which, under a period
of isolation evolves, according to the time-dependent Schrodinger equation, into
a state ¥ which is a superposition of a living (¥;) and a dead (¥,) cat. Eventually
and after the time of isolation it appears whether the cat is living or dead so the
wave function has collapsed into either ¥; or ¥,. The arbitrariness then appears
as the question of when and why the collapse occurs.

The main point of the critique, given below, of the Copenhagen interpretation
is that it does not solve the “state-observable duality”” and the “arbitrariness prob-
lem”. These problems are in the following considered as “key problems” and will
be used in chapter 5 as “hints” in a heuristic motivation of the confidence theory.

16



Chapter 2

Recapitulation of the
Conventional
Quantum-mechanical Theory

The incompleteness and vagueness of interpretation 1 has lead to the development
of the Copenhagen interpretation, which replaces the primitive statistical interpre-
tation of the wave function by a more general and formalized theory.

It assumes that states of a system are described by wave functions (properly
“unit rays” in the Hilbert space of wave functions) and that observables (real-
valued physical quantities) are described by hermitian operations.

In order to get a connection between states and observables, one has introduced
the concept of measurement. A stochastic quantum transition is then considered
as forced by the measurement of some quantity. E.g. in a scattering of a parti-
cle, the detection of the particle as coming out in some special direction can be
considered as a measurement of its position at a suitable instant of time after the
scattering. This gives an important formalization of the transition concept. It is
always connected with and described by a hermitian operator. The wave function
after the transition (i.e. measurement) then has to be an eigenstate of the hermitian
operator with eigenvalue equal to the value obtained by the measurement.

The conventional quantum-mechanical formalism is inseparably tied to the con-
cept of measurement. Formally it is a theory of measurements rather than a theory
of objective changes of states of a system, and in order to apply the theory, every
situation has in principle to be considered in some way as a measurement.

In order to see what the conventional formulation of quantum mechanics means
conceptually, we shall briefly describe an axiomatization of it. Let us then first
note that the part of time-evolution which is described by the time-dependent
Schrodinger equation can be conveniently handled by using the Heisenberg picture
(see section 7.6 below), which means that the observables and the corresponding
operators are labeled by (i.e. functions of) the time-parameter. The state vector ¥
is then independent of the time parameter.

The conceptual basis of the conventional theory is a mathematical structure

17



(8,0, p) ey

where S is a set of states and O is a set of observables. A measurement is then a
pair

M =(s, A) @

where s is a state in .S and A is an observable in O. For every measurement M,

Pm(82)=p(s, A, Q)

is a probability measure on subsets £2 of the real line. M = (s, A) means that we
measure the quantity A on a system which is in the states s (before the measure-
ment). pys(£2) means the probability that the result of the measurement of A gives
a value a in the set . Thus, states s, observables A, measurements M, proba-
bilities p and possible values a... of an observable constitute the conceptual basis
of the theory, through which the interpretation, i.e. the contact with the physical
reality, is given.

To these abstract, conceptual axioms then comes a set of Hilbert space axioms
specifying the mathematical representation of .S, O and p. Thus .S is supposed to
be the set of all unit rays in a Hilbert space (or more generally density operators, see
chapter 4). To every observable is associated a hermitian (self-adjoint) operator.
It is convenient (but no loss of generality) to restrict the observables to so called
yes-no questions Q, for which the corresponding operators are projection operators
(which has 1 and O as the only eigenvalues). Thus O is a set of yes-no questions
and to every Q in O is associated a projection operator Py. If s = sy is the unit
ray spanned by the unit vector ¥, then

p(s1Q)=p(sy, O, 1) = Pp¥|? 3)
is the probability for getting the result 1 = “yes”, measuring Q on s.
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Chapter 3

Critique of the Conventional
Quantum-mechanical Theory

The critique given in this chapter is not only intended as a critique directed to the
conventional theory, but is also intended to give arguments supporting the heuristic
motivation of the confidence theory given in chapter 5.

3.1 The State-Observable Dualism

Itis reasonably the state-observable dualism which is the origin of the central posi-
tion that the concept of measurement has received in the conventional theory. This
concept is introduced in order to get a connection between states and observables.
However, these two concepts are both basic in the conventional formalism and this
is much more clearly stated there than in the case of interpretation 1. Sometimes
(i.e. before a measurement) we describe our system by means of the concept of
state and sometimes (i.e. when considering the result of a measurement) we de-
scribe our system by means of values of physical quantities (the obtained eigenval-
ues of the measured observables). Properly, one describes the system by means of
observables only at the moment of observation. The state after the measurement
is of little concern in the general basic theory (see next section) and one generally
does not even assume that the measurement is repeatable (‘“measurement of 1:st
kind”). It can equally well be a non-repeatable measurement (“measurement of
2:nd kind”) as e.g. in the case of a detection of a photon.

Thus, the conventional formalism does not solve the state-observable dualism.
Rather it confirms it since as was stated in chapter 2, a measurement is conceptu-
ally a pair (s, A) and thus presupposes both the state and the observable concept.
Obviously, a measurement is not a “relation” between the concepts of state and
observable of such a kind that it can reduce these concepts on each other.

Let us also note in this connection that the generalization to ensembles (density
operators), by introducing an extra, non quantum-mechanical statistical distribu-
tion into the state concept, obviously amplifies the state-observable dualism.
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3.2 The State After Measurement

The measurement gives a kind of one-directed relation between states and observ-
ables. It gives a way to come from states to observables. It is natural to try to com-
plement it by a way of getting from observables to states. We shall mention three
different proposals for such a connection. None of them has, however, a status of
general acceptance as a basic principle in the quantum-mechanical formalism.

The first way is the use of “complete sets of commuting observables”. If we
assume that the state vector after measurement is an eigenvector to the measured
observables, this will give a unique prescription for the state after measurement
only if we always assume that we measure a complete set of commuting observ-
ables. Having the description of macroscopic systems in mind, this assumption is
obviously too restrictive.

A second way is to generalize the concept of state to ensembles (density oper-
ators) and introduce a “maximum entropy principle”. We shall discuss this prin-
ciple in chapter 4, where we shall reject it as a basic principle.

A third way is to introduce the concept of “ideal preparatory measurement”.
Consider the measurement of a yes-no observable Q described by the projection
operator Py and let M denote the closed subspace on which Py projects. If we
measure on a state described by the state-vector ¥ and obtains the result “yes”
(eigenvalue 1) then any vector in M, could be the result after measurement. In
view of (3) of chapter 2, however, the choice ¥’ = Py¥ seems natural. A mea-
surement with this prescription for the state after measurement is sometimes called
an “ideal preparatory measurement”. It means in a sense a minimal disturbance
on the measured system. The introduction of an extra principle stating that all
measurements are ideal preparatory measurements, would obviously reduce the
state-observable dualism.

The lack of a general prescription for the state after measurement indicates an
incompleteness in the axiomatization of the theory. It makes it principally impos-
sible (without extra assumptions) to apply the theory to the study of successive
transitions, which obviously occurs in many complex situations.

3.3 The Arbitrariness Problem

The formalism of conventional quantum mechanics does not prescribe any restric-
tion on which states and which observables are allowed and thus preserves the
arbitrariness of states and observables. The introduction of the measurement con-
cept means that collapses of wave functions and observables are both connected
to this concept. Thus, the arbitrariness of collapses coincides with that of observ-
ables into what we shall call “the arbitrariness of measurements”. Any observable
can be measured at any time by applying a suitable measuring equipment.
Carrying matters to an extreme, any course of events is possible. Take any
prescribed sequence of states ¥;, ¥,, ...at the times tq, 5, ...and let P;, P,, ...be
the projection operators projecting on the one-dimensional subspaces spanned by
¥, ¥,, ...respectively. Then, measuring P; at time #{, and so on would then, with
some positive probability, lead to the sequence ¥, ¥, ...which thus describes a
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possible course of events. (If two consecutive ¥; and ¥, are orthogonal, we
can intercalate an extra state, e.g. ¥; +¥;,, in order to get a positive probability.
In fact, by intercalating sufficiently many ¥':s one could get a total probability
arbitrarily close to 1.)

This is indisputably what the formalization looks like. The arbitrariness appar-
ently becomes problematic if we try to apply quantum mechanics as it stands to
macroscopic phenomena. Now, the measuring apparatus is ultimately a macro-
scopic system and this obviously puts strong practical limitations on which mea-
surements are possible. In fact it should be pointed out that the Copenhagen inter-
pretation presupposes the existence of a macroscopic physical world in which all
measurements are registered. The formally total arbitrariness is therefore strongly
reduced when the physical properties of the measuring apparatus are taken into
account.

On the other hand, these physical properties of the measurement apparatus are
not formalized in the theory, where a measurement is abstracted into a pair (s, A).
Thus, the arbitrariness means an incompleteness of the theory.

To obtain a complete general physical theory, we have the following three al-
ternatives:

Either (first alternative) strengthen the theory with extra rules which, explicitly or
implicitly, give the same restrictions of the arbitrariness as the physical properties
of the measuring apparatus gives or

(second alternative) complement the quantum mechanical theory, dealing only
with the atomic part of the system, with a fully axiomatized theory for macroscopic
systems. This macroscopic theory should then have a well-defined interface to the
quantum mechanical formalism so that the two theories can cooperate and together
constitute a complete theory.

The only further (third) alternative would be to give up the quantum-mechanical
formalism for a different theory.

Let us note, that also in the first alternative, the theory must in some way include
macroscopic physics in order to be accepted as a general complete theory. Perhaps
the most important conclusion from these arguments is that the basic conceptual
and interpretational questions of quantum theory are strongly coupled to the task
of developing a general theory for macroscopic phenomena.

It is reasonable to expect the dynamics of quantum theory to be a general basis
from which ultimately also macroscopic phenomena can be predicted. The com-
monly proposed theory of macroscopic phenomena based on quantum mechanics
is quantum statistical mechanics. However, the present status of this theory is far
from a complete satisfactory theory. It will be rejected in chapter 4 from general
principal arguments.

The Copenhagen interpretation, by presupposing macroscopic physics, has cho-
sen the second of the above mentioned alternatives, waiting for further develop-
ment of the macroscopic theory. It therefore accepts a dualism between macro-
scopic and microscopic physics. Even if quantum mechanics is supposed to be
a basis also for macroscopic physics, then the Copenhagen interpretation implies
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that we have two quantum-mechanical theories — one (equal to that described in
chapter 2, i.e. the Copenhagen formalism) for atomic phenomena and another
(“dynamical quantum mechanics™) at the bottom of quantum statistical mechan-
ics. The two are obviously different since the Copenhagen interpretation is not
relevant for the latter. The interpretation is there given through macroscopic quan-
tities, some of which are described by certain mean-values (e.g. energy) and some
of which are described by parameters (e.g. temperature) or other characteristic
(e.g. entropy) of (non quantum-mechanical!) statistical distributions.

In the following sections we shall review the critics already given by discussing
certain central questions in this connection and giving some concluding remarks.

3.4 The Concept of Measurement in the Conventional
Theory

A peculiar property of a “measurement” in the conventional theory is that it dis-
turbs the system measured. In fact it forces the initial state to collapse into an
eigenstate of the measured observable. A concept with this property is not what is
originally meant with the word “measurement”. To avoid this misuse of the word
“measurement” and thus retain its basic common sense meaning we shall use the
term “conventional quantum-mechanical measurement” for the former concept.

The arguments in the preceding section indicate that the division into mea-
sured object and measuring apparatus is in some way unsuitable. The arbitrari-
ness shows that too much of the physical conditions is left to the apparatus and
has to be complemented by extra assumptions. The measuring apparatus is also a
physical system and should be handled on the same footing as the object system.
Irrespectively of if we use the quantum theory formalism or not, the stochastic
transition in an experimental situation is forced by the complete physical arrange-
ment of object and apparatus together. The occurrence of stochastic transition is
an expression for a fundamental indeterminacy of quantum physics. The existence
of this indeterminacy is here considered as an experimental fact.

What is specific for “a measuring situation” in difference to an arbitrary course
of events is that it is arranged in such a way that there is a coupling (correla-
tion) between some event(s) in the “object” and some event(s) in the “measuring
apparatus” so that the latter event(s) can be interpreted as a registration of the for-
mer. This general definition of “measurement” can be used both in classical and
quantum physics and has logically nothing to do with disturbances or stochastic
phenomena.

What is specific for a “conventional quantum-mechanical measurement” is that
it is a combination of a forced stochastic transition and a registration (of some
property of the state after the transition). Thus, the common statement that a
measurement on a microscopic system always disturbs the system, is due to this
confusing mixture of registration and forced stochastic transition and an unsuitable
use of the word “measurement” for this mixture.

The overstressed central position of the concept of measurement means that
every situation has to be considered, in some way, as a measurement in order to
apply the formalism. This is not very natural. Instead one would prefer a theory
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which describes objective courses of events in a system irrespectively of whether
it is arranged as a measurement or not.

3.5 The Real Occurrence of Transitions

A very important characteristic of the conventional formalism is its inability to
describe the real occurrence of transitions (collapses of wave functions). This
is shown clearly in e.g. Jauch (3), where a distinction is made between what he
calls “events” and “data”. There, “event” is the abstract, potential concept of what
could happen. The real occurrence of an event is called a “datum”. The formal-
ized theory (essentially that described in chapter 2) then only deals with “events”
(described by yes-no observables) and their probabilities.

The arbitrariness of collapses has led to many confusing discussions on when
and why the collapse of the wave function occurs. One opinion in this connection
(held among others by Bohr) is that the transition has become an objective fait ac-
compli when the atomic measurement signal has been amplified in an irreversible
way into the macroscopic part of the measuring apparatus. The not fully clear and
convincing character of this statement, leaning on sophisticated technical ques-
tions of irreversible statistical mechanics, has lead to controversial discussions on
subjectivity and of the ultimate role of the observer.

In the conventional formalism, the real occurrence of transitions (Jauchs “data’)
are thus pushed aside to the question of interpretation and we are left with a de-
terministic dynamics. The real occurrence of transitions is an observable phe-
nomenon which has such an obvious physical content that it should reasonably be
less step-motherly treated by the formalization of the theory.

3.6 Conclusion

Much of the critics of the conventional theory, given here and in other places,
could be rejected by the argument that, if we apply it in the right way, it works.
(With this pragmatic attitude one can equally well do with interpretation 1 and the
choice between the two interpretations seems to be a question of taste).

However, if one seeks for a complete unified physical theory describing both
atomic and general macroscopic phenomena, the incompleteness of conventional
quantum mechanics indisputably rules it out as a candidate. Thus we reject the
conventional Copenhagen formalism for being unsuitable and incomplete rather
than incorrect.

The incompleteness reduces it practical value. The obviously unsuitable char-
acter of its basic concepts should give a hint to what has to be changed.
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Chapter 4

An Alternative to Statistical
Mechanics

4.1 Conceptual Critique of Different Schools in Sta-
tistical Mechanics

4.1.1 The Kinetic Theory of Matter

In the kinetic theory of matter statistical arguments are used in combination with
mechanical considerations concerning colliding molecules. The theory has led
to a good principal understanding of the behavior of macroscopic systems from a
molecular point of view and has also led to a series of good qualitative predictions.
However, the statistical arguments are used in a vague and heuristic way. The most
ambitious and systematic branch of the kinetic theory is the theory of the Boltz-
mann equation. It is a natural approach based on a conceptually well-defined am-
plitude (an occupation number distribution in the 6-dimensional, “one-particle”,
phase space). It has however met with two serious difficulties. Firstly, there exists
no rigorous derivation of the Boltzmann equation from the underlying mechan-
ics. Secondly, the equation itself is difficult to handle with available mathematical
methods without making dubious approximations.

Although statistical arguments play an essential role in the kinetic theory, the
kinetic theory is traditionally considered as distinct from “statistical mechanics”.
The distinction is that the kinetic theory makes essential use of the mechanical
properties of the system studied while statistical mechanics tries to minimize the
use of mechanical assumptions, making maximal use of statistical methods. This
distinction is in one respect unfortunate. The obviously non-rigorous character of
the kinetic methods has lead to the misconception that statistical mechanics is the
more fundamental theory. In fact this distinction indicates the incompleteness of
statistical mechanics.

There exist a lot of problems which are more or less successfully treated by the
kinetic theory, but which lie completely outside the scope of statistical mechan-
ics. Thus statistical mechanics takes too little account of the underlying dynamics
when judged as a general theory of macroscopic phenomena. Such a theory must
give a theoretical framework also for typical kinetic problems.
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4.1.2 Boltzmann Statistics

It is characteristic for the kinetic theory that it considers distributions of small
systems which occur as multitude parts in a large macroscopic system. Many of
the “probabilities” occurring in the kinetic theory can be re-expressed in terms
of averages or in terms of distributions of matter (particles) in different states of
motion. Thus, many of the distributions in the kinetic theory are properly not
statistical distributions but rather mass distributions, some of which are directly
coupled to macroscopically observable distributions such as the distribution of
total mass in space p(x) and the distribution in space of collective velocity v(x).

In contrast to the “Boltzmann statistics”, the “Gibbs statistics” considers instead
a distribution (ensemble) of the state of the total system. The latter approach is
motivated by a wish to take the interaction of the small subsystems into account.
In fact, the weak point of the kinetic theory is that this interaction is not based
on and deduced from the underlying mechanics, but is handled by vague intuitive
“statistical” arguments and assumptions. On the other hand, the methods of the
“Gibbs statistics” are far removed from the concrete mass distribution concepts
and do not either present a method for proving the heuristically obtained results
of the kinetic theory.

4.1.3 The Ergodic Theory

The basic assumption of the ergodic theory is that macroscopic quantities are given
by (infinite) time averages of corresponding mechanical quantities for the micro-
scopic system. The main problem of the theory is to prove the equality of time
averages and phase-space averages. The reason for introducing phase-space av-
erages is that the calculation of phase-space averages is a task accessible with
common mathematical methods (which is not the case for time averages).

The most immediate, apparent drawback of this theory is the use of infinite
time averages and the corresponding limitation to stationary (equilibrium) states.
Itis not easy to see how the theory could be generalized to describe non-stationary,
time-varying courses of events such as e.g. irreversible thermodynamic processes.

A critique of the use of time averages will be given below.

4.1.4 Statistical Ensembles

Except for the kinetic theory and discussions concerning Boltzmann statistics, all
schools of statistical mechanics use statistical ensembles as the central mathemat-
ical concept. Mathematically, an “ensemble” is a probability distribution on the
phase-space of the mechanical system. In the ergodic theory, this probability dis-
tribution is introduced formally as a way of introducing statistical terminology
and methods for the handling of phase-space averages. (See Khinchin (4), chap.
IV). In the other schools it is the basic concept. (The use of the term “statistical
mechanics” for the theory of macroscopic systems based on microscopic mechan-
ics is an expression for this). A macroscopic “state” is described theoretically by
an ensemble and macroscopic quantities are supposed to be expectation values
(mean values) of mechanical quantities over this ensemble (compare the “state-
observable dualism in quantum theory described in chapter 1).
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When discussing a specific macroscopic state, one has to make an assump-
tion about the form of the corresponding statistical distribution. The only practi-
cally interesting ensembles used to describe systems in equilibrium are the micro-
canonic and the canonic ensembles. However, there are several schools giving
different arguments for the use of a specific form of the statistical distribution.
These schools are connected with different attitudes concerning the meaning of
the probabilities occurring in the ensemble concept.

4.1.5 Different Concepts of Probability

In the ergodic theory, the nature of the probabilities occurring in the ensemble
concept is quite clear. They are not true probabilities but are introduced formally
as auxiliary quantities used in the computations. They have no need for interpre-
tation.

As mentioned above, “statistical mechanics” is characterized by the tendency
to minimize the mechanical assumptions and drawing as many conclusions as pos-
sible from statistical arguments. In the exposition on the foundations of statistical
mechanics given by Gibbs (5), one has taken an attitude to the ensemble con-
cept which means that the purpose with the theory is to construct a “statistical
model” for thermodynamics rather than derive it from first principles. Thus, e.g.,
the canonical ensemble is introduced for simplicity rather than being motivated
from some general principles. The concept of probability is in this exposition
(and also in many considerably later expositions) very primitive as the term “en-
semble” indicates.

The “a priori school” (see e.g. Tolman (6)) introduces a basic principle — “the
principle of equal a priori probabilities in phase space” (complemented in quantum
mechanics by a principle of random a priori phases). The idea is that we are
considering a system of which we have only partial knowledge, and after putting
the restrictions we know on the state of the system, we are left with a set of states
(phase space points) all satisfying these restrictions. The principle then gives a
rule of weighting these states.

Equal a priori probabilities in phase space is natural due to the special properties
of the phase space measure. It presupposes, however, that the conditions are so
formulated that they lead to a set of initial states. On the other hand, the ensemble
which the principle determines the form of is used to derive mean values for the
description of physical states. Thus we have a “dualism of states” (similar to “the
state observable dualism” of quantum theory). The states are both characterized by
mean values and by “conditions representing our partial knowledge of the system”,
leading to phase space regions. There is no principle on how to get from former
to the latter.

A way of avoiding this “state dualism” is given by “the maximum entropy prin-
ciple” (see e.g. Jaynes (7)). One then introduces the “entropy of a statistical dis-
tribution” p(x) (in this case the ensemble) by an expression

H =~k [ p(x)logp(x)dx
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and determines the distribution as that which maximizes the entropy under given
subsidiary conditions. These subsidiary conditions then expresses that the mean
values of certain quantities, e.g. the energy, are given. Thus one starts with mean
values and ends up with other mean values calculated from the determined distri-
bution (ensemble).

Let us point out that there is a large ambiguity in the choice of the form of
the distribution for a given macroscopic state. Many distributions give the same
relations between macroscopic quantities. Especially the microcanonic and the
canonic ensembles are equivalent in describing relations between thermodynamic
equilibrium variables. This ambiguity of the distributions makes the attempts to
give arguments for using a special form of the distribution questionable. Too much
meaning has been given to the distributions. The often stated proposition that
the microcanonic ensemble describes an adiabatic (heat isolated) system and the
canonical ensemble describes a system in thermodynamic equilibrium with a heat
bath, is an example of this. Such a distinction between isolated systems and sys-
tems in thermal equilibrium is completely theoretical and physically meaningless.

The 4 priori principle and especially the maximum entropy principle has lead to
considerations on the concept of “subjective probabilities” (see Jaynes (7)). Such
probabilities is an expression for our lack of knowledge of the system. They are
not “true probabilities” having a frequency interpretation.

In any case, the probabilities in an ensemble describing a macroscopic system
can not be “true probabilities” having a frequency interpretation. One can give two
arguments for this. Firstly, the ensemble is a probability distribution in a space
with an extremely large number of dimensions. To determine this distribution
experimentally by using a repeated sequence of experiments on the system is not
only practically but also principally impossible. It would contradict the whole idea
of thermodynamic irreversibility as being connected to the principal impossibility
of measuring the exact state of a macroscopic system containing a large number
of constituents. Thus, the probability distribution in an ensemble describing a
macroscopic system is an unphysical (unmeasurable) quantity.

Secondly, our lack of knowledge of the exact state of our system under concern
is always connected with a simultaneous lack of knowledge of its relation to the
environment. This leads to an uncertainty in the distribution itself. This is in
accordance with the above mentioned ambiguity of the distribution.

The conclusion is that the probability distribution in an ensemble is a concept
introduced for computational reasons, having no physical interpretation.

4.1.6 The Use of Mean Values

A characteristic feature of all the above mentioned schools of statistical mechan-
ics is the use of mean values to describe macroscopic quantities. However, the
connection between a macroscopic quantity and a suitable mean value in the for-
malism is introduced by using vague and intuitive arguments rather than being the
consequence of a deductive theory.

Some schools (see e.g. Jaynes (7))consider statistical mechanics as a matter of
statistical inference theory. The statistical inference theory is very controversial
and we seem to have another instance of “how to lie with statistics”.
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In the ergodic theory, the use of time averages is commonly motivated by in-
troducing the concept of a “macroscopic measurement”, whose properties and
functioning is however not further analyzed. (The situation is in fact quite similar
to that in the Copenhagen formulation of quantum mechanics). One then argues
that this measurement is not performed instantaneously, but requires a certain in-
terval of time and that what is measured is the time average of the quantity under
concern. That the basic interpretation of the theory relies on a concept of “macro-
scopic measurement”, which is not further analyzed is completely unsatisfactory
from a general principal point of view, since the main purpose of the theory was
just to describe and understand macroscopic processes of which a measurement is
a special instance.

It seems difficult to give a physical motivation for the use of mean values. None
of the schools offers such a motivation and it always has to be assumed that the
mean values describe macroscopic quantities. The only motivation seems to be
that of computational simplicity.

4.1.7 Critique of the Ensemble Concept

The purpose of the ensemble (and the mean values taken over it) is to describe
the coarse properties of a system. That it fulfills this purpose is by no means
self-evident.

The ensemble describes the mean course of events of a large set of systems but a
real course of events is described by one single system. This presents a conceptual
jump. It seems rough to take the mean-value over all possible states. Some of them
must have very exceptional behavior far from that of the macroscopic system to be
described. That these “exceptional” states are so few that they do not contribute
to the mean value does not follow from a statistical argument but is a dynamical
property of large systems ultimately to be proved.

Thus, although ensembles really happens to give a good description of the
coarse properties of a system (at least for equilibrium states), it seems difficult
to give a theoretical motivation for this. None of the mentioned schools give a
satisfactory motivation. This indicates that the ensemble is not a suitable concept
in an atomistic theory for macroscopic systems based on first principles.

A further argument leading to this conclusion will be given in the next section.

4.1.8 Non-equilibrium States and Irreversible Processes

Perhaps the most apparent indication for the incompleteness of statistical mechan-
ics is its difficulties to describe non-stationary systems. It is not obvious how a
non-equilibrium state should be described by an ensemble. A theory including
also non-equilibrium states is necessary for the understanding of the conditions
for equilibrium.

In order to describe the increase of entropy in irreversible processes one has
to introduce extra assumptions on “coarse-grained” distributions (and then prove
a H-theorem). (The introduction of coarse-grained distributions is motivated by
an argument on macroscopic measurements and we again have a parallel to the
Copenhagen formalism of quantum mechanics.). Although this is reasonable in
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some sense, the resulting formalism is not very elegant and is far from a closed
and well-developed general theory.

The ensemble concept was invented to describe macroscopic states. The ne-
cessity of “coarse-graining” shows, however, that the ensemble is not sufficient to
describe macroscopic states. This clearly indicates that the ensemble concept is
unsuitable in a general theory.

4.2 An Event Theory of Collective Phenomena

Having rejected statistical mechanics, we shall now give an alternative, direct,
non-statistical (non-probabilistic) approach. We shall use the term “the event the-
ory of collective phenomena” to denote this theory, thus avoiding the term “sta-
tistical mechanics” which we shall use to denote the (rejected) probabilistic ap-
proach. We avoid the term “statistical” since this term is too much associated
with probability theory.

The discussion will be very brief, with emphasis on the conceptual part. It
will constitute a complement to the heuristic arguments for the confidence theory
formulation of quantum mechanics, which is a generalization of, and thus incor-
porates, the event theory of collective phenomena.

4.2.1 Mechanics as Basis for Macroscopic Phenomena

We shall consider the following as our basic object in this context: To develop a
theory of macroscopic systems based on some given microscopic mechanics.

This is a purely dynamical problem. In spite of the fact that a macroscopic sys-
tem is composed of a very large number of particles, we shall try to handle this
problem in a very direct way. Although much of the ideas will be taken over to
the quantum-mechanical treatment, we will, for simplicity, first reason as if clas-
sical mechanics for some atomistic particles constitute the basis for macroscopic
physics. The generalization to quantum mechanics will be discussed in section
4.2.11.

As a simple example, showing that it is possible to handle problems of this kind
by direct methods we can take the theorem of motion of the center of mass. For
some body, macroscopically considered in some context as a particle, we can use
this theorem to derive rigorously the macroscopic behavior from a given under-
lying supposed microscopic mechanics, irrespectively of how many microscopic
particles the body is composed of. We shall consider this simple example as a
prototype when trying to handle more complicated questions e.g. the motion of a
continuous mass distribution.

If mechanics is to be the basis, then we must take as our basic ideas that:

1) In a concrete real situation, what we are observing is the macroscopic behavior
of one single possible motion of the mechanical system. We are not observing
a set (“ensemble”) of systems.

2) There exists a macroscopic behavior for at least some microscopic motionsi.e.
the macroscopic quantities are defined as characteristics of the microscopic
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motion and the relations between macroscopic characteristics follows from
the underlying microscopic dynamics.

3) In spite of the empirical evidence for the existence of a macroscopic behavior,
this existence should also ultimately be proved to be a consequence of the
underlying mechanics.

Point 3) is important both from the conceptual point of view and for the deduc-
tiveness of the theory. Thus e.g. it is a question to be handled by the theory to
decide whether a certain portion of matter under certain circumstances can ade-
quately be described as a laminar liquid motion.

4.2.2 General and Dynamic-depending Results

We will not here try to achieve the goal completely, but instead divide the way to
the goal into two steps:

1) Establish a general conceptual basis for the description of macroscopic sys-
tems and derive general results under certain general dynamical assumptions.

2) Prove these dynamical assumptions from the underlying dynamics in specific
cases.

As an example of “dynamic assumption” we can take the assumption that a cer-
tain portion of matter can be described by a continuous distribution of mass den-
sity, velocity and inner energy. A first step in formulating dynamical assumptions
will generally consist in stipulating a purely kinematic description of the system.
It can then be extended to include assumptions on e.g. equations of motion and
constitutive equations.

This division of the complete problem is very practical and in fact necessary.
Step 1 must be worked out completely before we have any chance to attack the
much more difficult step 2 in a rational way.

Extracting step 1 from the complete goal makes it possible to rigorously formu-
late and prove such general results as classical thermodynamics. The dynamical
assumptions, on the other hand, gives clearly formulated basic questions to be in-
vestigated for different systems with specifically stipulated dynamics. This work
belongs to the application of the general theory and we shall here restrict ourselves
to a discussion of the general part of the theory i.e. step 1. It should be noted,
however, that the dynamical assumptions, even if unproven for the moment, are
generally very natural or reasonable, as the example above shows. They are often
essentially identical to some axiomatic assumptions in a corresponding classical
theory.

4.2.3 The Concept of Approximation as Basis for the Theory

In our prototype example of motion of a macroscopic particle, the dynamical as-
sumption is the assumption that a certain portion of matter is (as a consequence
of the underlying mechanics) held together to form a body which at every instant
of the motion is confined to a small region in space. Under this assumption we
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can then rigorously prove the validity of the equations of motion of the body con-
sidered as a particle. Step 1 then means a general derivation of the equations of
particle mechanics at the macroscopic level. It should be noted that the obtained
equations are in general approximate to the extent that the body can be considered
as a point since the total external force on an extended body has to be approximated
by some corresponding point-particle value. Thus, the derivation also gives an es-
timate of this approximation i.e. how the accuracy of the point-particle description
depends on the small diameter of the body.

We can now see the basic role of the concept of approximation in this con-
text. In fact we can consider the whole question of describing and deriving the
macroscopic properties of a system as a question of approximation. We shall de-
fine macroscopic quantities in terms of the microscopic quantities and the derived
relations between these macroscopic quantities will then generally only be approx-
imate (although the “errors” are small from a macroscopic point of view).

This appearance of approximations in the theory leads us to consider quantities
which are confined to certain regions in the corresponding state space rather than
consider them as having exactly known values. Subsets in the state space of the
microscopic systems are also the natural concept to use in view of the fact that
a macroscopic state is described by a much smaller number of variables than the
complete microscopic state. This can also be considered as a kind of approxima-
tion. We only know the microscopic state partially or approximately.

This general concept of approximation, which is in concordance with the con-
cept of neighborhood in general point-set topology, unifies the deductive and the
conceptual aspects of the theory. It is the natural concept to use for the definition
of “macroscopic states” and a derivation of relations between macroscopic quan-
tities or macroscopic equations of motion cannot be rigorous and complete unless
we give rigorous estimates on the corresponding degree of accuracy.

4.2.4 Macroscopic Events

We are thus lead to consider certain sets of microscopic states. These sets describe
the macroscopic properties of the system. All the different states in the set have
the same macroscopic property described by the definition of the set. All the states
are similar and lie near each other in this sense. In the language of topology, the
states lie in some neighborhood of each other, namely the neighborhood defined
by the set.

To say that an element (e.g. a state) belongs to a certain set is the common
mathematical way to say something about the element. From the logical point of
view, a set is thus connected to a statement (about some arbitrary element belong-
ing to the set). In our physical context, a subset in the state space of a system
will then correspond to a statement about the physical system. We shall call such
statements “events”. An event has occurred in a certain real situation if the corre-
sponding statement is true i.e. the state belongs to the corresponding set defining
the event.

The motion of a mechanical system is in this context conveniently described
by means of the phase-space (constituted by the configuration space variables to-
gether with their canonically conjugated momenta) which we shall take as our
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state space. A point in the state-space is then an instantaneous state of the sys-
tem and the motion is described by giving the phase-space point as function of the
time variable. We shall call such a function an “orbit” and the equations of motion
singles out which orbits are possible.

We shall base our theory on instantaneous events which are statements about the
system at a given instant of time. An instantaneous event is then a pair e = (£2,1),
where (2 is a subset of the phase-space and ¢ is an instant of time. The event e has
occurred if the orbit passes through €2 at time ¢.

An instantaneous macroscopic state is generally characterized by a set of events
e; =(2q,1), e =(2,,1), ..., e, = (£2,,1), all associated to the same instant of time
t. e; may e.g. specify the energy of the system, e, may specify the space region
occupied by the system etc. The statement “e; and e, and ...and e,” is then also
an (instantaneous) event. It is the logical conjunction e; Ae; A... Ae, of the events
ey, ..., e, which obviously is identical with (£2,7), where 2 =2, N2, N...N 2,
is the intersection of the sets £2,..., £2,.

We shall now concretize our general abstract concept of event by giving a sim-
ple example of that we shall call “macroscopic events”. These express coarse,
collective statements about a system composed of a large number of particles.

We shall consider an “ideal gas” composed of » identical free particles of mass
m contained in a region V in configuration space R3. The phase-space X of this
system is constituted by the position variable X; € R3,i=1,2,...,n together with
their conjugated momenta

- -

pi=m1),-€[R?,,i= 1,2,...,”1,

where U; is the velocity of the i:th particle and IR?J denotes the 3-dimensional mo-

mentum space. Thus X = R3" x Rg”. The localization of the gas to the region V'
at time 7 is then described by the event e; = (£2, ) where

Q = {zi,ﬁi;zjev forallj} = VxR

The energy of the system is
n
1 2
U= 2.7
i=

As we shall see below, in connection with the definition of entropy, it is convenient
to consider statements where the energy is confined to an interval (U — AU, U +
AU) rather than having an exact value. Thus, the energy of the system is charac-
terized by the event e, = (£2,, ), where
n
Q,= {i’i,ﬁ,-; LY Rew-av, U+AU)}

2m
i=1

Taking e, and e, together we obtain the event e(V,U, AU, t) =e; Aey =
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(221 N 2,, t) where
QN0 = {?c,-,ﬁ,»;?c,»eVandﬁZp%G(U—AU, U+AU)}.

describing both the volume occupied and the total energy of the system.

In this example we have made several simplifications and idealizations. The
“wall” or environment enclosing the gas is not treated from a molecular mechan-
ical point of view and we have not considered the number of particles n to lie in
a relatively small interval rather than having an exact value. The latter general-
ization is necessary if we want to use a set of statements to describe a space dis-
tribution of matter. We refer to chapter 6 below for treatment of variable particle
numbers and to (1) for the treatment of boundary conditions.

The statement e(V,U, AU, t) does not say anything about how the particles and
the energy are distributed within the region V. However, if the particles and the
energy are distributed continuously (not necessarily uniformly) over the region,
we can describe this distribution with sufficient accuracy by using a sufficiently
large set e;(V;,U;, AU, 1), i = 1,2, ... of such events with sufficiently small V; C V.

4.2.5 Deterministic Processes

In general we are not only interested in a specific instantaneous state but in the
evolution of the system in time. This can generally be described by a sequence of
events e; = (£2,11), ep = (£25,1),..., e, = (£2,,1,), expressing statements about
the system at a sequence of times #,?,,...,¢,. We shall call such a sequence a
“course of events”. The statement that all these events have occurred in a certain
real situation then obviously means that the orbit of the system passes through all
the sets £2; at the corresponding times #;. If there exists at least one orbit with this
property, we shall say that the course of events ey, ..., e, is possible.

A basic problem of dynamics is the study of how an “initial state” of the system
at time t; develops into another state at a subsequent time #,. Such an evolution is
in many cases deterministic. We shall restrict the discussion here to deterministic
evolutions, deferring the discussion of general indeterministic evolutions to the
quantum-mechanical theory developed below.

Let our initial state be described by the event e; = (£24,7;), and the final state
by the event e, = (£2,,1,). If the evolution is deterministic, then the event e, must
necessarily occur if the event e; has occurred. This means that every possible
specific microscopic motion of the system, for which we know that e has occurred
must have the property that also e, occurs. Thus every orbit, which passes through
£2, at time ¢, also passes through €2, at time #,. We have thus defined what is to
be meant with the statement “e; implies e,” (in logical notation e; = e,) and we
have reduced the concept of deterministic evolution to the concept of implication
for events.

Instead of using the notation e; = e,, we shall, for reasons that will become
clear in the quantum-mechanical generalization below, denote this implication
(eq]ep) € Ty. The pair (e} |e,) will be called a “process”. ey is called the “premise”
or the “initial conditions” and e, will be called the “outcome”. T is the set all
processes which have certain outcome.
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We shall now introduce a convenient representation of events which is quite
analogous to the introduction of the Heisenberg picture in quantum mechanics. We
have made the assumption that our underlying microscopic dynamics is described
by classical mechanics. From this it follows that exactly one orbit passes through a
given phase-space point at a given time and that the orbits maps phase-space points
(or sets) at one instant of time #; in a one-to-one way on phase-space points (or
sets) at another time ¢,. To every event e = (£2,¢) we can then in a one-to-one way
associate a pair (M, 1), where M is the set of all orbits for which e occursi.e. passes
through €2 at time . The advantage of this representation is that events ey, e,, ...
at different times #1,1,, ... can be represented by subsets M, M, ... of acommon
space namely the set of all orbits. A course of events (ej, ey, ...,e,) is then possible
if and only if the intersection M| N...N M, of the corresponding M :s is nonempty
and (eq|ep) € T} is equivalent to M| C M,. The course of events (ej,e,,...,e,)
is an event i.e. a statement about the physical system which expresses the same
thing as the logical conjunction e; Ae; A ... Aey,. This “composite” event, which is
non-instantaneous if some of the ¢; are different, is represented by the intersection
M nM,n...nM,.

We have thus extended our “logic of events” to events at different times and to

non-instantaneous events. Processes (e, ... ,emlei, ...,eh) where the initial con-
dition (ey,...,e,;;) and the outcome (e;, ..., e}) are courses of events can then be
given a meaning. We now see that (ey,...,enle], ..., e;) € Ty if and only if M1 N

Myn..nM, cM{nMjn...n M, for the corresponding M:s. This statement
expresses the dynamical rule that if we know that the initial conditions e, ..., e,
are satisfied (has occurred) then we know that the course of events e, ..., e}, will
then necessarily happen (occur).

4.2.6 Irreversibility, Causality and the Direction of Time

Before we can apply our general theory of processes to macroscopic processes,
we have to make two complements to it in order to handle the problem of irre-
versibility. First, we shall, in this section, introduce a “principle of causality”,
which introduces an asymmetry with respect to forward and backward time di-
rection. Second, we shall, in section 4.2.9 generalize our concept of process to
e-processes in order to take into account the fact that there may be exceptional
states in the phase-space, which do not develop in a “regular macroscopic way”’.
The underlying microscopic dynamics is reversible since we have assumed it to
be classical mechanics. Thus it follows that if e; = (24,1;), e; = (£25,15), ...,€, =
(£2,,,1,) is a possible course of events, then the backward (time-reflected) course of
events e, = (£, —1,), ..., e} = (£21,—11) is also possible. (Our macroscopic events
will generally be symmetric with respect to a change of all velocities v to —v.)
This is true if we consider a closed system of whatever size it may be. However,
in any real situation, we have to take into account also the environment of the
system under concern and its interaction with the system. Even if our system under
concern is more or less completely isolated during a period of time, its initial state
comes out as consequence of some kind of preparation by its preceding interaction
with other surrounding systems. Thus, a description of a sufficiently large part of
the environment of our system during a sufficiently large preceding period of time
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is necessary in order to guarantee the initial state of the system. Such a description

can be made by a (possibly large) sequence of events ey, ..., e, which we call the
preparing initial conditions of the system and a process (e, ..., enle], ..., ;) €Ty
then describes how these initial conditions forces the course of events ei, ...,ehin

our system to occur. e can then e.g. be an internal initial state of the system if it
is isolated from that time.

Thus we see the importance of the environment. A time reflection can not be
made only for a limited part of the universe which is our “system under concern”.
The time reflection must be made for the whole or at least for a very large part of
universe and under a considerable period of time.

From our everyday experience it is very natural to consider the initial conditions
to be given before the course of events considered. This is our intuitive idea of
causality that cause comes before action. It is generally realized that causality
is an ultimate condition for life as we know it and our general perception of the
world, our possibility of making observations and possibility of communication.

Another reason for taking the conditions to be given before their action comes
from the empirical irreversibility of many macroscopic processes such as e.g. heat
conduction. A process according to the classical heat conduction equation is em-
pirically possible but all empirical evidence says that the opposite time-reflected
process, which satisfies a heat equation with a minus sign on the time derivative
is impossible. Causality is in this case a natural mathematical consequence of the
form of the equation. The initial value problem for the heat equation is stable
and well-posed in the forward time direction but extremely unstable and ill-posed
in the backward time direction. This indicates the importance of stability in this
context.

There exists unstable processes such as e.g. condensing in an undercooled gas,
which to some degree could look like an irreversible process going backward in
time. In a turbulent gas flow we have instabilities roughly similar to that of a back-
ward heat equation. However, the macroscopic laws governing these phenomena
are not completely symmetrical with respect to time-reflection. Even if reversible
convective mechanisms are dominant in a highly developed turbulent flow, there
are also dissipative forces which act in an irreversible damping way. Thus even if
our underlying microscopic dynamics is reversible, we must end up with a macro-
scopic theory whose equations of motion are manifestly unsymmetrical with re-
spect to time-reflection. Although they may admit instabilities to develop to some
degree, they contain dissipative mechanisms which results in an overall stability
(in the forward time direction).

Our overwhelming experience of causality is an expression for the fact that our
whole world is so organized that all “preparations” must act in forward time di-
rection or, equivalently, that all predictions must be made by ultimately using a
sufficiently comprehensive knowledge of the previous history of the system under
concern and its environment rather than using a correspondingly comprehensive
knowledge of its future, which we generally do not have. It is directly connected
to a high overall stability in forward predictions together with a high “overall in-
stability in backward predictions” which generally characterizes macroscopic sys-
tems, and which in turn is connected to the general irreversibility characterizing

35



macroscopic systems.

We shall now introduce the basic postulate, based on experience, that all phys-
ical situations must ultimately be described by processes (e, ... ,emlei, c.seh),
such that the events e; in the initial conditions are associated to times #;, which are
before all the times 7 of the outcome events e i.e. 1; <t forall j=1,....m, k=
1,...,n. We shall call this postulate “the principle of causality”. In the following,
we shall let T denote the set of processes fulfilling this time-ordering condition.

In the next sections we shall discuss how thermodynamic irreversibility can be
described and understood from a molecular mechanical point of view as a con-
sequence of this principle of causality. Before we shall do this, we shall make a
general comment on the fact that our world is organized according to this causality.

Thus, the whole of our (observable) universe is in a situation, which, from a
mechanical point of view is characterized by a special kind of motion with a highly
developed asymmetry with respect to forward and backward time direction. From
a pure mechanical point of view such a situation seems accidental. It is only one
of a set of possible motions of the universe.

We can imagine a general chaotic, unstable universe without any manifest causal-
ity in either time direction. This universe could then perhaps for some reason
undergo an expansive evolution, which results in a far developed separation and
condensation into a large set of stable macroscopic systems. This stability can
then, reasonably, by the following argument occur only in one time direction.

In such a universe, it will be a common process that systems come into contact
with each other and remain so for some subsequent period of time. The juxtaposi-
tion of two macroscopic systems with e.g. different temperature, would then, due
to mixing in a system composed of a large number of particles, with extremely
high certainty lead to a more uniform distribution of temperature in the composite
system. The inverse process, where a portion of matter with uniform temperature
distribution by itself undergoes an evolution which leads to different temperatures
in different parts (which then might be separated for some reason), is on the other
hand from a molecular mechanical point of view extremely exceptional and im-
probable. This example makes probable the existence of high instabilities in the
backward time direction. A high general overall stability of macroscopic systems
in one time direction is thus, by mechanical properties of systems composed of a
large number of particles, necessarily connected to a corresponding general high
instability in the opposite time direction. (We shall discuss this effect of large
number of particles more fully in the following sections).

We have seen that the existence of extreme instabilities in the backward time
direction in certain processes is a consequence of the existence of macroscopic
systems, which are stable in the forward time direction. Thus causality and irre-
versibility is essentially reduced to the existence of stable macroscopic systems.

On the other hand, we have given no explanation why parts of our universe
should condense into separated stable systems by giving out energy to the sur-
rounding universe. Thus we see that if we try to reduce the apparent macroscopic
irreversibility to the underlying reversible microscopic mechanics, we have to in-
troduce extra assumptions on the organization of the environment, which are of a
cosmological nature. This reductionism is thus obtained at the cost of introducing

36



cosmological assumptions which are difficult to formalize. Instead we shall, by
introducing the principle of causality as a basic, irreducible postulate, eliminate
these cosmological questions and obtain a local deductive theory.

4.2.7 The Entropy of a Macroscopic System

In the discussion of irreversibility below, the volumes of the regions in phase-space
corresponding to macroscopic events will play an important role. The logarithm
of the phase-space volume is, apart from a constant factor k (the Boltzmann con-
stant), under certain circumstances equal to the entropy of the system. We shall
denote the volume of the phase-space region €2 by u(£2). u is then a measure i.e.
an additive set function. We shall also write u(e) for u(£) if e is the event for
e=(0,1).
For our ideal gas example above we get for e =e(V,U, AU, 1)

p(e) = V”S3n{ 2m(U + aU)]*"

~ [2m(U - 40) 3”’2}
where v is the 3-dimensional volume of V" and

_ 22
nl’(3)

n

is the volume of the unit sphere in n dimensions.
We shall now assume » to be very large and that

1 __ AU
ﬁ<<7<<1

and make use of the fact that the volume content of a sphere in n dimensions with
n large is essentially concentrated to a thin layer along the surface. We then get

3n/2 3n/2
(U+AU)3H/2_(U_AU)3n/2=U3n/2[(1+ATU) n _(1_%]) n ]

where

P

(1+ %)3"/2 e3> 1

and

(1- ATU)M2 re T <.

Thus the term (U — AU )32 is very small relative to (U + AU )32 and can be
neglected. Taking the logarithm we then get

log () ~ nlog V' +log S, + 37" log[2m(U + AU)].
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In this expression AU gives a relatively very small contribution since by as-
sumption
log(U + AU) —logU » 47" 3
and hence
log ju(e) ~ nlog V' +log S, + 37” log(2mU)

is (approximately) independent of AU
U

Thus, by admitting an “uncertainty” AU > w

define an entropy

in the energy, we are able to

S =klogu(e)

of our event e, which only depends on the volume V', the energy U and the number
of particles n (alternatively on the macroscopic mass M = n-m) of the system.
Note that .S is only approximately defined since we have made two approximations
in order to get a result independent of AU.

The quantity AU can be chosen arbitrarily to a large extent and has no physical
significance in itself. Rather it is to be considered as a technical device in our
approximation technique ultimately leading to relations between quantities with
obvious “physical significance” such as energy (U) and entropy (.5).

The obtained formula for the entropy gives a well-defined value of the entropy
of the system confined to the region V' only if the particles and the energy are
uniformly distributed over V. If this distribution is non-uniform, we have to divide
the region into sufficiently small regions V;, V5, ... such that the distribution within
each is (sufficiently) uniform. The entropy .S of the total system in V' is then given

by the sum
5=

of the entropies .S; of the subsystems confined to the regions V;.

We shall make an important observation concerning the comparison of the
phase-space volumes of a non-uniform and a uniform distribution. Let our space
region V" with volume v be divided into two parts V7 and V, with volumes v; and
v, and let us assume v; = v, for simplicity. If there are m particles in V; , then
this will contribute to the phase-space volume with the factor

ny.m n—m_(n) n
UT'U, = [
<m> 172 m 1

where we have taken into account that the » identical particles can be divided into
one group with m and one group with n—m elements in (") ways. By the binomial
m

theorem we have
n
n
reser=[ (D)l
m=0
and by the properties of the binomial coefficients for large n we have that nearly
all of the volume v" comes from terms with m close to n/2. Thus there exists a
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relatively small interval 1| = (g —Am, 5+ Am) and a very small € > 0 such that
oy 2 ( :1 > <euv.
m&l,

For n large, € will be extremely small.

Let I, = (my—Am,, my+Am,) be another interval disjoint to I;, and lete(m € 1)
and e(m € I,) be the events corresponding to the statements that the number of par-
ticles in V] lies in the interval I; and I, respectively. Then e(m € I,) contributes
to the total phase-space volume with a factor which is less than & (properly £
times smaller than that of e(m € I) which gives essentially the same contribution
to the total phase-space volume as the event e = “there are n particles in V.

Similar arguments hold for non-uniform distributions of the energy. Thus we
come to the conclusion that the phase-space volume of a non-uniform distribu-
tion is generally extremely small in comparison to the phase-space volume of the
corresponding uniform distribution.

4.2.8 The Increase of Phase-space Volume

We have seen that the orbits maps subsets of the phase-space at one instant of time
in a one-to-one way on subsets of the phase-space at another instant of time. By
the Liouville theorem this map preserves the phase-space volume i.e. the measure
which we have denoted by . From this it follows that we can define a measure,
which we shall also denote by y, on sets M of orbits. Then (M) = u(€Q) if 2 is
the set through which the orbits in M passes at some arbitrary time.

We have introduced above the representation of events e = (£2,7) by pairs (M, t).
The measure on sets M then makes it possible to generalize the concept of phase-
space volume to courses of events ey = (£21,11), ex = (£25,17), ..., e, = (£2,,1,).
Thus we define

[4(61,62, ,en) = [/l(Ml anﬁ Mn)

where (M1,t,),...,(My,t,) are the representations of ej,...,e,. Applying this to
a process
(el,...,emlei,...,e;,)eTl we get, since Mlann...anCMl’r\Mz’n...mM,’,

for the corresponding M':s implies
uMn...nM,) < M(Mf Nn...NnM)),

the general result
pley,....em) S plef, ... ep).

Thus our theory implies a general result on increase of phase-space volume.

4.2.9 Exceptional States and e-Processes

Let e = (24,1)),e; = (§25,15),e3 = (£23,13),1] < t, < t3 be three macroscopic
events which describe a deterministic evolution of a closed system. Then e; im-
plies e, and e, implies e;. We have to explain why the system strives at equilib-
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rium. If we can show that there is a general strive at more uniform distributions
(for mass, energy, etc.) it both follows that uniform distributions are equilibrium
states (since they cannot develop into any other state than itself) and that there is
a general strive at equilibrium.

If eq, e, and e5 correspond to different states of the system which do not have
uniform distributions, then e, should have more uniform distribution than e; and
e3 have more uniform distribution than e,. By the arguments at the end of section
4.2.7 this means that u(M;) « u(M,) « u(M) where M, M,, M5 are the M:s
corresponding to ey, e;, e3.

An increase of phase-space volume, and thereby a general tendency towards
uniform distributions would follow from the result of the preceding section if we
could apply our concept of process. We cannot, however, strictly assume that

M, CM,C M,

for the following reason. The macroscopic situation at ¢, described by e, can
come out as result of many different preceding situations and e; is only one of
them. Thus only a very small subset £ of £ represents states which are results
of evolutions from the situation ey at 7y. If (xy,..., py,...) € £2] is such a state,
then the velocity-reversed state (xy,..., —pj,...) would obviously develop into a
state at time ¢’ = f, + (t, — t1) for which the event (£2,¢'), similar to e, would
occur. This would generally contradict the situation e at #3 if e.g. #3 = ¢’ and
would contradict our general experience of irreversibility. We shall call such states
exceptional states. These must clearly be avoided in a more correct definition of
process.

Now, we can achieve this in a general and simple way, without giving a detailed
dynamical specification of all different exceptional states, by observing that the set
of all exceptional states will have a relatively very small measure. In our example
above, the set £2{ of states in £2, at 7, which are results of previous states in £2; at
t; have measure u(M;) and u(M;) « u(M,) as assumed.

By the arguments at the end of section 4.2.7, it is natural to assume that the set
of all exceptional states together has a relatively very small measure. E.g. we have
seen in 4.2.7 that a uniform detailed mass distribution accounts for essentially all
of the phase-space volume and all other non-uniform distributions, and there will
be many such, will together concur on a extremely small fraction of the possible
phase-space.

Thus, instead of demanding that M, C M3, we shall assume that there exists a
subset of exceptional states M, ., C M, such that

M(MZ,ex) < EM(MZ)
and
M2,reg =M, - M2,ex C M;

i.e. the set M, of “regular” (non-exceptional) states will necessarily result in
states at 75 for which e; occurs. Here € is to be a very small positive number. A
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pair (e,|es) satisfying this condition will be called an e-process.

Generally, we make the following definition: (e, ..., e, |ei, ...,e})is an e-process
and we write (e, ...,emle’l, e ET ift; < tl’C for all i, k where t,-,t]’{ are the
corresponding times of e,',e,’c, and

HMin...OMy—M{n...OM)<ep(MN...0 M)

where M;, M ;2 are the M :s corresponding to e;, e,’(, and the minus sign denotes set
subtraction i.e. A — B is the set of all elements in A which are not elements in B
if A and B are sets.

Our theorem above on increase of phase-space volume has to be slightly mod-
ified for e-processes. Thus, if (e, ... ,emle;, ...,ep) €T, then

1
l1—¢

We have given a general rigorous definition of the concept e-process. To get a
physical theory out of it we now make the following “application postulate”: We
can choose a very small positive number € such that any behavior of macroscopic
systems can be completely described by e-processes (ey, ..., enle],....e) € Ty,
of macroscopic events ey, ..., e, ei, L€

This postulate implies that we assume that the exceptional states are so ex-
tremely rare or miraculous that we can neglect them altogether. We shall call this
“the principle of confidence” and 1 — & will be called the confidence level. We
shall use this principle, thus formulated, without any probabilistic interpretation.
An introduction of a principle of equal a priori probabilities in phase-space as
introduced in the a priori school of statistical mechanics would of course make
our confidence principle natural and would give a probabilistic interpretation of
u(£2e) and €. By the arguments given at the end of section 4.1.5 above, however,
we reject any attempt to give a physical meaning to a probability distribution in
the phase-space of a macroscopic system.

That the exceptional states are confined to a phase-space region with very small
relative measure € is provisionally to be regarded as a mathematical conjecture to
be ultimately proved (or disproved) from the underlying dynamics.

ulep,....ep) < ulej,....ep)

4.2.10 Further Development of the Theory

Motivated by a sequence of heuristic arguments we have given a rigorous base
for step 1 of section 4.2.2. This base of events and e-processes constitutes an ax-
iomatic basis. A lot of further theoretical work has to be done before step 1 is com-
pleted. E.g. we have to introduce such concepts as temperature and pressure, study
continuous mass distribution, boundary conditions etc. This work is essentially of
a technical character and consists in working out approximation techniques for
asymptotic behavior of systems at large particle numbers.

Before it is worthwhile to do this work, however, we have to generalize the
theory to quantum mechanics. We will therefore finish this brief discussion on
collective phenomena by giving the most essential step in this generalization.
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4.2.11 The Quantum-Mechanical Substitute for Phase-Space
Regions

Let us, for simplicity, discuss the case of a “one-dimensional particle”. The gen-
eralization to an n-particle system in 3-dimensional configuration space will be
straightforward.

Our system is then described by a configuration space variable x € R! and
a momentum variable p € IR},. In the quantum-mechanical case it is, due to the
uncertainty principle, impossible to give a physical meaning to a phase-space point
(x,p). On the other hand, if we admit suitable uncertainties Ax and Ap in the
variables, we can give a meaning to an approximate phase space point. By using
the concept of confidence estimate, we can give a precise meaning to this. Thus
we shall say that the system, described by the instantaneous wave function y(x),

is localized to the space interval I, = (xo— % xo+ %) if

i WwPRdx 2 (1= e0) [ w2 dx

Similarly, we shall say that the system is localized to the momentum-space

interval A A
I,= (po—7p,po+7p) if

[, [P dp 2 (1 =) [, (o) dp

where {r denotes the Fourier transform of y. If both these estimates are satisfied
with €, £, < &, we shall say that the system is localized to the phase-space region
Q = I, x I, with the confidence level 1 —¢&,. &; is to be a very small positive
number. As e.g. the example of Gaussian wave-packet shows, we can obtain such
a localization with very small ¢, if Ax - Ap is a few times larger than 7.

We cannot obtain this localization with both £, and &, zero. It can be shown
that there is a positive lower limit of £, + £, depending on Ax - 4p.

The theorems of (1) Chapter I are of fundamental importance for the present
theory. In the application to macroscopic events, Ax - Ap > h and many wave-
functions y(x) will satisfy the phase-space localization condition above. By the
results of (1) Chapter I, the set of all such wave-functions essentially constitutes a
subspace N of the Hilbert space with finite dimension

Ax - Ap
h-2x

Macroscopic phase-space localizations can thus be represented by finite-dimen-
sional subspaces N of the Hilbert space. Our concept of deterministic process
can then be generalized to quantum theory by replacing the M :s (sets of orbits) by
corresponding subsets N of Heisenberg picture vectors and the logical implication

dim(N) ~

N,y c\/;zN2 (1)
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as defined in (1) Chapter I. We have thus introduced a quantum-mechanical con-
fidence level 1 — &, beside our previous confidence level 1 — ¢ associated with
exceptional states. The generalization of (1) to e-processes, analogous to the defi-
nition of 4.2.9, is straightforward.

The introduction of subspaces is very convenient from a technical point of view.
It means that we can build the whole theory on subspaces and the corresponding
projection operators.

The direct connection between phase-space volume and the dimension of the
corresponding subspace means that we can instead use the expression

S = klogdim(N)

in the definition of entropy in the quantum-mechanical theory. This reduces the di-
mensional anomaly of taking the logarithm of a quantity with dimension (action)3”
for an m-particle system, and gives a well-defined zero point of the entropy. It
shows the deep connection between thermodynamics and quantum theory.

In conventional discussions of quantum-mechanical measurement processes,
considering interaction with the macroscopic measuring apparatus, this macro-
scopic apparatus way of ultimately transforming a superposition to a macroscopic
fait accompli of a wave function collapse is often referred to as an irreversible
macroscopic process handled by irreversible statistical mechanics. See 3.3 and
3.5 above.

In the present theory, the collapse and the irreversible process is handled in a
unified way by the same concept of e-equiangular sequence of projections (see
below) of which (1) above is a special case. This also shows a deep connection
between thermodynamics and quantum theory.
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Chapter 5

Heuristic Derivation of the
Confidence Theory

5.1 The Problematic Nature of the Concept of State

There exists two difficulties, which make it generally problematic to ascribe a state
to a system.The first difficulty is the general impossibility to define states of sub-
systems, due to the “indivisible unity” of quantum systems. The second difficulty
is connected with the collapses of the wave functions.

One of the most characteristic non-classical features of quantum physics is the
indivisible unity of quantum systems (Bohm (2)). This means roughly that a sys-
tem cannot in general be considered as divided into its constituent parts. The
“constituent parts” are in general bound together into a unit in such a way that
the constituents have no longer any separate meaning and individuality. E.g. an
atom is not composed in a classical sense of a nucleus and electrons, but these
particles are bound together into an indivisible unit. If we try to identify one of its
constituents, then we destroy the original atom, and we are left with two or more
other systems (e.g. an electron and an ion).

Expressed in terms of wave functions, the indivisible unity of a system “com-
posed” of a set of particles means that the wave function of the composite system
cannot be factorized into separate wave functions for some subsystems. However,
one can express the indivisible unity in a more general way by using the concept
of state. Thus, the indivisible unity of a system means that it cannot be divided
into some subsystems in such a way that the state of the whole system is uniquely
determined by the states of its parts.

The indivisible units are not confined to atomic systems but can take macro-
scopic dimensions in space. A molecule is not composed in a classical sense of
atoms and a molecule can be very large. Even if the molecules in a piece of mat-
ter are small, they are bound together by intermolecular forces and this composite
system is in principle an indivisible unit. Strictly speaking, the whole world is an
indivisible unit, and the occurrence of separate subsystems having well-defined
states is always connected to some degree of approximation.

On the other hand, even if indivisible units cover large space regions, we can
ascribe properties to much smaller regions in space. E.g. we can define a mass
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density (approximate but with a high degree of accuracy) within a large crystal.
Thus “property” is a more generally applicable concept than “state”.

Another difficulty in the definition of states arises from the occurrence of col-
lapses of wave functions.Even if the wave function may be well-defined before
and after the scattering of a particle, there is no reasonable way of defining an
intermediate wave function at an instant of time during the process of scattering.
In the description of a single scattering experiment we can of course refrain from
this, but if we intend to develop a general theory describing general complex sys-
tems with many more or less simultaneous transitions, this is obviously a problem.
Thus, for such a system, we cannot in general ascribe an instantaneous state (wave
function) to the whole system. On the other hand, the indivisible unity, previously
discussed, makes also the definition of states of parts difficult.

5.2 The Irreducibility of Collapses

The occurrence of stochastic transitions in quantum physics has thrown in a com-
pletely new concept, which does not fit into the general customary conceptual
frameworks of classical physical theories described by differential equations. This
has led to several attempts to explain and reduce these transitions to the dynamics.

One way is to try to describe the transition as caused by some disturbance in
the system due to its interaction with the environment. However, the treatment by
quantum mechanics of a larger system composed of our first system under concern
and its environment ultimately leads to the same problems of explaining the cause
of the transition for this larger system. The stochastic element in the transition
cannot e.g. be ascribed to a “stochastic molecular chaos” in the macroscopic en-
vironment as one could perhaps be inclined to believe before a thorough analysis
of the problem.

Another way is the search for “hidden parameters”. Although some interest-
ing ideas are proposed by D. Bohm which shows in a sense an equivalence with
a ”submicroscopic” deterministic process, this branch of research has not so far
given any reasonable, consistent and convincing alternative to quantum mechan-
ics.

The resulting, overwhelming impression left is that the stochastic quantum tran-
sitions cannot in a reasonably simple and consistent way be reduced to dynamics.
We therefore consider it as an irreducible, elementary concept of quantum physics.

5.3 The Collapse-Projection Connection

In the wave function description of a quantum transition, an initial Hilbert space
vector evolves according to the time-dependent Schrodinger equation into a su-
perposition
Y=Y ¢
iel

of very different states at a later instant of time #. These different vectors cor-
respond to very different eigenvalues a; of some property (observable) A of the
system, but by the circumstances, the actual observable must have taken a more or
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less defined value at the time . Thus only a small subset ¥;, i € I’ of the different
states fits this actual value taken of the observable, and by the statistical interpreta-
tion of the wave function, the probability for the obtained value of the observable

is
p= 2l
iel’
(the ¥':s above are supposed to be normalized).

However, this also means that the vector ¥(¢) has collapsed into a new vector
¥ (1), fitting the value taken by the observable. The most natural assumption is
that the “circumstances forcing the new value of the observable” simply cuts off
the vectors ¥; not fitting the new situation and we are left with

WI(t) = Z ci(OW;.

iel’

This can be described in a simple way by means of a projection operator. The set
of vectors ¥;, i € I’ corresponds to a subspace M of the Hilbert space of wave
functions and to it corresponds a projection operator P projecting on M. We can
then write

Y’ = py
and
p=|IP¥|?

Thus we are led to the following assumption which we shall call “the collapse-
projection connection”:

1) A stochastic quantum transition is always connected to and described by a
projection operator.

2) In a transition described by the projection operator P, an initial wave func-
tion corresponding to the Hilbert space vector ¥ collapses into the new wave
function corresponding to the Hilbert space vector P¥.

As was pointed out in section 1, there is in general a great ambiguity in the

choice of wave functions. This is certainly one reason why the choice P¥ for the
wave function after a collapse has never been accepted as a general basic principle
in quantum-mechanical expositions. The choice of wave function after a collapse
is to a high degree dependent on what kind of idealization we make in the division
into object system and disturbing environment, and is therefore to some extent a
matter of definition. The choice P¥ is however simple and natural and we shall
use it in the heuristic motivation of the confidence theory.
Remark: If we compare the collapse-projection connection with the Copenhagen
interpretation formalism described in chapter 2, then condition 1) follows from
the coupling between transitions and measurements and from the (practical) re-
striction to yes-no questions. Condition 2) corresponds to the assumption of ideal
preparatory measurements (see section 3.2 above).
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5.4 The Conceptual Basis of a Physical Theory

We have pointed out in chapter 1 that a one-to-one relation between some set of
basic quantities (or concepts) in the theory and some observable quantities (or
concepts) in the physical reality is important for the objective interpretation of a
theory. Let us now discuss what properties these basic quantities or “basic ob-
servables” must have in order to constitute the basis of a theory. We shall call
them basic observables, using the term observable in a general sense. They need
not necessarily coincide with the ordinary “quantum-mechanic observables” de-
scribed by hermitian operators. It is important to point out the difference between
what we shall call the “conceptual” (properly “physico-conceptual”’) or “kinemat-
ical” part of a theory, which gives the basic concepts having a direct physical
interpretation, and the “dynamical” part of the theory which gives the complete
mathematical description of the relations between the concepts of the theory.

If a certain set of concepts is to constitute the conceptual basis of a theory, then
they must satisfy the following conditions:

1) It must be possible the describe the whole course of events in any real phys-
ical situation completely in terms of the basic observables. Other tangible
physical quantities which are not among then basic observables must have
well-defined relations to the basic observables so that they can be reduced to
(i.e. defined in terms of) them.

2) All physical laws can ultimately be expressed in terms of the basic observ-
ables. The basic laws (dynamical equations etc.) can of course be expressed
by means of auxiliary quantities not among the basic observables but must at
least implicitly (by means of thought elimination) lead to a complete set of
relations between the basic observables.

5.5 [Initial and Boundary Conditions

Let us now discuss the interpretation of the basic observables of a theory.

The interpretation of some given set of observables (“object observables™) de-
scribing a certain system under concern is depending on their relation to some
other similar or different observables (“environment observables’) describing some
environment of the system. If the theory is to describe an objective physical world,
then these relations between “object observables” and “environment observables”
must be reduced to physical laws i.e. ultimately described by means of the laws
connecting the basic observables. The environment here has to comprise a suffi-
ciently large part of space-time in order to contain a sufficiently exhaustive de-
scription of the initial and boundary conditions.

More precisely, that an “object observable™ has an objective interpretation means
that it should in principle be possible to determine its value from the values of some
other “environment observables”. If the theory is to describe an objective physical
reality, then every “basic observable” must admit of such an interpretation. We
can draw two important conclusions from this.
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First, it is important that not only the object system itself but also its environ-
ment, describing initial and boundary conditions and other systems, with which
our object interacts, are described by the same set of basic observables.

Second, the theory has to be “dynamically closed” in the sense that it contains
sufficiently many relations between the basic observables so that any of them,
when describing an object system, could be determined from values of basic ob-
servables in the environment.

This does not mean that every basic event that occurs in reality is always mea-
sured or observed by its relation to other events in the environment, as one would
be inclined to believe from the conventional quantum theory, which (at least in
principle) only deals with measurements. (Here we have another interesting in-
stance of the “arbitrariness of collapses™, see 3.5 above: What about all these
events that have occurred in the real world but have never been observed or mea-
sured?)

The statement must reasonably be interpreted in a weaker sense, replacing really
measured by measurability in principle for the specific event. The specific event
could be measured if it would occur in a (another) suitable environment.

Much of the interpretational problems in statistical mechanics and quantum the-
ory, (especially the arbitrariness problem), are connected with the fact that these
theories are formulated as “dynamically open” theories, where the environment,
(especially the initial and boundary conditions), are not sufficiently formalized in
the theory and are not handled by the dynamics of the theory in a unified way. We
have pointed out in chapter 4, that the use of mean-values in statistical mechanics
is difficult to motivate by physical arguments. This can be reformulated by saying
that the mathematical structure given by these mean-values constitutes a dynam-
ically open theory, which is not easily extended into the structure of a complete,
dynamically closed theory. Such a theory should give a complete (“closed”) set of
relations connecting these mean-values and eventually some other quantities with
each other, derived from the dynamics of the theory.

5.6 Goal and General Line of Direction

We shall now give a sequence of arguments leading to the confidence theory.

We shall try to find a suitable set of “basic observables” satisfying the general
criteria given in the preceding two sections. We can then expect to obtain a the-
ory, which is equally unproblematic with respect to the interpretation as classical
theories are.

The usual quantum-mechanical theory works well (i.e. gives correct results) in
several practical cases. Instead of looking for a completely new, different theory,
we shall make the “continuity assumption” that the ordinary theory lies very near
to a correct theory. In view of this “continuity assumption”, we can then expect
that wave functions will still play an important role in the dynamical part of the
theory as “probability amplitudes” i.e. “auxiliary” quantities by means of which
probabilities can be calculated, but they are not suitable for direct interpretation
(i.e. they are not belonging to the “kinematical” part of the theory).

48



Thus, assuming that the ordinary mathematical machinery of wave functions
satisfying the Schrodinger equation and transitions connected with certain projec-
tion operators essentially gives the correct dynamics, we shall direct our attention
to the “kinematics”.

5.7 A Theory Describing Successive Transitions

It is not only the time-dependent Schrodinger equation, but also the collapses of
the wave functions which describes the really occurring changes in the physical
reality. As we have pointed out in section 2 above, the discontinuous collapses
cannot be reduced to the dynamics of the Schrodinger equation. The occurrence
of stochastic quantum transitions is a fundamental physical phenomenon, which
must be taken into account if we want to construct a general theory describing
arbitrary courses of events. If we want to establish a one-to-one correspondence
between events in the real world and some corresponding concepts in the theory,
then also these collapses must be built into the theory.

Thus, our theory must be a “probabilistic” theory. It must describe successive
transitions i.e. complete sequences of transitions in a unified way.

5.8 Basing the Theory on Observables

We have pointed out in chapter 1 that the state-observable dualism makes it diffi-
cult to find some concepts (“basic observables”), which stand in a one-to-one re-
lation to reality. However, “the problematic nature of states” described in section
1 above makes it natural to reject the states altogether. Let us therefore try to avoid
the “state-observable dualism” and the “problematic nature of states” by simply
avoiding consequently the concept of state and base the whole theory solely on the
concept of “observable”. This means that the “role played by the states” must be
taken over by the observables. How this can be done will be discussed in section
11 below.

In view of the “continuity assumption” above, it is natural in first hand to try
to find the “basic observables” among the “quantum-mechanical observables”,
represented by hermitian operators. In view of the arbitrariness problem, it is also
natural to expect that some special class of such observables shall play a basic role
in the theory.

We shall assume that the basic observables are given by a special class of pro-
jection operators, namely those corresponding to space localization of particles.
In the next two sections we shall give arguments for using projections. Arguments
for the restriction to space localizations will be given later in section 14.

5.9 First Argument for Using Projections

The first problem encountered when describing a physical quantity by means of
hermitian operators is that a wave function is not in general an eigenstate of the
operator. This means that the quantity in general does not have a well-defined
value. In situations where this spreading of values is “too large” as e.g. in the
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outgoing wave in a scattering process, this problem is solved by the introduction of
the statistical interpretation of the wave function and collapses of wave functions.

However, even if the collapse has reduced the wave function to an eigenstate
of some operator, this eigenstate cannot in general correspond to a completely
exact value of the observable for practical reasons. This is especially clear when
one considers operators as e.g. those corresponding to position or momentum
of a particle, which have continuous eigenvalue spectrum. Thus even after the
collapse we are left with a value which is in general not exactly well-defined. This
presents a problem when one tries to construct a one-to-one relation between the
observables in the theory and the observables in the physical reality.

The common proposal for the description of rough (not exact) values of a phys-
ical quantity is to introduce some probability distribution for it. The “value” of
the quantity is then given by its mean-value (expectation value) with respect to
this distribution, and the accuracy of the (approximate) quantity, often denoted
by its “uncertainty” or “mean error’ is given by the usual “standard deviation”
expression.

Although the wave function suggests a probability distribution for the quantity
(that of interpretation 1 described in chapter 1), the interpretation of this probabil-
ity distribution is not very clear since, as was just stated, the quantity has only a
physical meaning as an approximate quantity. In chapter 4 we have given a critique
against the use of mean-values to describe rough physical quantities. This critique
can in its essential points also be used against the use of mean-values in quantum
mechanics. The present task of describing a rough physical quantity in quantum
mechanics and the task of chapter 4 of describing rough macroscopic quantities
are in fact, from our general unified point of view, the same problem. Thus ac-
cording to the critique given in chapter 4, supplemented by the arguments at the
end of section 5 of the present chapter, we reject the use of mean-values when
looking for a set of basic quantities suitable for a one-to-one correspondence with
real observables.

However, there exists another way of describing a rough real-valued quantity,
namely by means of an interval, the length of which giving a measure of the ac-
curacy of the quantity. This is seldom used (outside pure mathematics) despite its
simplicity. It is however very suitable in quantum mechanics since it corresponds
to a very simple kind of hermitian operator namely a projection operator. That a
quantity is localized to an interval of the real line means quantum-mechanically
that the wave function vanishes when the corresponding variable lies outside the
interval. The set of all such wave functions constitute a subspace of the Hilbert
space and to it corresponds a projection operator. Localization to the interval then
corresponds to the eigenvalue 1 of this projection operator.

The use of intervals, and more generally regions in an n-dimensional euclidean
space, is in complete accordance with the theory of macroscopic systems, devel-
oped in 4.2, based on phase-space regions, and its coupling to subspaces and pro-
jection operators in quantum mechanics was already anticipated in section 4.2.11.
As in chapter 4, we shall denote a localization statement (localization to a region)
by the term “event”.

Perhaps the most important advantage of using such events of localization (and
the corresponding projection operators) is that they can be used directly to describe
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macroscopic distributions of matter and are therefore suitable in a general unified
theory of macroscopic and atomic phenomena.

5.10 Second Argument for Using Projections

Another argument for using projections is provided by the “collapse-projection
connection”. It is a great unification if both our characterization of physical prop-
erties, observables, and the description of the transitions (probabilities and wave
functions after transitions) are provided by means of the same mathematical con-
cept.

5.11 Initial Conditions and Equiangularity

If we reject the use of the concept of state, then, the role ordinarily played by the
“states” has to be taken over by the basic observables corresponding to a special
class of projection operators. Now, it is especially in the role of “initial state” that
the wave functions insist on a “state interpretation”. (After a collapse described by
a projection operator corresponding to a basic observable, the system is naturally
described by this observable, e.g. the rough position of a particle). Thus we have
to describe also the “initial state” or properly the “initial conditions” by means of
our basic observables (events). This is also in concordance with the arguments in
section 5 above. The essential role of the wave function is that of a probability
amplitude. From a practical (experimental) description of the initial conditions
we have to associate to them, in some way, an initial state wave function, which is
then used to determine transition probabilities. We have to replace this procedure
by a way of determining the transition probabilities when the initial conditions
are described by our basic observables (events). This could easily be done if we
have a prescription of how to associate a wave function (now considered only
as an auxiliary mathematical quantity without any “state” interpretation) to our
sequence of events describing the initial conditions.

In the following it is convenient to use the Heisenberg picture (see section 7.6
below).

A subspace of wave functions having the property of “fitting the initial condi-
tions” can be defined in a natural way. Let our initial conditions be described by
a sequence of events ey, ey, ..., e, at times 1| < t, < ... < t, represented by the
projection operators P, P, ..., P, taken in the Heisenberg picture representation.
This sequence of projections then describes a sequence of collapses which occur
during the initial process which successively confirms the initial conditions (one
would ordinarily say “prepares the initial state”). Let M; denote the subspace on
which P; projects. Then any vector ¥ in M is of the form ¥; = P;¥ for some
suitable ¥ (e.g. ¥ = ¥). By the second part of the collapse-projection connec-
tion, it is then natural to express this by saying that after the collapse Py, then
every vector in M, fits the initial conditions (so far described only by P;). By
the second part of the collapse-projection connection, it then also follows that a
vector ¥ in M collapses by P, into P,%;. The set of all vectors of the form P,¥
with ¥ in M is denoted by P, M. It is thus natural to say that after the collapse
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P,, then any vector in M, = P, M, fits the initial conditions (so far described
by P; and P,. Repeating the argument, we come to the definition that the sub-
space M, = P, P,_; ... P, M is the set of vectors which fit the initial conditions
P, P,...,P,.

A problem that now arises when one tries to determine the probabilities of sub-
sequent transitions is that the preceding procedure for obtaining a wave function
fitting the initial conditions does not give a single wave function. Even if we have
a large number of initial conditions P, ..., P,, we will in general end up with a
subspace M, of infinite dimension. A statistical distribution on M,, (ensemble)
would of course give well-defined probabilities for subsequent transitions, but,
according to the critique given in chapter 4, we reject this statistical-mechanical
approach.

Now, the transition probability is a physically measurable quantity. This means
that it must be uniquely determined by the initial conditions provided that we have
a sufficiently complete description of them. It is reasonable to assume that a suffi-
ciently complete description of these initial conditions can be obtained by means
of our basic observables (localization events). The initial conditions are ultimately
described by means of macroscopic observable concepts and this macroscopic de-
scription can be obtained by means of a sufficiently large number of our localiza-
tion events taken over a sufficiently large period of time.

On the other hand, if quantum mechanics is correct, then this physical transition
probability should be given by a wave function fitting the initial conditions. It is
therefore reasonable to assume, in the case when several wave functions fit the
initial conditions, that any of them can be used to calculate the probability, i.e.
they all give the same probability, for a subsequent transition. The idea that a set
of wave functions all have the same property is parallel to the idea of 4.2 above
that a set of states all have the same macroscopic properties.

The central idea of the present theory is the study of sequences of events
er, ey, ..., ey, e suchthatevery wave function fitting the initial conditions ey, ... , e,
gives the same transition probability for a subsequent transition (event e’). Such
sequences thus have the property, that the transition probability can be calculated
from a knowledge of the initial conditions only, making no other assumption than
the basic statistical interpretation of the wave function.

If M is a non-empty subspace and P’ is a projection operator, we shall say that
P’ is “equiangular” with respect to M if

IP#I1¥ 112

has the same value for all nonzero vectors ¥ in M, and this common value is
denoted by p(M|P’). The term ‘“equiangular” is motivated from the fact that
p(M|P’) = ||P"¥||%/||¥||?> = cos?a, where a is the angle between a vector ¥
in M and its projection P’¥ on the subspace M’ on which P’ projects. This
angle is then equal for all vectors in M. We shall also say in this case that the
(1,1)-tuple (M| P’) is equiangular and alternatively that the (1, 1)-tuple (P|P’) is
equiangular, where P is the (orthogonal) projection on M.
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More generally, we shall say that the (m, 1)-tuple
(Py,..., Py P")

is equiangular if P’ equiangular with respectto M,, = P, P,,_; ... P,M| where M,
is the subspace on which P; projects and we define p(Py, ..., P,|P’) = p(M,,| P').
We can now express the above property of sequences of events ey, ..., ey, e’,
by saying that a (m, 1)-tuple ey, ..., e,,, e’ of events, where e, ... ,e,, describes the
“initial conditions” and e’ describes the “outcome”, corresponds to an equiangular
sequence
(Py,..., Py P")

of projections, where Py, ..., P,, P’ are the projections corresponding to the events
€ly....em,e’.

p(Py, ..., Py, P') is then the probability for the transition P’ (event e’), under
the assumption that the transitions Py, ..., P, (events ey, ..., e,,) have occurred and
we shall alternatively denote this probability by p(eq, ...,e,|e’).

An (m, 1)-tuple (eq, ..., e,|e’) of events with this property will be called a (pos-
sible) “process”.

In the next section we shall generalize this to (m,n)—tuples ey, ..., enlef, ..., e}
describing a sequence e’, ... , e}, of transitions under given initial conditions ey, ... , e,,.

5.12 Successive Transitions
Let us now consider successive transitions. Let
(Py.....P,|P|.P))

be a process with two successive transitions P/ and PJ, under the given initial
conditions Py, ..., P,. The subspace M of wave functions fitting these initial con-
ditions is given by
MZPum_l ...P2M1

where M is the subspace on which P, projects. We want to define what is to be
meant with the statement that the pair (P/, P;) is equiangular with respect to M.

If(P,...,P,| P/, P2’) is a process, then the first step of it (P, ..., PmlP]’)must
also be a possible process and thus be equiangular.

We shall denote by P¢ =1 — P the projection which projects on the orthogonal
complement of the subspace on which P projects.

The transition P/ has a certain probability

=P

where ¥ is any unit vector in M, and the opposite transition P has the probability
= ||P1’CSF’||2 =1 — p; which corresponds to the possible (equiangular) process

(Py,.... Pyl PI)
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(Note that the equiangularity of (Py, ..., P,,| P/¢) follows from the equiangularity
of (Py, ..., Py|P)).

After the transition of Pl’, the sequence P, ..., Py, Pl’ must be the initial condi-
tions for the subsequent (possible) process (P, ..., Py, P/| P)) and the correspond-
ing subset fitting the initial conditions is P/ P, ... ,M = P/M. Thus P] must
be equiangular to P/ M.

If(Py,..., Py P/, P2’) is a possible process, it is then natural to assume that also
(Py, ..., Py| P/, P)) is a possible process and that consequently also the process
(Py, ..., Py, P/¢| P))is possible. Thus PJ is also equiangular with respectto P/ M.

If(pP,..., P, P/, le) is possible, then it is reasonable that also (P, ..., Pmle’)
is a possible process. It just means that we have chosen not to consider P/ for

1
the moment and study the occurrence of P; irrespectively of whether Py or P/
has occurred. The equiangularity of P; with respect to M does not follow from
the preceding statements on successive equiangularity. However, it follows if we

assume that the four subspaces
P/P/M, PJP/°M, P)*P/M, P)°P/°M

are orthogonal.

This orthogonality condition is natural in view of the fact that the four “com-
posite events” corresponding to

(P{, P, (P, P}), (P{, P}O), (P{¢, P3°)

are mutually exclusive. The orthogonality of the corresponding “fitting subspaces”
is then natural, since these four cases should be distinguishable, e.g. in a subse-
quent detection. The possibility of such a detection (registration of the transitions
by means of their coupling to some other events in the environment) was stated
in section 5 above as an important condition for the possibility of an objective
interpretation of the theory.

This makes it natural to make the following

Definition: (M| P/, P)) is said to be equiangular if
1) (M |Pl’ ) is equiangular
2) (P[M |P2’ ) is equiangular
3) (PI’CM| le) is equiangular

4) The four subspaces Pz’ Pl’ M, P2’ Pl’ ‘M, PZ’C Pl’ M, PZ’C Pl’ ¢M are mutually or-
thogonal.

With M = P,P,_;... P,M; this gives a definition of the equiangularity of
(Py, ..., Po| P/, P)). If (M| P/, P]) is equiangular, then the quantity

2
1Py P
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where ¥ is a unit vector in M, is independent of ¥. We denote it by p(M | P/, P))
and p(Py,..., P,| P/, P2’) respectively.
We have the following

Theorem: If (Py,... ,PmIP’,Pz’ ) is equiangular, then
PPy, ..., Pyl P, P))=p(Py, ..., Pyl P)- p(Py,..., Py, P|| P)) €))
and
p(Py, ..., Py|P))=p(Py, ..., Py|P],P))+p(Py,..., Py P, P))  (2)

The generalization to an arbitrary number of events in the outcome is straightfor-
ward.

5.13 A Principle of Equiangularity

The arguments in section 12 make it natural to assume that the transition proba-
bilities in any real course of events can be calculated from a wave function even
if it is not uniquely determined by the initial conditions. The systematic study of
this independence of the exact form of the wave function lead to the concept of
equiangular sequences of projections. We have also given arguments for the as-
sumption that any course of events can be described by (a sufficiently number of)
our basic events, and that thus the description by means of equiangular sequences
of projection is generally applicable.

On the other hand, the condition of equiangularity puts strong restrictions on
the possible choice of sequences of projections. Thus, if we build our theory on
equiangular sequences, we automatically get a strong restriction on which courses
of events are possible. Thus a course of events e/, ..., e/, is only possible if it
is contained in a process (ey,...,enle], ..., e;) corresponding to an equiangular
sequence of projections. Similar conditions can in turn be prescribed for ey, ..., e,
and for the complete sequence ey, ..., e, ei, e

If we now introduce a “principle of equiangularity” stating that the only pos-
sible courses of events are those corresponding to equiangular sequences of pro-
jections, this principle will act in a way similar to that of an equation of motion in
classical theories, whose principal purpose also is to restrict the possible courses
of events. A restriction on the possible sequences of events is suitable in view of
the arbitrariness problem discussed in chapter 1 and 3.

A simple example of (one-step) equiangularity is given by a careful discussion
of scattering by considering wave packets (instead of plane waves).

In an incoming stream of particles a single particle can fit many wave functions
and they all give the same probability for the particle, as scattered, to come out
in a special direction (differential cross section). In the language of the present
theory this is characterized by the term equiangularity.
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5.14 Space Localizations as Basic Observables

Although we have proposed a strong restriction on the possible sequences of events
by means of the principle of equiangularity, there still remains an arbitrariness of
observables if they can be chosen as arbitrary projections.

We use the Heisenberg picture to represent our projection operators. However,
e.g. a space localization event is always associated to an instant of time and it is at
that time the corresponding operator has the simple representation as the projec-
tion on the set of all wave functions vanishing outside the actual space region. In
the Heisenberg picture this operator is represented by its transformation accord-
ing to the time-dependent Schrodinger equation to some other fixed time. This
transformed operator has a very complicated not explicitly expressible form. It
cannot be given any interpretation as a physical event at that time. Thus, what
fixes the time of an event represented by a Heisenberg picture operator is that it
has a special very simple form when transformed back to this time.

On the other hand, if we have no prescribed restriction on allowed operators,
then the above mentioned transformed operator could in principle be used to rep-
resent an event at that time. This obviously leads to a complete arbitrariness on
at what time an event has occurred. It is exactly this arbitrariness which has lead
to the Schrodinger cat paradox. There, the initial state, which at the initial time
has an obvious physical interpretation, is transformed to a later time where it cor-
responds to a physically meaningless state. (The projection operator projecting
on this state is a physically meaningless observable). What ultimately solves the
problem is the restriction of the operators describing observables to a very special
simple class of operators having an obvious physical interpretation. Thus we must
determine such a class.

The simplest possible operators are the projections corresponding to space lo-
calization. If any operators have a simple obvious interpretation, the space local-
izations must be among them. On the other hand, the arguments in section 11 has
made it plausible that, due to the ultimate macroscopic character of any descrip-
tion of a physical system, they are sufficient if we use sufficiently many of them
at several instants of time. E.g. the momentum and velocity of a particle can be
determined by space localizations at two different times.

We propose the space localizations to be the basic observables of our theory.
They are the simplest ones possible and they are sufficient for the description of
arbitrary courses of events.

It is an advantage to have the basic formulation of a theory as simple as possi-
ble. The restriction to space localizations means that projection operators corre-
sponding to simultaneous basic events always commute. This gives an important
simplification in the handling of sequences of events, some of which may be si-
multaneous. The order between simultaneous events is then irrelevant.

The restriction to space localizations might seem rather impractical. Its main
purpose is however to establish a general, simple and consistent theory. With this
general theory as basis, we can define other suitable auxiliary quantities and de-
rive relations between them. It is the first task of the development of the theory to
introduce definitions of such important physical quantities as energy, linear mo-
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mentum, angular momentum, etc. However, it is important that these auxiliary
quantities are introduced by means of definitions and not as extra assumptions.

5.15 Confidence Estimates

There remains a problem to be solved before we have a consistent theory. As
was pointed out in the introduction, a wave function initially localized to a finite
space region, will generally spread out in space in such a way that it cannot be
localized exactly to any finite region at another instant of time. If we restrict our
projections describing basic observables to space localizations, we cannot expect
the condition of equiangularity to hold exactly. We can however expect it to hold
approximately with very high accuracy.

We shall say that a projection operator P is e-equiangular with respect to the
subspace M, if

|PP/ 12— |1PP"|?| <& (1

for any unit vectors ¥/, ¥” in M. We denote by p(M|P) any of the numbers
|| P¥|* where ¥ is a unit vector in M. Thus p(M | P) is an approximate quantity.
It is only defined to the accuracy €. If € is very small, however, it has a practically
well-defined value. This definition of e-equiangularity can easily be generalized
to arbitrary sequences (P, ..., Pm|P1’, P

Events with probabilities greater than 1 — & can be considered as practically
certain and events with probabilities less than € can be considered as practically
impossible if € is very small. The use of € means essentially that we replace exact
localization statements by confidence estimates. If e.g. (M |P) is e-equiangular
and p(M|P) > 1 —¢, then

|IPPI>>1-2¢

for any unit vector ¥ in M which is a confidence estimate for the localization of
¥ to the space region R associated to P if P is a basic event of space localization.

Thus, the considering of confidence estimates constitutes the mathematical tech-
nique, which finally makes the simple direct theory using successive space local-
izations possible.

5.16 Conclusion

We have thus obtained a theory in which the basic concepts are events (express-
ing space localizations) and probabilities. It describes general courses of events
in the (objective) physical reality. It describes courses of events and their initial
conditions in a unified way, (i.e. by the same kind of events). The events establish
an immediate one-to-one correspondence between the theory and the reality. The
probabilities also have an obvious interpretation (the ordinary frequency interpre-
tation).

pleg,... ,emle;, ..., e}) is the probability for the course of events e;, ..., e, under
the given initial conditions ey, ..., ep,.
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Beside this conceptual, kinematical, structure we have a dynamical structure
which establishes the mathematical representation of the events and probabili-
ties and their relations. Thus, the events are connected to projection operators in
the Heisenberg picture (here the underlying time-dependent Schrodinger equation
comes in) and the probabilities p(ey, ..., ep| e’1 ,...,ep) are only defined for a certain
class of possible processes

(e1,....emle], ... ep)

namely those which correspond to e-equiangular sequences of projections.
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Part 11

Axiomatic Formulation

59



Introduction to Part 11

In the preceding chapter we have given a “derivation” of the confidence theory. It
was based on

1) The assumption that ordinary quantum mechanics, consisting of the Schro-
dinger equation together with the primitive original statistical interpretation
(“interpretation 17 of chapter 1), is essentially correct.

2) Some general “physico-logical” principles expressed in sections 5.4 and 5.5
(and reformulated in section 6.2 below).

Since the confidence theory is heuristically derived from the ordinary theory,
the two theories should be essentially equivalent with respect to problems and
questions which can be formulated and treated in both theories.

The derivation can only be heuristic since the starting points are not fully clear
and are not completely formalized. One purpose of the confidence theory is to
propose a completely formalized alternative to the ordinary theory. We shall give
a brief description of an axiomatic formulation of the confidence theory in chapters
6 and 7, referring to (1) for technical details. For reference purpose, definitions
and theorems which are cited form (1) are given the same numbering as in (1).

Having established an axiomatic formulation of the theory, the further devel-
opment of the theory is a deductive and in principle a pure mathematical task. A
first step on this way is taken in (1).

One central concept of the confidence theory (summarized in section 5.16 above)
is that of equiangular sequences of projections. From this concept it is convenient
to extract another concept, which we shall call stochastic event structure, express-
ing in a way suitable for our purposes the general rules of probabilities. This con-
cept constitutes in a sense the concept of a general indeterministic physical theory.
It can be motivated from very general arguments. It can also be considered as a
general axiomatization of the concept of “causality” (See section 6.4, comment
on the condition 3 e) of definition of stochastic event structure.)

Another central idea of the theory, that of confidence estimates and confidence
levels, implies a limitation of (the accuracy of) the theory expressed within the
theory itself. This shows the importance of the concept of approximation and
leads to the general concept of what we shall call a self-limiting theory.

Thus one can extract a general part of the theory which is independent of the
Hilbert space formalism of quantum mechanics. This general part is formulated in
chapter 6, leaving the concepts and postulates specific for “Hilbert space” quantum
theory to chapter 7.
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Chapter 6

General Principles of
Deductive Theoretical Physics

6.1 The Concept of a Deductive Physical Theory

We shall use the common term “mathematical structure” for a system of sets, map-
pings, etc. constituting the basis of a mathematical theory. The stipulation of a
mathematical structure means a set theoretical way of formulating an axiomatic
theory, which is convenient also for (axiomatic) physical theories for two reasons.
Firstly, it is in concordance with notations and methods in pure mathematics and is
thus the natural one to use if we want to apply the mathematical method to physics
and, secondly, it emphasizes and makes definite the conceptual part of the theory.
We state the following general

Definition: A (deductive) physical theory is a mathematical theory built on a
mathematical structure 4 together with a correspondence between a set ¢, within
the structure 7 and a set ¢,, of “physical observables” describing a certain well-
defined part of the physical reality. This part of the physical reality, which is
described by the theory, is called the scope of the theory.

The mathematical part of the theory consists (as any mathematical theory) of a
set of definitions and proved theorems concerning the structure 4 That the theo-
rems of the theory are rigorously proved is synonymous to saying that we use the
“deductive method”.

The physical part of the theory consists merely of the correspondence or “iden-
tification” of elements in the sets ¢, and ¢,,. In the next section we shall give
some “principles” which all have the purpose of making this identification (the
“interpretation” of the theory) unproblematic.

6.2 Principles of Interpretation
The following principles of interpretation are stated here in order to stipulate some

general attitudes taken to (deductive) physical theories and are intended to serve
as a general ground for the application of the theory.
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1) “Postulate of Objective Reality”: The observables in ¢, describes in an
objective way an objective physical reality. Thus we postulate the existence
of an objective physical reality. We also restrict the theory to describe only
this part of the reality. Subjective phenomena are outside the scope of the
theory.

2) “Principle of One-to-one Representation”: The set ¢, of observables de-
scribing the physical reality is mapped in a one-to-one way on the set ¢, of
“observables” in the theory 4

3) “Principle of Trivial Interpretation”: The observables in ¢, shall have a
completely obvious, indisputable meaning in the physical reality.

4) “Principle of Complete Conceptual Axiomatization”: The set ¢, shall pro-
vide a complete description of any possible physical situation within the scope
of the theory. Any other physical quantities of interest should be defined in
terms of the elements of ¢,, and the corresponding elements of ¢, by means of
mathematical definitions in the theory built on 4 Any description of a phys-
ical situation is thus ultimately reduced to and described by elements in ¢,

()

We shall call the elements in ¢, and ¢, “basic observables”. Other concepts,
which are defined in the theory and which have the character of observables will
be called “derived observables” or “derived quantities”.

Beside the set ¢, in the structure 7 we have in 7 a set of relations between the
elements in ¢, and ordinarily also some other auxiliary concepts in 4 These rela-
tions constitute the “basic physical laws” of the theory. We shall generally refer
to them as the “dynamics” of the theory. These relations are very important, not
only by giving the properties of a system considered, but also in connection with
the interpretation of the theory. It is through them that the properties of the basic
observables are manifested and it is thus ultimately through these relations that
the basic observables gets their meaning. We state this in the following principle.

5) “Principle of Complete Relational Axiomatization’ or ‘“Principle of Self-
explanation”: The structure sshall contain sufficiently many relations (laws)
to completely give the meaning to the basic observables.

In any application of the theory we have to make some assumptions on the
environment of the limited system under concern (the object system). These as-
sumptions generally appear in the form of initial and boundary conditions, see
section 6.4. For discussion of boundary conditions we refer to (1). Two important
consequences of the preceding principles are the following.

1. Object system and environment are (ultimately) described by the same set of
basic observables.

2. The relations between object and environment are given by the physical laws
in 7

A theory satisfying all the preceding principles will be called a “closed the-
ory”. One is often interested in studying a separate part of a theory which, when
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formulated separately, does not satisfy principle 5) above. An example of this is
the study of the functional relation between a finite number of physical quantities
for a given system such as e.g. the volume, pressure and temperature of a gas.
Such “open theories” can of course be handled deductively but should ultimately
be embedded in a closed theory.

6.3 Events as Basic Observables

In the following we shall chose as our set of basic observables ¢,a set E, of events.
By an event we shall mean a formal statement about the physical reality of such a
character that it can be either true (occur) or false (not occur) or undefined/irrel-
evant depending on the real situation. This means that if e is an event, then “not
e”, which we shall denote by —e, is also an event such that if e has occurred, then
—e has not occurred and vice versa. If e is irrelevant then —e is also irrelevant.

6.4 Stochastic Event Structures

To every element (“event”) e in the set E, below, there is defined another element
—e in E, (with the intended interpretation “not e”’). We introduce the notation e to
mean any of the two elements e or —e.

Definition I1.1:1. By a stochastic event structure we shall mean a structure v =
(E,,—,T,p) such that

1) E, is a set, whose elements will be called events. To every element e in E,, is
associated another distinct element —e in E, such that —(—e) =e.

2) T is a set of ordered (m,n)-tuples (el,...,em|e’1,...,e;,), m,n=1,2,3,... of
events in E, such that if (el,...,emlei,...,e;l) is in T, then so is
(e, ... ,e,,,le_z;’, ...,gl’,’) where e”, ... ,el’,’ is any subsequence ofe;, ...,epand e”

equals ejor—e; forevery j=1,...,p. The elements in T are called processes.

3) pis a function from T to the closed interval [0, 1] such that

a) if(el,...,emlei,...,e;,) isin T, then
Y. pleg, ... ,e,,lgi, ....en) =1 where the sum is over all 2" choices e_z;. = e}
or —e;., j=1,...,n. (We write p(el,...,em|ei,... ,ep,) instead of
p((eq, ... ,emle;, ..., e})) for the value of the function p for the argument
(el,...,em|ei,...,e;,) inT).

b) if (el,...,emle;,...,e;l) isin T, iy,...,i, a subsequence of 1,...,n and
ei’, sep the corresponding subsequence of ei, ...,eh, then
pley,... ,emlei’,... ,el’,’) =Y pley,... ,emle;, ...,e}) where the sum is over
all gi,...,g;, such that gl’( =e}’ iftk=i;,j=1,...,p.

c) p(el,...,em|ei,...,e;n)=0 ifel = —e} for some i, j.

d) if(el,...,emle;,...,e;,,e;’,...,eZ)isinTandp(el,...,emle;,...,e;)nonzero,
then
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(el,...,em,ei ...,e;,lei’,...,el’c’)ls in T and

p(el,...,emlei,...,e;,e’l’,...,el’(’)=
=p(e1,...,em|ei,...,e;,)-p(el,...,em,ei,...,e;,|e’1’,...,e;c’).

e) if (ey,...,eple!, ... eh) and(ei’,...,el’(’,el,...,emlei,...,e;,) arein T, then,
p(ei’,...,e,’(’,el,...,emle{,...,e,’q)=p(e],...,em|e;,...,e;,). (See (1).)

In atuple of the form (eq, ..., ep| ei, ....eh), (eq,...,ey,) will be called the “premise”,
(ef,...,ep) will be called the “outcome” and p(ey, ... ,emlei, ...,ep) will be called
the “conditional probability” or shorter “p-value”. It is sometimes necessary to
consider tuples of this form, without assuming them to be elements in T. We
shall call such tuples “formal processes”. An ordered tuple (eq,...,e,) of events
will be called a “course of events”. For a process (eq, ..., e, |ei ,...,e}), the premise
(eq,...,ey) will, in certain discussions, alternatively be called the “initial condi-
tions” of the course of events (e]. ..., e;). We shall in the following use the notation
E,E',E,,... for ordered tuples (sequences) of events in E, in order to get shorter

notations. Thus, e.g. if E =(ey,...,ey), E’ =(e;,...,e,’1), E” =(e;’,...,e,’1’) and e
is in E,, we shall use the notation (E, e, E’'| E”) instead of
(el,...,em,e,e’,...,e,gle;’,...,e,’{) and so on. We write E; C E, if E; is a subse-

quence of E, . We denote by E any of the 2" sequences E = (ey,...,e,) Where
E=(eq,...,ey).

Except for condition 3e), the stochastic event structure expresses ordinary rules
for conditional probabilities. Condition 3e) has another character. It expresses a
kind of completeness of the premise. The probability p(E|E’) is not changed if
we augment the premise with further events E” previous to E i.e. p(E",E|E’) =
p(E|E’). (E" in (E",E) is said to be “previous” to E since, as we shall see in
the next section, the ordering of events in processes is to be connected with a
time-ordering). This completeness gives a “character of physical causality” to the
relation between premises and outcomes and to the corresponding probabilities
p(E|E’) of a stochastic event structure. (Note that 3e) is the only condition in the
definition of a stochastic event structure with direct reference to the ordering of
the events.) Thus a stochastic event structure is, beside being an axiomatization
of probability, also an axiomatization of the concept of “causality”, generalizing
the ordinary “deterministic” causality to what we shall call “stochastic causality”.

The stochastic event structure constitutes a general framework for making pre-
dictions or inferences (both deterministic and stochastic) on events at certain in-
stants of time from other events at preceding instants of time (initial conditions)
and from other simultaneous events (boundary conditions). (Boundary conditions
are discussed in (1)).

That the mathematical structure of our physical theory has the form of a stochas-
tic event structure expresses the fact that the basic laws of nature (as considered
by the present theory) has an irreducible element of indeterminism.

The ordering of events in a process (ey, ... , €| ei, ..., e}), will be connected with
a time ordering (see next section). Thus there is an asymmetry between forward
and backward time direction already in the basic concepts of the theory. This gives
to irreversibility a status of fundamentality in the present formalism.
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6.5 Time-ordering and Time

Definition I1.3:24. By a time-ordered stochastic event structure we shall mean a
structure

y=(E,,—,T,p,|) where (E,,—,T,p) is a stochastic event structure and | is a re-
lation e |e, between elements e, e, in E, (not supposed to be transitive!) such
that

1) If e|e; then ey |es
2) If(el,...,em|ei,...,e;,) isin T, then
a) ejlejifi<j,i,j=1,....m
b) e[f|ej" ifi<j,i,j=1,....n
c) e,-|e} foralli=1,...,m,j=1,...,n

3) If (E1|Ey) and (E[|E}) are processes in T" and EJ is a permutation of E;
(contains the same events) and E/ is a permutation of Ej, then p(E;|Ej) =
P(E{|E)) (See (1).)

A sequence E = (e, ...,e,,) of elements in E|, is called time-ordered if ¢;|e; for
everyi,j=1,...,nwithi <.

For “instantaneous events” we have associated to the events e a value f(e) of
the time variable. e;|e, then simply means #(e;) < f(e;). A more general time
ordering, suitable for relativistic theories, is defined in the next section.

6.6 Space-time Localization of Events

Definition I1.4:31. By space-time we shall mean R* considered as R3x R! . For
a point X = (x, t) = ((x1, X3, X3), 1) = (X1, X2, X3,1) in space-time, x = (xy, X5, X3)
will be called the space coordinates or components and ¢ will be called the time
component or simply the time. We define a time-ordering relation | on R* in two
different ways.

a) “pure time-ordering”: for X’ = (x’,#’) and X” = (x",t”) in R* we define
X'| X" tomeant’ <t”
b) “relativistic time-ordering”: for X’ = (x; , xé, xé, t")Yand X" = (x’l’,xé’, xé’, t")
in R4 we define X’| X" to mean that not both
I — 2 I — )2 I — M2 (4 — #1)2
(e} = x4+ () = x))*+ (xf —xf)"— (' —1")> <0
and t’ >1".

In both cases a) and b) we define R’|R”, where R’ and R” are subsets of R4,
to mean that X’/|X” for any points X’ in R’ and X” in R”. (See (1).)

Definition I1.4:32. By a space-time localized stochastic event structure we shall
man a structure
(EO’ > T,P, I, C) SuCh that
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1) (E,,—,T,p,|) is a time-ordered stochastic event structure

2) Cis arelation between elements e in E, and regions R in R* = R3 x R! such
that

a) e C R implies —e C R
b) e C RC R’ implies e C R’
c)eC Rand e C R’ implieseC RN R’

3) ejley iff e; C R; and e, C R, for some subsets R; and R, of R* with R |R,,
where the latter |-relation is given by definition 11.4:2 1 or 2. (See (1).)

There should be no risk of confusion in using the same symbol | for the relation
ejle; and R |R,. (By a “region” we shall generally mean a measurable set whose
boundary has measure zero).

6.7 Localization of Particles as Basic Events

Let X = R3 denote the 3-dimensional configuration space. For a system of n
distinguishable particles we define our basic events as pairs (£2,7) where ¢ is an
instant of time and £ is a region in the 3n-dimensional configuration space X".
The event e = (£2,7) means that at time ¢, the n-particle system is localized to £2.
We define the operation — (“not e”) by —e = (X" — ,1) if e = (2,¢). Thus —e
means localization to the complement region X" — €.

For quantum-mechanical particles, some of the n-particles may be identical
and thus indistinguishable. We shall then restrict the region £2 to be symmetric
in the corresponding coordinates i.e. if particles i and j are identical and x =
(-5 Xjy..Xj,...) is a point in £2, then also x’ = (..., xj,...,X;,...) isin .

For classical particles these events have a quite obvious meaning. The n-particle
system has at every time ¢ a well-defined configuration x(¢) = (x;(?), ..., x,(t)) €
X" where x;(¢) is the position (in R3) of the i:th particle at time ¢. (We shall
call x(7) as a function of 7 the “orbit” of the system). e = (£2,¢) then means that
x(t) € Q.

For quantum-mechanical particles this point-interpretation is meaningless. In-
stead we consider the localization to space-regions as a fundamental, axiomatic, ir-
reducible property of “quantum-mechanical particles”. For a quantum-mechanical
n-particle system, the localization to symmetric region £2 in X" is a fundamental,
irreducible property of the n-particle system. It cannot be reduced to one-particle
Statements.

This irreducibility is an expression for the “non-classical” properties of quan-
tum systems and an expression for “the indivisible unity of quantum systems” (see
Bohm (2)). Having once freed ourselves from the classical point ideas, the mean-
ing of these localization statements should be quite obvious and immediate. The
localization of a physical entity to a region in space is perhaps the most basic of
our everyday experiences and its generalization to localization to regions in X"
is plain. As an example showing the immediate meaning of many-particle local-
izations we consider an electron (particle 1) and a proton (particle 2) confined
to the 3-dimensional region £2. Then the region £, C X2 = X X X defined by
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£, = {(x1,x); x| € 2,x, € L, |x] — x| < r} expresses that the particles are
confined to the region £ C X and that the electron is bound to the proton (in some
way!) to form an “atom” of radius less than r.

The preceding definition of events presupposes a given total number of par-
ticles. In order to make statements on the mass-distribution in a region £’ of
X irrespectively of the situation outside £2’ we shall generalize the formalism to
variable number of particles. Consider for simplicity the case of only one kind of
quantum-mechanical particle. (The generalization to several kinds of particles is
straightforward). A basic event e is then defined as

e=(£,1)
where
'Q = {Qn }Zo:()
is a sequence of regions
Qo, 21, £, ...

and where €2, is a symmetric region in X”. It has the meaning: “for every n: if
the total number of particles is n, then these n particles are localized to €2,”. We
make the convention that £2,, = @ means that the total number of particles is not
n. One can then express statements like “at time ¢, the total number of particles in
the 3-dimensional region €2’ is m” or lies in the interval [m;, m,] or “at time #, the
center of mass of the particles in £’ lies in 2", (£2’, 2" 3-dimensional regions)
etc.

The two mentioned events are examples of events e localized to the region £’
in X and we shall write e C £2' in this case. Thus our structure for localizations of
many-particle systems implies a structure with momentaneous space localization
of events (to X = R%. In a relativistic theory we shall define E, as the set of
all events e which are of the form (£2, 7) in some system of reference (inertial
system), which can be different for different e. The relation of instantaneous space
localization of events then defines in an obvious way a relation of localization of
events to space-time regions and a relativistic time-ordering of events. An event
e= (02,1, Q= {.Q,,};":O, localized to the 3-dimensional space region £’ i.e.
e C £2', is then localized to the space-time region £” in R* if 2’ x {t} C 2”. We
shall write e C £2” in this case. (There should be no risk for confusion in using
the same relation notation C for e C £’ with 2’ C R3 and e C " with Q” in
space-time R*

6.8 Derived Events

We shall now discuss how the set E, of basic events in a stochastic event structure
can be extended to a set E/ of “derived events”. We are sometimes interested to
consider not a single course of basic events E = (e, ... ,e,,) but some more general
aspect of the physical situation satisfied by a set { £y, ..., E,} of such sequences.
This corresponds to a coarse statement about the physical situation. We shall call

67



such a statement a “derived event”. It can be expressed as a logical disjunction

n
e=E1VE2...VEn=\/Ej
j=1

of the sequences E|, E,, ... of basic events in the set, stating that E; or E, or ...
or E, has occurred.

When using such disjunctions we have to take into account the following “log-
ical tautology”. (e;,e,) means that e; and e, has occurred (i.e. a logical con-
junction e; A e;). Then obviously the statement “(ej,e;) or (—ej,e;)* must be
equivalent to just stating e,. More generally, if E” = (e, ..., e}) is a subsequence
of E =(eq,...,e,) then a set of sequences of the form E’ is equivalent in this way
to some set of sequences of the form E.

Let (E,,—,T,p) be a given stochastic event structure. If E is the outcome of
some process in T', then every set of sequences of the form E defines a derived
event. We define the set E/ as the set of all such derived events with the above
mentioned equivalence taken into account. If (E’|E) is a process in T and E; =
{E}’ € E} is a derived event, defined by means of the events in E, then the tuple
(E’| Ep) will be called a derived process and we define

p(E'|E)) =) p(E'|E)

where the sum is over the E:s in E;. We shall denote by 7" the set of all such
derived processes.

This logic of events is completely in concordance with ordinary “classical”
logic, which is thus the general and the same basic logic for both classsical and
quantum physics. (All considerations of “quantum logic” are left outside.)

We call the events in E/ above “logically derived events”. Some of these logical
extensions of the set of events can be used to define what we shall call “dynami-
cally derived events”. For instance, linear momentum observables can, by using
the dynamics and considering the propagation of wave packets, ultimately be re-
duced to successive space localizations. All interesting dynamical quantities, i.e.
linear momentum, angular momentum, energy, electromagnetic fields, etc., can
thus ultimately be reduced to an underlying stochastic event structure of events of
space localizations.

The restriction to processes fulfilling this condition of ultimate reducibility
to stochastic event structures of space localizations is the basic principle of the
present theory. The basic motivation of this ultimate reducibility is that any, arbi-
trary complicated, experiment and observation of quantum phenomena is always
coupled to phenomena observable in our everyday macroscopic world. Thus quan-
tum physics is considered as a generalization of the dynamical rules of classical
physics described ultimately by the same observables of space localizations — not
as “another kind of physics”.
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6.9 Dynamics

Having identified the set ¢, of basic observables with the set E, of events of a
stochastic event structure (E,,—, T, p), we shall now discuss the dynamics of the
theory. Before we do this, we shall make a comment about the interpretation
of probabilities. One might think that also the probabilities, beside the events,
should be considered as basic observables with a well-defined, obvious interpre-
tation namely the frequency interpretation. It is of course quite possible to do
so. However, another attitude is possible. The frequency interpretation can be re-
duced to the identification of events with probabilities greater than a given level of
confidence 1 — € as certain events. Then our probabilities and the corresponding
“statistical inferences” are reduced to “deterministic inferences”. The probabili-
ties, still being physical observables and still having the frequency interpretation
are then considered as derived observables (defined by means of the p:s in the
stochastic event structure). Thus, despite the simplicity of the frequency interpre-
tation, we prefer, by an argument of “economy of assumptions”, this latter attitude.

It is important to note that this presupposes that we have equipped with the
theory a given level of confidence 1 —e. This will be further discussed in the next
section.

As a consequence of this attitude we consider the p-values in first hand, i.e.
when formulating the basic axiomatics of the theory, formally as auxiliary dy-
namical quantities.

We now state the basic task of dynamics as follows.

1) To determine which courses of events e, ..., e, are possible i.e. can occur in
reality.

2) To determine which deterministic inferences are true i.e. in which cases we
can infer that ey, ..., e, (or more generally a derived event E’ € E}) is certain
to occur provided that we know that some other course of events has occurred.

If our theory is given in the form of a stochastic event structure, then question 1)
will not be answered in the “absolute” sense but only relative to a given premise.
This is an expression for the fact that the theory is a local rather than a global,
cosmological theory. In any application of the theory, we have to make certain
assumptions on the initial conditions. We then ultimately have to assume that the
sequence of events describing these initial conditions is possible, without trying
to prove this from the theory.

Question 1) is then answered by the statement that ey, ... , e, is possible relative

to the premise ei, ... e, if it is outcome in the process (e’, ..., e}, |eq,...,e,) in T
with significantly positive p-value i.e. with p(e}, ... ey ey, ... e,) » €.

Question 2) is in first hand answered by assigning those processes
ej,....epler,....e, in T and more generally derived processes (ef,...,ep,|E) in
T' (E € E}), which have p-value greater than the confidence level 1 —&.

It is important to note, however, that we can generally infer (eq,...,e,) from
(e;, ...,en) when p(e;, ....ehler,...,ey) > 1—€ only provided we know or assume
that eq,...,e, is a relevant sequence of events for the actual situation. Within
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a general stochastic event structure we cannot generally infer from the fact that
p(ei, .o.,ehler,...,ep)>1—¢ethatey,...,e,is arelevant sequence of events under
the assumption . There might be other possible sequences (ef, ..., e;) which can
occur as outcomes of the premise (e/,...,e},) but which are incompatible with
(eq,...,e,). We shall say that a set of events is compatible if it is contained in the
outcome of some process. (e, ...,e,) and (e’l’ e ,el’,’ ) are said to be compatible if
they are subsequences of a common sequence which is outcome in some process.
Thus our deterministic, and generally also our stochastic, inferences generally has
to be studied within some given set of compatible events. We refer to (1) for further
discussion of compatibility.

There is, however, another stronger kind of deterministic inference. The dy-
namics restricted by the set T generally puts very strong restrictions on which
sequences of events that are possible as outcomes of given initial and boundary
conditions. These restrictions may then be so strong that the above mentioned
ambiguity in choice between mutually incompatible outcomes more er less dis-
appears. In this case, the initial conditions determines which outcome events are
relevant, and in the case of p-value 1 —¢, we can unconditionally infer the outcome.

The fact that not all events are compatible under a given premise means that
only a limited set of events are relevant for the actual situation. This means that
all other events are neither true nor false but just irrelevant and undefined. This
is a characteristic property of quantum theory which does not occur in classical
theories.

That not all events are compatible — simultaneous relevant — might seem to be
an apparent quantum characteristic when seen on the microscopic level. There
it is connected to what is characterized by such notions as complementarity, the
uncertainty relation etc. which stands in a manifest contrast to the classical concept
of event as point in (more general subset of) a given state space of a given system.

However, compatibility/incompatibility is a general, basic notion in the theory
of stochastic event structures. It is, in fact, also a common experience in our ev-
eryday macroscopic world. This also shows the deep connection between “macro-
scopic physics” and “quantum phenomena” as proposed by the present theory.

Having established the probabilities as physical quantities, we can add as the
third basic task of dynamics the following.

3) To determine the probabilities for those possible courses of events for which
deterministic inference is not possible.

The T and p of a stochastic event structure constitute what we shall call general or
abstract dynamics. Several general concepts and questions can be handled within
a general stochastic event structure without referring to the detailed specific dy-
namics of the theory. To get a complete theory we must of course add to this basic
structure extra rules which determine the set T and the values of p. Let us mention
briefly four examples of such theories.

Example 1: Classical (Newtonian) n-particle mechanics
The set E, is defined as the set of events of the form (£2,¢), 2 C X", as defined
in the beginning of section 6.7 above.
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The dynamics is given in the form of equations of motion determining which
orbits x(#) are possible. An event e = (£2,¢,) has occurred for a given orbit x(¢) if
x(t1) € £2. We define the set T} as the set of all (r, s)-tuples (eq, ... ,e,lei, ce.,eh)
of events e; = (2;,1;),i=1,...,r, el = (.Qi’,tlf), i=1,...,s such that

Dn<.. < <1< <1

2) All ei, ..., e} has occurred for every orbit for which all ey, ..., e, has occurred
and define p(e;, ...,e,lei, ...,e4) =1 for the tuples in T}. We then define T
as the set of all tuples (el,...,erle{,...,eg) with (el,...,erle{,...,eg) in T;

and define p(el,...,erlei,...,eg) = 0 for the tuples in T not in 7;. Then
(E,,—,T,p), is a “deterministic” stochastic event structure or what we call
a “deterministic event structure”. Obviously a knowledge of the structure
(E,,—,T,p) means a complete knowledge of the dynamics of the system.

Example 2: A classical field theory described by a hyperbolic system of differ-
ential equations

Let f(x,?) be a scalar or vector-valued field amplitude which as function of the
space variable x € R3 and time ¢ satisfies some linear hyperbolic field equation
such as e.g. the acoustic wave equation or Maxwell’s equations. If we suppose f to
be a continuous function of x and ¢, then the field in a finite space region £ C R3
at time ¢ can be described approximately with practically sufficient accuracy by
using a finite sequence of events e;, i = 1, ...,n defined by statements of the form
| f(x;,t) —a;| < 6; where x; € 2. Now the values of the field at one time ¢ is
uniquely determined by the field and its time derivatives at another previous time
t' <t within a space region £’ which covers the backward light cone or influence
cone projection of 2 at t’. Instead of time derivatives we can use the field itself at
two different times #’ and #”. The field at time ¢’ and " can then be described by
a similar sequence of events ei, ...,eh. We define (e’l, ....ehler,...,ey) €Ty and
p(e;,... ,emley,....e,) =1if ey, ..., e, are determined from e!’,... ,e) by the field
equations. We can then extend T to a T in a way similar to the previous example
to get a “deterministic” stochastic event structure.

The approximative approach on evolution equations in example 1 and 2 is nat-
ural both from a conceptual and technical point of view since it emphasizes the
stability properties of the equation of motion.

Example 3: Non-relativistic quantum mechanics with electrostatic interac-
tion

Example 4: Relativistic quantum electrodynamics

The set E, for these examples was defined in section 6.7. The dynamics of these
theories will be discussed in the next chapter.

6.10 Self-limiting Theories

Theoretical physics comprises a lot of different theories. Some of them are of a
very general character such as examples 1-4 of the preceding section, but most of
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them are very special theories concerning very special systems or phenomena. The
ultimate goal of deductive theoretical physics is not only to describe and handle
the special theories in a deductive way but also to use rigorous deductive methods
in the discussion of the relations between theories and in the derivation of one
theory from another as an approximation.

If we want to derive rigorously a theory 4 from another theory 7, we have to
derive, not only the theory 4 itself, but also rigorous estimates on the accuracy of
the quantities and relations in the theory 4 and rigorous conditions for the validity
of the theory 4.

Deriving e.g. classical mechanics rigorously from quantum mechanics, we ob-
tain together with the classical differential equations of motion in some form also
certain limits on the accuracy due to the uncertainty relations. Using the confi-
dence theory formalism based on sequences of events, this derivation leads in a
natural way to the formulation of the classical equations in the form of what we
shall call approximative differential equations, which are differential inequalities
rather than exact differential equations. This gives a formulation of classical me-
chanics in the form of a theory containing within itself, in closed form, its own
limitations due to quantum mechanics.

This leads us to consider theories which contain formally within themselves, at
least in some respects, their own limits. We shall call such theories “self-limiting
theories”.

In the confidence theory formalism, this formulation of classical mechanics
as a self-limiting theory comes out as special instances of the general courses
of events determined by a quantum-mechanical stochastic event structure. Thus
classical mechanics in this form is a part of (or a special case of) the more general
quantum-mechanical theory. This way of looking means a considerable concep-
tual unification of theories.

The occurrence of a given confidence level 1 — & with € > 0 in the basic for-
mulation of the theory implies a general limitation of the theory. Thus quantum
mechanics as a whole is, in our formulation, a self-limiting theory.

We have seen how classical mechanics as a self-limiting theory comes out as a
special case of the more general quantum-mechanical theory. This more general
theory, however, does not reduce this self-limiting of the theory. We still have
in quantum mechanics the same limits concerning particle motion caused by the
uncertainty relations. Thus, in this case, the self-limiting of the theory has an
absolute character.

It is not easy to see how the self-limiting quantum-mechanical theory in turn
could come out as a special case of some other more general theory. In any case
this is not necessary. We can and shall use the confidence theory as it stands as
an “absolute” self-limiting theory irrespectively of its relation to any other more
general theory. Thus, with a suitable small € we can, with sufficient accuracy,
handle a large number of physical situations and the set of all these situations
constitutes the scope of the present theory.
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Chapter 7

Hilbert Space Quantum
Dynamics

7.1 Quantum-Mechanical Stochastic Event Structures

We shall now show how one can express quantum mechanics as a dynamics on a
stochastic event structure. We shall then complement the general structure
(E,,—,T,p) of a stochastic event structure by extra mathematical structural ele-
ments and rules having principally no other purpose than to specify the set T" and
the values of p. The conceptual or “kinematical” part of our quantum-mechanical
theory is already given by specifying E, to be the set of space localization state-
ments for quantum-mechanical particles defined in section 6.7 above.

The specific dynamics of quantum mechanics is determined by the ordinary
mathematical formalism of wave functions satisfying a Schrodinger equation (a
Schrédinger-Schwinger-Tomonaga equation in the relativistic case). The connec-
tion between this formalism and the stochastic event structure will be made in
three steps. First we establish a representation of a stochastic event structure by
means of (orthogonal) projections in an abstract Hilbert space. Then we introduce
the concept of configuration space wave functions and a corresponding represen-
tation in terms of subspaces of such wave functions of the abstract events of space
localization defined in section 6.7. Finally, we connect the instantaneous events
at different times by means of the Heisenberg picture defined by the Schrodinger
equation. In the following we assume 4 = 1.

7.2 Equiangular Sequences of Projections

In the following we shall denote by P, P;, P, ... orthogonal projections in a given
Hilbert space .». M, M, ... will denote closed subspaces. Subspaces, not neces-
sarily closed, are denoted by N, Ny, .... P¢=1— P denotes the projection on the
orthogonal complement of the subspace on which P projects. We introduce the
notation P to mean any of P or P¢. R(P), the range of P, is the (closed) subspace
on which P projects.
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Definition III.1:1. Let P be a projection and N be a nonzero (not necessarily
closed) subspace. P is called equiangular with respect to N (or N-equiangular)
if

for any nonzero u, u’ in N, and the common value of || Pu||?/||u||? is denoted by
p(N|P). If N =0, any P is N-equiangular and we define p(N | P) =0. (See (1).)
Definition IT1.2:15. We say that the ordered sequence (P, ..., P,) is N-equiangular
if
1) For every integer i = 1,...,n, P; is equiangular with respect to all the 2/~!
subspaces P; | P; - Py N (where P, is either P; or Pf). If i = 1, this shall
mean that P; is N-equiangular.

2) All the 2" subspaces P, P,_; --- P; N are orthogonal.
If N = R(P) we shall also say that (Py, ..., P,) is P-equiangular. (See (1).)

Theorem II1.2:17. Suppose that (P, ..., P,) is N-equiangular, N nonzero, and
let (Py,...,P,) be any sequence with EJ- = P; or Pj?, Jj =1,...,n. Then, for any
integer i = 1,...,n, the quantity |[P,P,_, ... Pyull/|[u||, u nonzero vector in N, is
independent of u. (See (1).)

Definition I11.2:18. If P, ..., P, is N-equiangular and u a nonzero vector in N,
we denote the number || P,P,_ ... Piul|*/||ul|?, by p(N|P,,...,P,). If N =0, we
define p(N|P,...,P,) = 0. If N = R(P) we shall also denote this number by
p(P|Py,...,P,). (See (1).)

Definition II1.3:28. We shall say that (P/,..., P;) is equiangular with respect
to (Py,...,Py) (or (Py,..., Py)-equiangular) if (P/,..., P}) is equiangular with re-
spectto N = P, P,._; ... P,R(P;). Inthis case we then also say that the (m, n)-tuple
(Py,..., Pyl P/, ..., P}) is equiangular and define
p(Pp,...sPy|P!,....P))=p(N|P!,...,P}). (See (1).)

7.3 Stochastic Event Structures of Projections

Theorem II1.4:32. Suppose E is a set of projections, closed under the opera-
tion of orthogonal complement (i.e. P in E implies P¢ in E). Let T be a set of
(m,n)-tuples (P, ..., P,|P/,...,P)), m,n=1,2,... such that

a) all Pl,...,Pm,Pl’,...,P,,’ arein E
b) (Py,...,P,|P/,..., P))is equiangular
c) P,P,_; ... P,R(P)) is nonzero.
Suppose also that the set T' has the properties

d) if (Py,...,Py|P/,...,P;) is in T, then so is (Py,..., P,|P{,..., P}) where
Pl”, ..., P! is any subsequence of P/, ..., P/.

74



e) if (Py,..., Py|P/,... PP, ..., P) isin T and p(Py,..., P,)|(P/,...,P})is
nonzero, then (Pl,...,Pm,Pl’,...,Pn’|P”,...,Pk”) isinT.
Let p : T — [0,1] be defined as in definition II1.3:28 and let — P stand for the

operation of orthogonal complement —P = P¢. Then (E,—,T,p) is a stochastic
event structure. (See (1).)

Theorem II1.4:33. Let E be a set of projections, closed under the operation of
orthogonal complement. Let | be a relation on E such that

1) ifP1|P2, then£1|£2
2) if Pj| P, and P| Py, then P; and P, commute.

Let T be the set of all (m, n)-tuples of projections in E satisfying conditions a) b)
and c) of theorem II1.4:1 and the condition

3)if (P,...,Py|P/,....,P))isin T, then
a) P|Pifi<j,i,j=1,....m
b) Pl.’|Pj’ ifi<j,i,j=1,...,n
c) P,1PJ.’ foralli=1,...,m,j=1,...,n.

Define — and p as in theorem II1.4:32. Then (E,—, T, p) is a time-ordered stochas-
tic event structure. (See (1).)

7.4 Confidence Levels and approximate equiangu-
larity

The special projections representing events to be defined in the following sections
cannot in general be supposed to constitute sequences satisfying the condition of
equiangularity exactly. However, we can assume that they build sequences satis-
fying the equiangularity conditions approximately with a high level of accuracy.
Thus we have to generalize the results of the two preceding sections to the concept
of approximate equiangularity (e-equiangularity) associated to a level of confi-
dence 1 —¢.

Definition II1.6:39. P, is called e-equiangular with respect to N if
[Py’ ||2 = (| Pu” ||? < €

for any u’, u” in Ny with ||| = |[u"]| = 1.

If P, is e-equiangular with respect to N, we denote by p(NN{| P,) any of the values

of || Pyul|?, uin Ny, |lul| = 1.

If N; =0 we define any P, to be e-equiangular with respect to N and we define

p(N{|P)=0. If Ny = R(Py) we also say that P, is e-equiangular with respect to

P; and that (P;| P,) is e-equiangular and write p(P; | P,) for p(N|P,). (See (1))
Note that p(N{|P,) = p(P;| P,) is here an approximately defined quantity. It is

only defined to the accuracy €. For € = 0, the concepts of e-equiangularity and

equiangularity (0-equiangularity) (definition III.1:1) coincide.
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For the generalization to (m,n)-tuples (Py,..., P,|P/,..., P}) and for further
discussion we refer to (1.)

7.5 Wave Functions and Space Localization

As in section 6.7 above we first consider a fixed number n of particles. We also
assume for simplicity that all particles are of the same kind, having mass m and
spin s, the generalization to several kinds of particles being straightforward.

A space localization wave function is always defined relative to a certain in-
ertial system. By a “n-particle (configuration space), Schrodinger picture, space
localization wave function” we shall mean a complex valued amplitude

(X, a1,X0,00, ..., Xy, 0y, 1) ey

where ¢ is the time variable (in the given inertial system in the relativistic case).
x; € X = R3 is the position variable for the i:th particle and a; is a spin index for
the i:th particle. y is supposed to be symmetric or anti-symmetric with respect to
interchange of particles depending on if the particles are bosons or fermions.

For fixed ¢, y, as a function of the x;:s and «;:s, is a vector ¥(¢) in a Hilbert
space .«, with scalar product defined by

(P,(1), P, (1)) = Z/ wi(xp,aq,... . D (x,ap, ..., 0 d3x, ... d3x,

@
¥ () is usually assumed to be normalized so that
IPOI>=(FO),¥ ") =1.

Note that these “spin” indexes are introduced here quite formally as auxiliary dy-
namical quantities. The introduction of spin as a derived physical observable then
has to be done according to the principles of sections 6.2 and 6.8.

To every symmetric region £2,, in X" there corresponds a closed subspace M (£2,)
of ., defined by those functions u(x{,ay, ..., Xy, @,) in %, which vanish (almost ev-
erywhere) outside £2,, i.e. when x =(xy,...,x,) is outside £2,,. To the closed sub-
space M (£2,,) corresponds a projection operator which we shall denote by P(£2,,).

This can be generalized to variable number of particles as in 6.7. To every
sequence

Q={Q,)%,

of symmetric regions £2,,in X", n =0, 1,2, ... there corresponds a closed subspace
[se]
M@ =P M)
n=0

in the Fock space



where ) denotes direct sum of Hilbert spaces. The corresponding projection op-
erator in ., is denoted by P(£2). For n =0, .#;, is supposed to be a one-dimensional
Hilbert space and X0 = {x,} is a set containing one “dummy” element x,. The
“regions” {x(} and @ in X0 then correspond to the two subspaces .#, and #, — #
respectively.

7.6 Non-relativistic Quantum Dynamics Determined
by the Schrodinger Equation

For non-relativistic electrostatic interactions, a connection between the instanta-
neous n-particle wave functions ¥ (¢) at different times ¢, is given by the Schrodinger
equation
LA
dt
where H, is the ordinary n-particle Schrodinger operator (with electrostatic po-
tential between the charges g;

1 qiq;
H,=-Y LA+
" sz ! Z |X[—Xj|
i i<j

and where 4; is the laplacian operator acting on the i:th particle variables x;. The
Hamiltonian operator H,, defines a unitary operator

= H,¥,@®) ()

Un(t1,1y) = ezt H, )

in .#, such that
Wu(ty) = Un(t1,1)¥,(t)) (3)

The set of all equations (1) for n =0, 1,2, ... (with the definition Hy = 0) then
generates a corresponding Schrédinger equation

d¥ (1)

"1

=HY(1) “

for the time-dependent vector ¥(¢) in the Fock space ., and a corresponding
unitary operator
Uty ty) = el

in 4, satisfying
() =U(1,1)¥ (1)) &)

for every W (¢) satisfying (4).

The existence of the unitary mapping U with the property (5) shows that the
set of all time-dependent vectors ¥ (¥) in .« satisfying the Schrodinger equation
(4) can be considered as a Hilbert space .»/, with scalar product defined by

(P, W) = (P11, V(1)) W1, Pr €
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where the right member (which is a scalar product in .#,) is independent of the
choice of ¢;. The vectors ¥ in ./, can be represented by the values of W'(¢) (€ #y)
for some fixed value of 7 e.g. t = 0. This makes ./, isomorphic to .#4,. Operators
A in ., operating on ¥'(¢) at time ¢ can be represented by operators A’ in .#J, by

A’ =U(0,1)"'AU(0,1)

acting on ¥ (0), since U(0,1)"1(A¥(t)) = A’¥(0). This is the usual Heisenberg
picture.

We can now define a representation R, of the set E, defined in section 6.7,
of particle localization statements as a set » of projection operators in ., i.e. a
mapping

RO . EO = 7.

Every element e in E is of the form (€2, ) with Q2 = {.Q,,}z"zo, and we define
Ry(e) =U(0,)~1P(U(0,1) (6)

where P(£2) was defined in the preceding section.
Putting the constructions in sections 7.2 — 7.5 together we can now finally ex-
press our quantum-mechanical theory as the structure

JT= (EO’_’T’p?l’RO’E) (7)

which is a time-ordered stochastic event structure complemented with the repre-
sentation R of events by projection operators, together with the condition that this
shall constitute a structure of e-approximate equiangular sequences (“principle of
equiangularity”).

7.7 Covariant Wave Functions

Since the proposed theory is based on space localizations of particles, a comment
on how this is treated in the case of relativistic dynamics is necessary. Space lo-
calization is stepmotherly left undiscussed, in texts on quantum field theory where
the treatment is limited to scattering of plane waves. This might seem sufficient
for calculating the S-matrix in high energy particle physics. The proposed theory
aims at a general theory of classical and quantum phenomena in finite space and
time and, in due cases, take relativistic effects into consideration. A proper dis-
cussion of finite space localizations needs a discussion of wave-packets and their
approximate localization (confidence estimates) to finite space regions. The in-
stantaneous space localizations and the on them ultimately based descriptions of
the actual phenomena is only defined relative a special inertial system (the labo-
ratory system). This does not however, exclude the use of relativistic dynamics.
In a relativistic theory we have to consider two kinds of wave functions which
we shall call “space localization wave functions” and “covariant wave functions”
respectively. The two are connected with a one-to-one transformation and are thus
only different representations of one and the same vector in the Hilbert space.
The first wave function (amplitude) is connected with the space localization of the
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particles. The second, which has simpler relativistic transformation properties,
is convenient for the formulation of the relativistic interaction equations. (In a
non-relativistic theory we only need the space localization wave functions).

We shall restrict the discussion here to massive particles with spin zero. The
generalization to particles with other spin is more complicated and will not be
discussed here.

A relativistic wave function for a spin zero particle with mass m satisfying the
Klein-Gordon equation is given by

()= [ LKemitx a(ly )

where x = (X,1) is the space-time variable, k is a 3-dimensional momentum space

variable, k = (k, k%) and k% = Vm2 + k2. We denote this amplitude by &, since it
is covariant, i.e. transforms as a scalar under Lorentz transformations

However, @, as function of X is not the correct probability amplitude for finding
the particle in a given space region. This amplitude is instead given by

3% , -
D(x)= / dk_ok . ké/z -emikx . q(k) )

The statement that the particle is localized to the region £ C R3 at time # thus
means that @(X,t) vanishes when x & €. Thus our space localization events and
their corresponding projection operators Pg has to be defined by means of the
amplitude @;.

On the other hand, @, is needed for the formulation of the relativistic interaction
equation. This can be written in the interaction picture as a Schwinger-Tomonaga
equation. The Hilbert space is then a Fock space built on many particle amplitudes
@, see Schweber (8) Part Two, section 7. With the usual expression of the hamil-
tonian in terms of annihilation and creation operators, the interaction equation
results in a system of coupled wave functions @, for different particle numbers.

7.8 Relativistic Quantum Electrodynamics as a
Self-limiting Theory

One way of handling the self-energy problems of quantum electrodynamics is to
introduce a high-momentum cutoff in the interaction equations corresponding to
a non-locality in the configuration space variables. The annihilation and creation
operators occurring in the interaction hamiltonian density then simply means an
inner (scalar) product and an outer (direct) product, respectively, with the cutoff
function. This gives a simple formulation of the relativistic theory directly in terms
of wave functions and refutes the general misconception that relativistic quantum
mechanics must be based on quantized fields. With a cutoff it is possible to formu-
late a mathematically well-defined time-dependent Schrodinger equation for the
interaction in terms of the covariant wave functions. This leads to finite mass and
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charge renormizations, but the calculated (renormalized) results generally depend
on the cutoff.

However, if the characteristic length of the cutoff is small in comparison with
the characteristic length of our problem under concern (e.g. atomic dimensions)
then the results will be insensitive to the cutoff. The small dependency on the
cutoff can then be reinterpreted by saying that the calculated quantities are only
approximately defined, with an accuracy given by the cutoff and that this is an
expression for the limits of the theory. We can then accept the theory as a self-
limiting theory.This should reasonably be sufficient for a “low-energy quantum
electrodynamics” constituting a general dynamical basis for physics, except high
energy particle physics and cosmological gravitation.

A certain formal elegance of this theory is obtained if we interpret the charac-
teristic length of the cutoff (formally) as a fundamental length. Then this funda-
mental length has a function of limiting the accuracy of certain quantities, similar
to that of Planck’s constant.
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Part 111

Mathematical Theory
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Preface to Part I11

By a confidence estimate we shall mean an estimate of the form
SR luGOdx > (1 - )llul?

where u is a function in L2(R") and R is some region in R”. ¢ is to be thought of
as a very small number. A reason for using confidence estimates rather than exact
localization statements comes from the fact that a “one-particle wave function”
u; (¢, x), with time variable ¢ and space variable x in R3, satisfying the Schrodinger
equation and localized exactly at time ¢ = #; to a space region R; (i.e. vanishing
outside R;), will, according to the Schrodinger equation, generally spread out in
space so that it can not be localized exactly to any finite region R, at another time
t =t,. On the other hand we can under certain assumptions obtain that

r, luy (1, ) |2 d3x > (1 = ©)lluy (1)1

(Il ]| on the right side denotes the L2-norm) for suitable finite R, and very small €.

The following is a mathematical theory which describes solutions to the many-
particle Schrodinger equation by means of confidence estimates rather than mean
values, used in conventional quantum mechanics and quantum statistical mechan-
ics.

Quantum mechanics is not just the question of finding a solution to the Schro-
dinger equation. A physical course of events may in general contain stochastic
quantum transitions. Such a transition corresponds to a “collapse” of the wave
function i.e. a transition from one wave function to another. Therefore a general
course of events must be described by a sequence of solutions to the Schrddinger
equation.

We shall study sequences of interrelated closed subspaces of solutions. The
confidence estimates correspond to certain projection operators and the restric-
tion to certain sequences of such projections, called (approximately) equiangular
sequences, permits a unified description both of solutions and the correspond-
ing initial and boundary conditions by means of these projection operators. The
concept of equiangular sequences of projections can be considered as a general-
ization of the asymptotic concept of S-matrix (scattering matrix) and its factor-
izations/subdivisions in subprocesses to processes in finite regions in space and
time.

Technically, this is an elementary approximation theory of subspaces of
L2-functions in connection with Fourier transforms and partial differential equa-
tions. Although the theory has an obvious physical content, it will be treated for-
mally as a pure mathematical theory, which will meet common standards with
respect to precise definitions and rigorous proofs.
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Chapter I

Confidence Approximation
Theory

In chapter I we have collected concepts and tools of the present theory which are
of a more general mathematical nature than those in the following chapters which
are directly connected to a study of the Schrodinger equation.

I.1 Approximate inclusions in Hilbert space

In the following we denote by M, M|, M, ... closed subspaces and by P, P, P’,...
projections in a given complex separable Hilbert space 7. With projections (or
projection operators) we always mean orthogonal projections.

R(P) denotes the closed subspace on which P projects (the range of P). M¢
denotes the orthogonal complement of M and P¢ = I — P denotes the projection
on the orthogonal complement of R(P).

Subspaces which are not necessarily closed will be denoted by N, N, N/, ....
dim N denotes the dimension (which may be infinite) of N. If X is a subset of
Z, P(X) denotes the set of all Px with x in X. M| & M, denotes the direct sum
of M| and M,. If M, is a subspace of M,, M, — M denotes the complement of
M, in M,, i.e. the set of all vectors in M,, which are orthogonal to M.

For vectors u, v in %, {(u,v) denotes the scalar product, linear in the first and
antilinear in the second argument and ||u|| = |{u,u)|"/? denotes the norm of u. If
a is a complex number |a| denotes the absolute value. If A is an operator, || A||
denotes the operator norm. The type of argument of || || will always make clear
what is meant.

A* denotes the adjoint of the operator A.

Let I be a finite or denumerable index set. We denote by /2(1) the Hilbert space
of sequences a;, i in I, of complex numbers a; such that 3., |aj|? < 0. Linear
combination and scalar product of two elements a;, i € I and b;, i € I are defined
by ca;+db;,i € I, ¢, d complex numbers, and )., a;b; respectively.

If I =1,2,...,n, we shall identify /2(I) with the Hilbert space C" of complex
n-tuples (a;,as, ..., a,).
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I.1.1 Distance From one Subspace to Another

Definition I.1:1. For any nonzero vectors « and v in the Hilbert space 7, we define

dist(u, 0) = (1= [y, 01)[2) 2

where uy = u/||u|| and v; = v/||v||.

Definition I.1:2. If u is a nonzero vector and N is a nonzero (not necessarily
closed) subspace we define

dist(u, N) = U;&)I}g N dist(u, v).

If u is nonzero and N = 0 we define dist(u, N) = 1.

Definition I.1:3. If N; and N, are nonzero subspaces, we define

dist(N{, N,) = sup inf  dist(u, v).
u#0in N, v70in Ny

If N; =0 we define, for any N,, dist(N, N,) = 0. If N; is nonzero and N, =0
we define dist(Ny, N,) = 1.

Obviously 0 < dist(u,v) <1, 0 <dist(u, N) <1 and 0 <dist(N{,No)) <1. If M
is closed then dist(N,M)=0iff N c M.

Remark 1. If M, and M, are one-dimensional subspaces spanned by the vectors
u and v respectively, we have dist(M,, M) = dist(u, M) = dist(u,v). If N is
nonzero we have dist(Ny, Np) = sup .oy v, dist(v, Np).

Remark 2. Note that dist(u, v) = dist(v, u) for any (nonzero) vectors, but dist(M;, M»)
need not be equal to dist(M,, M). Although one gets a metric on the set of closed
subspaces by defining

d(Ml, Mz) = max ( dist(Ml, M2)9diSt(M2, Ml))’

(see Kato (1) p. 198, d(M, M,) = || P, — P5|| by theorems 1.1:7 and 1.1:13 below,
where P; and P, are the projections on M; and M, respectively) the “single-
directed” distance dist(M, M,) will be important in the present theory.

Lemma I.1:4. Let u be a nonzero vector, M a nonzero closed subspace and P the
projection on M. Then
dist(u, M) = dist(u, aPu)

where a is any complex nonzero number. If ||u|| = 1, then
dist(u, M) = |lu — Pul|.

For any vector v in M which is not in the form aPu, a complex and nonzero, we
have
dist(u, v) > dist(u, M).
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Proof. Let a be a nonzero complex number and v be any nonzero vector in M.
Since by definitions I.1:1 and 1.1:2, dist(u, v) and dist(u, M') does not change if
we multiply by a nonzero complex number, it is no limitation to assume that
|lu|] = 1. From definition I.1:1 then follows that dist(z,aPu) = ||u — Pul||. We
can choose a complex number b such that v; = bv is equal to the projection of u
on the one-dimensional subspace spanned by v. Then v, and u— v are orthogonal
and dist(u, v) = |lu — v;||. We have

u—v; = (u—Pu)+ (Pu—uv)

where (u— Pu) and (Pu—uv,) are orthogonal (Pu— vy is in M and u — Pu is
orthogonal to M). Thus

llu= v l1* = llu = Pull> + | Pu— vy

and
dist(u, v) = ||lu — v1|| = ||lu — Pu|| = dist(u, Pu).

This shows that

dist(u, M) inf  dist(u, v)

v#0in M
dist(u, Pu) = dist(u, aPu) = ||u — Pul|.

If v is not of the form v = ¢ Pu, c complex and nonzero, then || Pu—v;|| > 0 and

dist(u, v) = ||u — vq|| > ||u — Pu|| = dist(u, Pu).

Lemma I.1:5. For any nonzero u, v, w in #, we have
dist(u, w) < dist(u, v) + dist(v, w).

Proof. Choose u; = au, v; = bv, wy = cw, a, b, ¢ complex numbers such that

lugll = Nlogll = llws |l = 1, {uy,01) 2 0 and (vy, ;) 2 0. Set
up=cosA-vy+sinA-uj, cosA =(up,v),
w;=cosB-vy+sinB-w!, cosB={w;,u;),

(uf,v) =(w),v;)=0, 0<A, B< %

IfA+B<xa/2

(u,wy)=cosAcos B+sinAsinB-d, d=(u},w)), |d|<1
[{uy,w;)| > cos Acos B—sin Asin B=cos(A+ B)>0
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and

12
dist(u, w) = dist(uy, wy) = |1 = [{uy, w1>|2] <sin(A + B)
<sin A + sin B = dist(u, v) + dist(v, w).
If A+ B> /2,

dist(u, v) + dist(v, w) = sin A + sin B > 1 > dist(u, w).

Theorem I.1:6. For any subspaces N, N,, N3, we have
diSt(Nl, N3) < diSt(Nl, Nz) + diSt(Nz, N3)

Proof. If any of Ny, N,, Nj is zero, the result follows from definition I.1:3. Sup-
pose N, N,, N3 nonzero. Let € be an arbitrary positive number. For arbitrary
vector u; in N there exists, by definition, a vector u, in N, with dist(u,u,) <
dist(N, N,) + € and a vector uz in N3 with dist(uy, u3) < dist(N,, N3) + €. Then
by lemma L.1:5,
diSt(ul, u3) < diSt(ul, le) + diSt(llQ, u3)
< dist(Ny, Ny) +dist(N,, N3) + 2¢.

Since u; is arbitrary in N| we have, by definition, that
dist(N, N3) < dist(N;, N,) + dist(N,, N3) + 2¢,

and, since ¢ is arbitrary, the result follows. O

Theorem I.1:7. Let P, and P, be the projections on M and M, respectively.
Then
dist(M, M) = ||(I — Py) Py ||

If M, is nonzero then

dist(M,My)= sup || = Ppull
ueMy, |lull=1

Proof. The result is obvious if M; =0. Suppose M is nonzero. By remark 1 and
lemma I.1:4

dist(M, M>) sup dist(u, M) = sup dist(u, M,)
ueM

u#0eM,
llull=1
= sup |ju—Poul| = sup ||(I — Pull.
ueM; ueM,
llull=1 llul|=1
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For v in # with ||v|| = 1 we have that u = Pyv/|| Pyv|| is in M, with ||u|| =1 and
(I = Py)Pyoll = I(1 = Pyull - [[Pol] < 1T = Pyull

with equality if v is in M. Thus

I(I=P)P = sup |[I=P)Pll= sup [[(I—=P)Pul.
loll=1, ve# lull=1, ue M,
O
Theorem I.1:8. For any M| and M, we have
diSt(Ml, Mz) = diSt(MC, Mlc)
Proof. By theorem 1.1:7
dist(M, M) = ||[(I = Py Py|| = I((I = P) P)*||
= | PA(I - Py*l| = |P,(I - Pyl = I - PO)PE|
=dist(M§, M¥).
OJ

Remark 3. It follows immediately from definition 1.1:3 that, if M| and M, are
the closures of Ny and N, respectively,

diSt(N] 5 Nz) = dlSt(Nl . Mz) = dlSt(M] 5 Nz) = dlSt(M] 5 Mz)

Thus, the preceding theorem holds also for nonclosed subspaces Ny, N, instead
of Ml . Mz.

Lemma I.1:9. If dim N > dim N, then there exists a nonzero u in N, orthogonal
to N- 2.

Proof. If dim Ny > dim N, then N, must be finite-dimensional. Let N be any
n+ 1 dimensional subspace of Ny, n = dimN; (N{ = Ny if dimN; = n+1).
Choose n + 1 linearly independent vectors xy,x5,...,X,41 in N| and let P, be
the projection on N,. Then the n+ 1 vectors P,xy,..., X, | in N, are lin-
early dependent. Thus there exist numbers ¢y, ¢, ...,c,1, not all zero, such that
ciPoxy+ - +cpy 1 Pox,y1 =0. Then u=cyxy + -+ +¢,41x,, 1S a nonzero vector
in N{, with Pyu =0, thus orthogonal to N,. L]

Theorem I.1:10. If dist(N;, N,) < 1 then dim N; < dim N,.

Proof. Suppose dim N| > dim N,. Then, by lemma 1.1:9, there exists a nonzero
vector u; in Ny, orthogonal to N,. Then dist(u;,u,) = 1 for every u, in N, and
dist(Ny, N,) =1 by definition I.1:3. L]

Lemma L.1:11. If dist(M, M,) < 1 and P, is the projection on M, then P, maps
M, onto P, M| one-to-one and bicontinuously (both map and inverse are contin-
uous).
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Proof. The case M| = 0 is trivial. Suppose M nonzero. For arbitrary u in M,
with ||ul]| =1

’IIquII = 1‘ = ‘||P2u|| - ||u||’ < llu— Poull
< sup || — Pu'|| =dist(M, M,)=d < 1
u'eM,
I [1=1

according to theorem 1.1:7, thus || Pyu|| > 1 — d > 0. Then, for arbitrary u in M,
| Poull = (1= d)llull

which shows that the map is one-to-one with continuous inverse. OJ

Theorem I.1:12. If dist(M, M,) < 1 and P, is the projection on M, then P, M,
is closed.

Proof. Recalling that our M:s are closed subspaces in the complete metric space
Z, the theorem is an immediate consequence of lemma I.1:11. O

Remark 4. P, M need not be closed if dist(M, M,) = 1.
Cosely related to the present theory is the following theorem by Kato.

Theorem 1.1:13. Let P, and P, be projections, projecting on M| and M, respec-
tively and suppose that ||(/ — P,) P;|| =d < 1. Then either
1) P, maps M, onto M, one-to-one and bicontinuously and

|1P =Pl =l - PRl =|[U-P)P | =d

or
2) P, maps M onto a proper subspace M of M, one-to-one and bicontinuously
and if P] is the projection on M/, then

1Py =PIl = I(I = PP = [T = PP = I - PP ]| =d

and
|1P— Pl =l - PPl =1.

We shall not reproduce the proof here but refer to Kato (1) p. 56-58.

I.1.2 Approximate Inclusions

Definition I.1:14. We say that N is an e-approximate (¢ > 0) subspace to N, and
write Ny C, N, if dist(N, N,) <e.

Remark 5. For € =0, the relation Ny C; M, coincides with the subspace relation
N, C M, (M, closed!)

If M is the one-dimensional subspace spanned by the vector u, we shall also write
ucC, Nz for Ml Ce Nz.
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Theorem LI.1:15. N| C, M, iff
1 Pu|? > (1 = &2)]lull?

for every u in N, where P, is the projection on M,

Proof. The relation
| Poull? > (1 = €2)[ul|?

is obviously equivalent to dist(u, P,u) < €. The theorem then follows from lemma
I.1:4 and remark 1 after definition I.1:3. U

Theorem I.1:16. If N| C.s N, and N, C.» N3 then Ny Cyryon N3
Proof. A direct reformulation of theorem 1.1:6 by means of definition I.1:14 [
Theorem 1.1:17. If Ml Cer M2 and M2 Cen Ml with 5,, e’ < 1, then

dist(M, My) = dist(My, M) = || P, = P,|| < min(e’, ")

where P; and P, are the projections on M and M, respectively.
Proof. By theorem 1.1:7

dist(M |, M) =||(I — P,)P;|| <€’ <1 and
dist(Mp, M) =||(I = P)P|[ <e” < 1.

Then, by theorem I1.1:13

|P— Pyl = || = PP = ||[(I = P)Py|| < min(e’, g”).

U
Theorem L.1:18. If M| C. M,, then M§ C. M.
Proof. A reformulation of theorem I.1:8 by means of definition I.1:14. O
Theorem LI.1:19. If N C, N, with € < 1, then dim N| < dim N,.
Proof. A reformulation of theorem I.1:10 by means of definition I.1:14. OJ

Definition I.1:20. N; and N, are called e.orthogonal if |{uq,u,)| < € for every u;
in Ny and u, in N, with |[u|| = |lu,|| = L.

Theorem L.1:21. N, and N, are e-orthogonal iff Ny C, N§

Proof. Let u; and u, be arbitrary vectors in N; and N, respectively with ||u;|| =
1 2 Y : 1 2 IESp y 1

[lus|] = 1, and set u; = u’ + uf with uj in N3 and uf in the closure of N,. Then

(uy,uz) = (uf,uy) and the result follows since Ny Cc NS iff [luf|| <e. O

Lemma L.1:22. If Ny,..., Ny, N{,..., N; are m+n e-orthogonal subspaces, then
N=@/., Niand N’ =D]_, N/ are ¢;-orthogonal with £; = 2mne.
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Proof. Letu=Y" u;, u;in N;and v=3""_, v;, v; in N/. Then

1

= Cupup) = Y llwil|>+€” where €= (uruy)
ij

e/l < Yl -l =e[(2||u,-||)(Znu,u)l—JZnuAP]
Se(lmj—l)Znu,«uz.

Thus {
lull>2 |1 == De| Y llall>2 5 3l

if 2me < 1 and similarly for v. Then

o)1 =] 3, D v Sez Zuu,-u Aol =e( Ylall ) ( Yo
<eomenl Ylait?] [2||u,||2] < 2mne - |lul - Ilo].

and thus u and v are 2mne-orthogonal. If 2me > 1 or 2ne > 1, then 2mne > 1 and
the statement is trivially satisfied. OJ
I.1.3 Some Auxiliary Theorems on Approxmation of Subspaces

Lemma I.1:23. N| C, N, if for every vector u; in N there exists a u, in N, with
lluy —upll <& - Jluy |l

Proof. A direct consequence of lemma I.1:4 and remark 1 after definition I.1.1:3 if
N; and N, are closed. If N or N, are not closed, let M| and M, be the closures
of N and N,. The statement for N; and N, then follows from the statement for
M, and M, by using remark 3 after theorem I.1:8. OJ

Lemma 1.1:24. N, C, M, iff for every u in N,
llu = Poull <ellull,
where P, is the projection on M,
Proof. A direct consequence of lemmal.1:4 and remark 1 after definition1.1:3 [

Lemma 1.1:25. If N, C. M, and P, is the projection on M, then

N] Ce P2N1 and
P,N, C¢ N;.

Proof. The first statement follows directly from lemma I.1:24.
Let u be an arbitrary nonzero vector in P, Ny. Then u is of the form u = P,v with
vin N; and lemma I.1:4 gives dist(u, v) = dist(v, u) = dist(v, P,v) = dist(v, M,) <
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€. Thus for arbitrary nonzero u in P, N; there is a v in Ny with dist(u,0) < €.
Hence dist(P, N, N;)<eand P,N| C, N;. i

Lemma I.1:26. Suppose that M and M, are orthogonal and that M| C¢, M| and
M, C., M;. Then M ® M, C, 4., M| ® M.

Proof. Let u be an arbitrary vector in M| @ M,. Then u is of the form u =u; +u,
with u; and up in M and M, respectively. By lemma I.1:23 there exists u| and
u} in M| and M] respectively with |[uy —u{ || < &llu]l and [luy — ) || < &5l|usl.
Hence there exists an u’ = ui + u& in Ml’ (43} MZ’ with

llu—w' || < lluy —uill + lluz = uyll < &1y || + £2]|ua |
12

12 12
< (24 €2) " (lug 12+ g 12) > = (2 +€2) " ul
< (e1+&)lull
since uy and u; are orthogonal and thus M @ M; C¢ 1., M| ® M) [

Lemma 1.1:27. Suppose M C,y M’ and M C.p M"” . Then M C.rpen P"M’
where P” is the projection on M".

Proof. Let u be an arbitrary vector in M and let P’ be the projection on M'. Then
by lemma I.1:24 || P'u —ul| < &’ ||ul|, || P"u—u|| < €"||u|| and
I1P"P'u—ull <||P"P'u—P"ull + || P"u—ull <||P"(P'u—u)|+&"|ull
<NIPu—ull+e"|lull < (" +€Mlull.

Sinse P” P'uis in P” M', lemma I.1:23 then gives that M C,/ .» P"M'. O

Lemma 1.1:28. Suppose M C,» M’ and M C.» M"”. Then P"M Cgryen M’
where P” is the projection on M”.

Proof. Letu be a vectorin M. Then we have that dist(P”u,u) = dist(u, P"u) <&”,
dist(u, P'u) < ¢’ and by lemma I.1:5
dist(P"u, P'u) < dist(P"u,u) + dist(u, P'u) <&’ +€”".

Since P’u is in M’, this shows that dist(P"u, M’) < &’ + £” and since an ar-
bitrary vector in P” M is of the form P”u with u in M, this also shows that
dist(P"M,M') <&’ +€" and it follows that P" M Cg/yen M'. OJ

Lemma L.1:29. Suppose that M; = R(P}), M, = R(P,), P commutes with P
and P, and M|, C. M,. Then PM, C, PM,.

Proof. For arbitrary u in P M, we have, since PM| C My, by lemma I.1:24 that
|lu — Pou|| < e. But B,u= P,Pu= PPyuisin PM, and the result follows from
lemma 1.1:23. L]

From the preceding theorems and lemmas one can derive more composite re-
sults. The following will be used in 1.2.1.

Lemma 1.1:30. Suppose that
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1) MyC M, ® M,, M| and M, orthogonal,

2) M’ QBM’ =%, Ml’ and Mz’ orthogonal,

3) My Cer M|,

4) My Cer M,
Then My Cgryen M,
Proof. Let P, be the projection on M,. By 2), 4) and theorem L.1:18 M| =
MJ¢ Cer MS. 3) and theorem L.1:16 then gives My Ceryen MS. But My Cg
M, ® M, according to 1) and lemma I.1:27 then gives M Cerien Py (M @©M>) =
M;. O
I.1.4 Approximation in Product Spaces

In this section we shall consider several complex, separable Hilbert spaces, 7,
I\, 5, ... simultaneously. Although we shall use the same notation {( , ) for
scalar product, ¢ for orthogonal complement etc. in different spaces, there should
be no risk for confusion since the arguments in the expressions will always make
clear what is meant.

Definition 1.1:31. Let #, #,..., #,, be Hilbert spaces. A mapping T of 7| X
.. X %, into Z is called a tensor product mapping and we write

T . @\ X..X%#y—> I

if
1° (T(u],...,u,,),T(u;,...,u;))=(u],u{)---(u,,,u;,)foranyui, u in#;,i=1,...,n
2° J is the closed linear hull of T(#| X ... X #,).

If M;,i=1,...,nare closed linear subspaces in #;, i = 1, ..., n respectively, the
n
closed linear hull of T(M X ... X M,,) will be denoted by ®T M, or alternatively

by M| @1 M, Qr ... 1 M, thus especially # = ®T . If some of the factors
M; are one dimensional spanned by vectors u; we shall also write M| @t ... Qr
u; 7 ... for their product, thus especially T'(uy, ..., u,) = ®T ui=u;Qr...Qruy,.

=1
If A,..., A, are bounded linear operators in #7,.. % respectively we denote
n
by ® A;=A; ®r - QT A, the bounded linear operator, which is the extension
1
to # of the bounded map A in T (| X ... X #,) defined by

n
n
A0< '®1Tu,-> =®TAiu,-, uin#;,i=1,...,n
1= .
i=1

T g ) X...X%, — %, we shall also say that T is a tensor product decompo-
sition of Z'into #| X ... X 7.
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Lemma 1.1:32. Suppose that
T :®%IX...X%,,—>%

and {u; ;}, j € J; is an orthonormal basis for #;, i =1,...,n. Then {u}, k€ K =

Jix...xJ, whereuy =uy ; &...up,, k= (i, ..., jn), is an orthonormal basis for
.
Proof. A simple consequence of definition 1.1:31. OJ

Lemma L.1:33. Let {u; ;},i € I, j € J be a double-indexed orthonormal basis for
 and set #, = 12(1), %, =12(J) and

T(u, U) = 2 aibjui,j
iel
jed
foru={a;},i€l,v={b;}, j€J. Then
T ‘® %l X %2 > .
Proof. Also a simple consequence of definition 1.1:31. OJ
The following variant of the preceding lemma will be used in IIL.5.
Lemma 1.1:34. Suppose that
%= @ M,’
iel

is a decomposition of # into orthogonal closed subspaces M, i € I, all with the
same dimension and
U,' . %2 - M,'

are isometric onto mappings and set
Tw,v)= Z a;Ujv
iel
foru={a;},i€linl?(I)andvin #,. Then T :g I?(1)X H» > X.
Proof. Also a simple consequence of definition I.1:31. [

Theorem 1.1:35. Suppose that T' : g #| X #, — #, M| and M, are closed sub-
spaces in #1 and M| = M| Qr #>, Mj = M, ®r #,. Then M| C, M, iff
M c.M].

Proof. Let {u;}, i € I = I; U I, be an orthonormal basis for # such that {u;},i €
1, is a basis for M, and {u;}, i € I, is a basis for M. Let {v;}, j € J be an or-
thonormal basis of the space 7. Then, by lemma I.1:32, {4; @t v;},i€l,j€J

is an orthonormal basis for 7 and {u;®rv;}, i € I, j € J is an orthonormal basis
for My @ #, if k = 1 and for M§ ®r #, if k = 2.
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Suppose M| C, M,. Let u be an arbitrary element in M| with [lu|| = 1. Then
u= Z,el a;ju; @ v; where Z,e, |a,j| = 1. For every j € J, Y,y aijui is in
eJ j€
Thus Zzel |au| <e Zze[ |a,j| and 21612 |a,j|2 < €2, which means that
uCe My @ #, = Mj. Conversely, suppose M ! Ce Mj. Let u be an arbitrary
element in M; with |[u|| =1 and let P, and P; be the pl‘O]eCtiOHS on M; and M)
respectively. If v is any vector in #, with ||U|| =1 we have u®r v € M| and

1Py¢(u@r )|l < €llu @ vl =€llull - [l = &.
But P,“(u®r v) = (Psu) ®rvand || P)(u®r v)|| = || P{ull. Thus || Psul| < € and
since u is arbitrary in M, we have M| C, M,. OJ

Theorem 1.1:36. Suppose that T' : g #\ X%, — #, M|, M| are closed subspaces
in 7| and M,, M} are closed subspaces in #;. If M| C,, M| and M, C., M}
then

M, ®r M) Ce 4e, M| Q1 M.

Proof. Suppose M| C. M| and M, C., M. Then, by theorem I.1:35
Ml ®TM2CM1 ®T%2 CEI Mll ®T%2 and
M1®TM2C%1®TM2C52%1®TM2,.

If P is the projection on #| @ M we have that

P(M{ @ 2) = M ®r M

and the rest follows from lemma 1.1:27. O

I.2 Confidence Estimates and Fourier Transforms

We use the standard notations L!(R") and L2(R") for the set of measurable func-
tions on R” for which

/|f(x)|dx<ooor/|f(x)|2dx<oo

respectively. L2(R") is a separable Hilbert space with scalar product {f,g) =
/ f (x)ﬁ dx. (Functions differing only on a set of measure zero are in this con-
text considered as identical.) We denote by supp(f) the support of f (smallest
closed set outside which f vanishes almost everywhere).

Let R be a measurable subset of R” whose boundary R¢s — Rint has measure zero.
(Relos denotes the closure and R™™ the interior of R.) We have supp(f) C Re°s iff
f = yrf (almost everywhere), where yg denotes the characteristic function of R.
For such a region R we denote by L2(R) the set of L2-functions with support in
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Relos_ For every such set R, L2(R") decomposes into a direct sum
L2(R") = L2(R) @ L2(R" — R)

of the two closed, orthogonal subspaces L2(R) and L2(R” — R).
We define the Fourier transform f of a function f in L!(R") by the formula

fo=—L [ et fx)dx
(Vr)
where (x,y) = x1y; + - + X,V X = (X15---5%n), ¥ = (V1»-.-,Yn). The factor
n N
1/ <\/ 27r> is chosen since it gives simultaneous normalization of f and f (see

(2) below). The Fourier transform can be extended to a unitary map of LZ(R")
onto itself and for later reference we recapitulate the following formulas, valid for
any f, g in L2(R").

If g = f then f(x)=g(—x) (1
171 =171 )
(f.8)=(f.8) 3
g(x) = eibx) f(x), be R iff §(y) = f(y—b) )
If g(x) = f(ax)a € R!, a#0 then §(y) = ﬁf(y/a) Q)
g=-i2Liff ()=, F ) ©
Xj

Fg=(V2r)"fxg ©)

where * denotes the convolution, i.e.
(f*)x)= [ flx—x")g(x")dx'.

In (1), (4), (5) and (6) the relations are to be interpreted in the usual “almost every-
where” sense. The derivative in (6) is to be interpreted in the weak (distributional)
sense. (If f and g are continuous, the weak derivative coincides with the strong
(classical) derivative.) .

For a subspace N of L2(R") we denote by N the subspace of functions f with
fin N.

I.2.1 Simultaneous Confidence Estimates on a Subspace of Func-
tions and the Subspace of their Fourier Transforms

Definition 1.2:37. Let f be a function in L2(R") and R a region (measurable set
whose boundary has measure zero) in R”. By a confidence estimate (on f) we
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shall mean an estimate of the form
[l f@Pdx > (=€) [ 1 f () dx.
We shall denote this relation by f C, R.

Remark: Let M = L2(R) be the closed subspace of L2(R") of functions with
support in R. Then, with the notation of .1.2, f C, Riff f ¢, M = L2(R).

In the following we shall restrict ourselves to the case where R is an interval
I"=(ay,by) X ... X (a,,b,) in R". We also restrict ourselves to the case n =1, the
generalization to arbitrary » being straightforward.

Definition 1.2:38. Let I; = (a;,b;) and I, = (a,, b,) be intervals in R!. We shall
denote by L(Iy,1,,£,€,) the set of functions f in L2(R!) such that f C,, I} and

fce, b

We shall use the notation phase-space for the set R2 = R!xR! considered as the
set of all pairs (x,y) where x is associated with the “ordinary space” variable for
f (f(x)) and y is the “fouriertransformed variable”, i.e. a variable for f (F(»)).
With this notation a function f in L([I,I,,€1,€,) can in a sense be said to be
approximately localized to the phase-space region I X I,.

Suppose f Ce, Iy and f Ce, Ir. Let M, be the subspace with M2 = L%(1,).
Then f Ce, M, and f Ce, M,. Let Py be the projection on M = L%(1)) and
Jf1="P1f. Then f| Cy I and by lemma I.1:28 it follows that f| C¢ ¢, M5. Thus
f1 € L1y, 1,,0,e,+¢,). Thus there is no essential restriction if we take one of the
£ or &, to be =0 or if we take €| = &,. In the following we put €| = &€,. In view
of 1.2 (4) there is also no essential restriction to consider intervals I; = (—A, A)
and I, = (— B, B) centered at the origin.

Definition 1.2:39. We define Ly(A, B,e) = L(I1,1,,¢,¢) where I} =(—A, A) and
I, =(—B,B).

The set Ly(A, B, ) of functions f, with simultaneous confidence estimates on f
itself and on its Fourier transform f, is not a linear space. To get a linear subspace
of 7 approximating Ly(A, B, €), we introduce the following concept.

Definition 1.2:40. Let I} = (—A, A), I, = (—B, B) be intervals in R! and d,, d5,
€ positive numbers. A closed subspace M (or the corresponding projection P on
M) is said to be an (dy, d,, €)-localization to the phase-space rectangle I; X I, or
shortly an (A, B,d;, d,, €)-phase-space localization if
1) fc. I, and f C, I, implies f C4, M.

2a) M C, (—A—dl,A+d1)
2b) M C, (~B—dy, B+d,)

The factor 4 in 1) multiplying ¢ is chosen for convenience. It cannot however
be chosen arbitrarily small.

1) can be expressed as
Lo(A, B,E) C46 M
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in the sense that f C4, M for every f in Ly(A, B,e). Thus M approximates
Ly(I;, I,,¢) from above. On the other hand 2) means that

M C Lo(A+d,, B+d,,€)

so M also approximates from below the Ly(A’, B’, €) corresponding to the larger
intervals (—A’,A’), (=B’,B’) with A’ = A+d,, B' = B+d,.

The approximation of Ly(A, B,€) by M :s are “single directed” in the sense that
it is based on the nonsymmetric relation C.. A given Ly(A, B, €) can be approx-
imated from above with (or covered by) an M but has to be approximated from
below by another “smaller” M.

Definition 1.2:41. Let M (A, B,d,,d,) and G(A, B, d;,d,) be two functions of the
real positive variables A, B, dy, d,.The values of M are closed subspaces and the
values of G are positive numbers. The pair (M, G) is called a family of phase-
space localizations if for every A, B, d{, d, the subspace M (A, B,d,d,) is an
(A, B,dq,d>, e)-phase-space localization with € = G(A, B,d,d,).

We shall now give a constructive example (M, G) of a family of phase-space
localizations.

In the following the square root function sqrt(z) = z!/2 for a complex argument
is always to be interpreted by its principal branch value. It will only be used for
values of z in the open right halfplane Re z > 0.

Lemma 1.2:42. If |Im z| < b then
1° Resqrt(b? + z2) > |Re z| and
2° |Imsqrt(b? + z2)| < |Imz|.

Proof. Quite elementary. O
Definition 1.2:43. For A, a > 0 we define the function

2 —u)2
Pt o s (5580

of the complex argument z = x +iy.

Lemma 1.2:44. F, ,(z) is uniquely defined and analytic for [Im z| < wa/2.

Proof. Since Re [n2/4 +(x+i y)2/a2] > 0 for |y| < ma/2, the square root in the ex-

ponential and thus also in the integral is uniquely defined and analytic for |Im z| <
zwal2.
For |y| < wa/2 we have that

| Imsqrt [72/4 + (x + iy — u)*/a?] | < |yla| < #/2

which shows that the real part of the integral is positive. Thus the square root of
the integral is uniquely defined and analytic for |Im z| < zwa/2. OJ

Lemma 1.2:45. F, , satisfies
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1° |Fy 4(2)| < sqrt(2a) if [Im z| < wa/2.
2° [Fpq4(2)] <sqrt(a)-exp [ - (|Rez| — A)/2a| if |Im z| < 7a/2 and [Rez| > A.

Proof. Suppose |Im z| < za/2. Then, by lemma 1.2:42

|Fya(2)>= | /_AA exp [ —sqrt[z?/2 + (z — u)*/a?]| du

< /_AA exp [ — Resqrt[z/4 + (z —u)*/a?]| du
< f_AA exp(—|Rez —ul/a)du < 2/0°° exp(—ula)du =2a.

If |[Re z| > A we have the estimate

/_AAexp (—IRez—ul/a)du< ./I;oezl—A exp (—ula) du
=a-exp (—(|Rez| - A)/a)

and the result follows. O

Lemma 1.2:46. The Fourier transform of F, , satisfies

| Fp a0 < C-exp (= zaly|/2)

whereC:%(A+ \V2-a).

Proof. According to lemmas 1.2:44 and 1.2:45 we can change the contour of inte-
gration to a line parallel to the real axis in the integral for F 4.q- This gives

Fuay)= L [ e Fy (x)dx = L/_oom e~ VOFYDF, (x+iy))dx =
V2 2

L_om f_moo e"VXFy J(x+iy))dx
2z

for arbitrary y; with |y;| < za/2, thus

| Fpa)] < \/%e—“'”” SN Fp o(x+iyy)] dx.
T

The last integral according to lemma 1.2:45 can be estimated by

/_AA V2adx+2 [ \/aexp—(|x| — A)2adx <2A\2a+2/a-2a
and the result follows. O

Definition 1.2:47. For every integer n we define the function

FA,a,n(x) = einmx/A . FA,a(x)-
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We denote by M 4 , the closed subspace of L2(R!) spanned by the functions Fy , ,,
n=0,+1,+2,.... If I =[ny, ny] is an integer interval, we denote by M4 , ; the
closed subspace spanned by all F, ,, with n; <n <n,.

Lemma 1.2:48. The functions F, ,,, n =0, £1, £2, ... are orthogonal and their
norms are given by

”FA,u,n” =2¢/A-a- CO
where Cy = [[°exp (- sqrt(z?/4 +x%)) dx.

Proof. By substituting x — u = y and interchanging the order of integration we
obtain

(Faam Faan) = /_‘X’oo ei(m—n)nx/AFA’a(x)Z dx
= f_°°oo [ei(m—n)zrx/A /—AA exp [_ w24+ (x — u)z/az] du] dx
= /_‘”oo ei(m—mzylA exp [ —\/72/4+ y2/a2] dy- f—AA elm=mmulA gy,

The last integral vanishes when m # n. which proves the orthogonality.
For m = n we obtain

I Fpanl®= [ exp ( — 724+ y2/a2> dy-2A=44-a-C,

and || F4 44|l =24/ AaCy. [
Theorem 1.2:49. Suppose d >0 and 0 < a < A. Then

My, Ce LX(—A—d,A+d)

with € = 3e~d/2a,

Proof. Let g be an arbitrary function in M, ,. By definition 1.2:47 and lemma
1.2:48 g is of the form

&= ZCnFA,a,n =Fy,- fper
n

where fper(x) =Y c,e!mx/A is a periodic function with period 24 whose restric-
tion f to (—A, A) is an element in L2(—A, A). For the norms of g and f we get

g2 =Y lenPll Fpqall2=44aCo Y le, 2
n
Cy as in lemma 1.2:48 and

A2 = /2 fperl2dx =24 eI,
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thus

llgll* =2aCollf 1%

Using the periodicity of f; and lemma [.2:45 we get

sl d+Q2k+1)A
-/|x|>A+d |g(x)|2dx = Z { / |FA,a(x)|2 prer(x)|2dx

=1 Ud+Qk-1A
—d—(2k-1)A
+ / |FA’a(x)|2 |fper(x)|2dx}
—d-QCk+1)A
& _dt2k-na A 2 dl 1 2
—gtaela — —dla, Y |
Sza;;e —fA | frerl?dx =2ae syl |

and

24 21, 1 "
|x|>fA+d lg(2dx/llgll* < C, T2 ©

The first factor can be estimated by
Cy= f0°° e~ Va2/A+x2 5 f0°° e~ (@24X) dy = o—7/2

and assuming a < A we get

1 1 < enl2 1

Cy 1—e—2Ala '1_6—2<9'

Thus, for arbitrary g in M 4 , we have

12
dist(g,L2<—A—d,A+d>)={ / |g|2dx} /llgl <3e=ene
|x|>A+d

and the theorem is proved. L]

Lemma 1.2:50. Suppose d >0,0<a< A, d < A and x real. Then

<1 forall x

and

1- Faa) < de-da for x| < A—d,

RV 2aC0 CO

with C as in lemma 1.2:48.
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Proof. For any real x we have
A 2, (x—u)2 72 (x—u)? 72
—\ /4 —/E+ —1/ZEZ2
Fpo(x)*= [ e mdu<f_°°°oe VAT e du=a [T eV T dy =2aC,
-A

which proves the first statement.
For |x| < A —d we have

72 (x—u)2 722, (x—u)2
2 (™ VT2 - VIt 2
Fpra(x)?= [ e 2 du f|u|>Ae a2 du
72 (x—u)?
—/E+
=2aC0—f|u|>Ae 72 du

/22
>2aCy—2a [} e ERERFIIN 2aCy—2a [} e7¥dy
=2aCy—2ae~4,

Using the inequality 1 — e < y/1 —¢ for e = Cloe‘d/" < 1, the second inequality
follows. (If € > 1 the second inequality is trivial.) OJ

Theorem 1.2:51. Suppose 0 < a, d’ < A. Then
L>(—A+d',A—d")Co My,

with g’ = 4e—d'/2a,

Proof. Let f be an arbitrary element in L2(—A +d’, A—d’) i.e. an element in
L2(R!) which vanishes almost everywhere outside (—A +d’, A —d’). Let f; be
the restriction of f to (—A, A) and fp., the periodic continuation with period 24

of f1. Set g = Fy 4 fper and h = g/4/2aC, Cj as in lemma 1.2:48. From lemma
1.2:50 and the proof of theorem 1.2:49 follows that g and A are in M 4 , and

If =hl2= [ 1f=hPdx+ [ |f—hP2dx

|x|<A
F 2

= [ IfPP]1- Aa |y [ |hPdx
|x|<A—d’ y/2aC |x|>A+d

2.0 are, V1 i 2
<|I £l o i (W1l
<e (14 1= ) - el fy 2 < 160" | £, |2

_e—

= 16e=4"/a| f]|2.

Thus forevery f in L2(—A+d’, A—d") thereisan hin M 4 , with || f—h|| < €’|| I,
e’ =4e~d4'12a_and the theorem follows from lemma 1.1:23. O
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Theorem 1.2:52. Let I = [ny, n,] be an integer interval, B; = 1

d” >0and 0 < a < A/10. Then

9B2=

My 1 Con LA(By—d",By+d")

with €” = %e—”“d"’z.

Proof. Let f be an arbitrary function in M A.a.1- Then f is of the form

) ny
fo)= Z Cn- FA,a,n(x) = Z CnFA,a<x - }1771')
n=n; n=n;
and
)
1717 =4aACy Y le,
n=n|

with Cj as in lemma 1.2:48.
Suppose that x > B, +d”. Then

ny ny . 5
LGP Y lenl®s Y | Faalx= %)‘
n=n; n=n;

and lemma 1.2:46 gives

n
s W2 o N raenmid)
If@P < he-C2 Y e
0

n=n;
< ”4fu12§2 .e—ma(x—By) . Z (e—ﬂ:za/A)n
a 0 n=0
— ||f||2C2 . e—zra(x—BQ) . 1
4aAC, 1 — e—n2alA
with C as in lemma 1.2:46. Then
o0 2 —rad”
2ax/llFlI2< € .1 e
L, VOPIIP S e e T

Using the inequalities CLo < e (see proof of theorem 1.2:49), a < A/10 and
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1

<2-%for0<y< 1 with y = n2al A, we get

l—ev
2
c<2Ve(4, 328
\/; 10
1
2 <5,
Co
2 1.1 1. (AV
4aACy 7a | —e-z2lA 4 \a )’

Thus, for any f in M A.a,] WE have

{dist (f, L*(B, —d”,B2+d”))}2

2
={ [ fPdx+ [ Iflzdx}/||f|I2<2-%<§) emmad” < gn?2
x<By—d"

x>By+d”

with " = %e—’md " and the theorem is proved. O

For the cases n; = —oo or ny, = co we have the following slightly sharper result.

Theorem 1.2:53. If d” >0, 0 < a < A/10 and 7 is an integer then
Mg g —com Cerna L2< — 00, % + d")
and
M 4 4 n.co) Cenp L2 (%’ -d”, 00)

with €” as in theorem 1.2:52.

Proof. Follows from the proof of theorem 1.2:52 L]

Note that theorem 1.2:52 follows from theorem 1.2:53 by using lemma I1.1:27.
Theorem 1.2:54. If d” > 0, 0 < a < A/10 and n,, n, are integers then

A A n n
MA,a,(—oo,n]] @ MA,a,[nz,oo) Cen L2< - 00,% +d”) &) L2<% - d”,oo)

with €” as in theorem 1.2:52.

Proof. The theorem is trivial if n; > ny — 1 and if ny < n, it follows from theorem
1.2:53 by applying lemma I.1:26. L]
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Theorem 1.2:55. Suppose 0 < a < A/10 and B, d’, d” > 0. Let n be the smallest
integer such that n+ 1> (A+d’)(B+d")/x and set

g’ =4e~d'2a¢  and

el = A+d e—mad" 2
a

Then, for any M and €, £, > 0 with M C,, L2(—A,A)and M Ce, L?(—B, B) we
have
M C2e]+£2+2e’+£” MA+d’,a,[—n,n]-

Proof. Suppose M C,, L2(—A,A) and M Ce, L2(-B,B). By theorem 1.2:51
we see that L2(—A, A) C.r M 4,4, and from theorem 1.1:16 it then follows that
M Ce ver Myigr 4 and M Ce +e! MAM,#. Let M, be the projection of M on
MAM,,L,. Then M Ce,+er Mo C MAM,’H and My C¢ 4 M according to lemma
I.1:25.

Set My =M a4 41 af—nn a0d My =M g 441 4(-c0-n-11® M atar an+1.00)- Then
Ml (43) Mz = MA+d’,a and
1°: My C M| & M,, M| and M, orthogonal.

Set M| = L?(~B.B) and M, = L?(~co,~B) @ L*(B, ). Then
2 M| @® M=% = L*[R!), M| and M orthogonal.

From M, C, ;s M C., L*(-B, B) we get
37t My Cey M|, witheg =€+, +¢’.

From theorem 1.2:54 and the assumption on n we get since % —d"” > B that
4°: M, Cen MZ,

Applying lemma 1.1:30 to 1°—4° we get

M, C£1+52+8’+6” M.

M Ce,+e’ M and theorem 1.1:16 then gives

M C2£1+52+26’+5’/ MA+d’,a,[—n,n]

and

M C251+52+26’+E” MA+d’,a,[—n,n]~

O

Theorem 1.2:56. Under the assumptions of theorem 1.2:55, M = M 4.4/ 4[—pn.n
is a (d;,d,, €)localization to the phase-space rectangle (—A, A) X (— B, B) if we set
e=2¢'+€",d=2d’ and d, =2d".

Proof. We have to prove 1), 2a) and 2b) of definition 1.2:40. 1) and 2a) follow
immediately from theorems 1.2:55 and 1.2:49 respectively.
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n

By the definition of h
y the definition of n we have =~

< B+d" and theorem 1.2:52 gives

N ,,LZ(— nT__ gn _NT //) L2(—B—d,,B
c, = d", M 4d") C LX(~B —dy, B+ d)

which proves condition 2b). U

I.2.2 Finite Approximation Theory

Theorem 1.2:56 can be considered as a confidence estimate formulation of the un-
certainty principle. It says that only a finite number, approximately determined
by the phase-space volume, of orthogonal wave functions can be localized to a
given phase-space interval. It generalizes the “pure state” (one-dimensional) for-
mulation to consider many-dimensional subspaces. And the confidence estimates
are much sharper than the confidence estimates given by the Tchebycheff theorem
applied to the standard deviations used in the Heisenberg formulation.

As a complement to this we observe that the sum & + &, of £/ and &, in theo-
rem 1.2:55 cannot be arbitrarily small. It is always greater than a positive, in the
interesting cases very small, number depending only on the phase-space volume
A - B. This theorem can easily be proved in the case e, = 0 by observing that,
in this case, the minimum value of € can be obtained by the highest eigenvalue
of a compact integral operator with a sin x/x kernel and then applying the Paley-
Wiener theorem. The general case can be reduced to this case by applying the
arguments following definition 1.2:38. The details are left to the reader.

This result of a finite dimension coupled to a phase-space volume suggests a
general confidence definition of entropy as (Boltzmans constant times) the loga-
rithm of this dimension. The general increase of entropy can then be understood
in terms of theorems 1.1:19 and I11.6:42 below.

The positive lower limits on the £:s shows the importance of developing a
systematic theory of finite approximations and approximately defined quantities
which we shall call finite approximation theory”. It generalizes the ordinary con-
cepts and techniques of €:s and 6:s of classical analysis, where the £:s are supposed
to ultimately tend to zero in order to obtain exact and "infinite”” continuous results.

In II1.6 we shall give an example of approximate quantities — the p-values of
an approximately equiangular sequence of projections. In II.7 we shall briefly
indicate how a theory of approximate partial differential equations can be built on
the basic concepts of the present theory.

In the approximation theory based on the concepts of the present theory we
are generally not seeking the best but rather a sufficiently good approximation,
where “sufficiently good” depends on the special problem under concern.Thus
especially the confidence levels 1 — 2 are merely to be considered as necessary
technical means to give rigorous formulations of essential results. The £:s them-
selves have no other interest than that they have to be sufficiently small to give
sufficient accuracy to other essential quantities.
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Chapter 11

Causal Event Structures

The basic idea of the present theory is to build, on an underlying structure of wave-
functions satisfying wave equations, a mathematical structure, which we shall call
causal event structure. The intended interpretation of this structure should be obvi-
ous from the names (“‘event”, “conditional probability”, “compatible”, “possible”,
“time-order”, etc.) given to basic concepts in the structure and it is through this
structure that a physical interpretation of the following mathematical theory can be
established. From the mathematical point of view, these names should of course
be considered formally as “working names” of concepts in an abstract deductive

theory.

II.1 Stochastic Event Structures

To every element (“event”) e in the set E below, there is defined another element
—e in E; (with the intended interpretation “not e”’). We introduce the notation e
to mean any of the two elements e or —e. —e is called the opposite event to e or
alternatively the negation of e.

Definition II.1:1. By a stochastic event structure we shall mean a structure .S =
(Eo,—,T, p) such that

1) E, is a set, whose elements will be called events. To every element e in E is
associated another distinct element —e in E such that —(—e) =e.

2) T is a set of ordered (m,n)-tuples (e],...,emle;,...,e,g) mn=1,273,... of
events in E; such that if (eq, ...,em|e’1,... ,ep) is in T, then so is
(egs.-.,emle”,... .ep) where (ef,....ep) is any subsequence of(e’l, ...,el)and
g}’ equals e} or —e; forevery j=1,2...,p. The elements in T are called pro-
cesses.

3) pis a function from T to the closed interval [0, 1] such that

a) if(el,...,em|ei,...,e;,) isin T, then

D plers.senle, .. ep) =1
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where the sum is over all the 2" choices e’ = e’ or —¢’, j = 1,2,...,n.
(We write p(el,...,emle;,...,e;,) instead of p((el,...,emle;,...,e,’,)) for
the value of the function p for the argument (eq, ..., emlei, cep)inT.)

b) if(el,...,emlei,...,e;,) isinT, iy,...,i, s a subsequence of 1,...,n, and
(ei’, ... ,eg) the corresponding subsequence of (e’l, ...,e}), then

p(e]"-"emlei”'-'7el,)/)= Z(el"-'7em|e_,l"'-’e_,n)

where the sum is over all 27—? gg,

c) p(el,...,em|ei,...,e;,)=0ifelf = —e} for some i, j.

ey suchthate! =e” forj=1,...,p.
(4 ¢, =¢

d) if(el,...,emlei,...,e,’1,e”,...,eZ)isinTandp(el,...,emle;,...,e;)nonzero,
then (el,...,em,ei,...,e;,|ei’,...,e;€’) isin T and

p(el,...,emle;,...,e;,,e{’,...,el’(’)

=p(e1,...,emle’l,...,e;)-p(el,...,em,eg,...,e,@lei’,...,el’(’).
e) if(el,...,emlei,...,e;l) and (ei’,...,el’c’,el,...,emlei,...,e;l) are in T, then
p(ei’,...,e”,el,...,emle;,...,e;,)=p(el,...,em|ei,...,e,’1).

A pair (Ey,—) with E, and — satisfying condition 1) of definition II.1:1 will
generally be called an “event structure”.

In a tuple of the form (eq, ..., em|e’1, ...,eh) (eq,...,e,) will be called the “premise”,
(e;, ..., e}) will be called the “outcome” and p(ey, ... ,emle;, ...,e) will be called
the “conditional probability” or shorter “p-value”. It is sometimes necessary to
consider tuples of this form, without assuming them to be elements in T. We
shall call such tuples “formal processes”.

An ordered tuple (eq,...,e,) of events will sometimes be called a “course of
events”. For a process (ey, ..., ey ei, ..., el) the premise (eq, ... ,e,) will, in certain
discussions, alternatively be called the “initial conditions” of the course of events
(e;, ...,e}). We shall make no essential distinction between the n-tuple (e, ...,e,)
and the corresponding sequence ey, ... ,e,.

We shall in the following use the notation E, E’, Ey, ... for ordered tuples (se-
quences) of events in E; in order to get shorter notations. Thus, e.g. if E =
(efy....em), E' = (ei,...,e;,), E" = (e’l’,...,e;’) and e is in E|;, we shall instead
of (e1,...,em,e,.e’, ... ,e;llei', ...,e!) use the notation (E,e, E’'| E”) and so on. We
write £, C E, if E; is a subsequence of E,.

We denote by E any of the 2" sequences E = (e, ...,e,) where E =(ey, ..., e,).

An important feature of this structure is that initial conditions and outcomes are
described by the same kind of concepts (events). The outcome of one process can
therefore be used as initial conditions in another subsequent process. Similarly,
the complete set of events in the initial conditions and outcome of one process can
be considered as the outcome of another larger process. These considerations will
be taken up in the next section.
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The concept of stochastic event structure is more general than the common con-
cept of “stochastic process”, which considers times series of transitions in a given
state space. Two mutually “incompatible” sequences (ej, ..., ey,) and (ef,...,e;)
can each be a possible course of events. Thus we have not only the problem of
studying probabilities of given events, but also the choice between mutually in-
compatible sequences of events is an important subject of consideration in the
present theory. The definition of the concept of “compatibility” will be given in
the next section.

Let (Ey,—, T, p) be a given stochastic event structure.

Theorem I1.1:2. If (E|E’)isin T and E” C E’, then
P(E|E") = p(E|E’).

Proof. By condition 3b) of definition II.1:1 p(E|E”) is a sum of nonnegative
terms, one of which is p(E|E"). ]

Theorem II1.1:3. Multiple occurrences of the same event e in the outcome of a
process does not change its p-value, i.e.

P(E|Ey,e, Ey e, E3)=p(E|Ey e, Ey, E3) = p(E|Ey, Ey, e, E3)
Proof. By 3b) of definition II.1:1
P(E|Ey,e, Ey, E3) = p(E|Ey, e, Ey,e, E3) + p(E|Ey, e, Ey, —e, E3)

and the last term equals zero according to 3c) of definition II.1:1. [

Theorem I1.1:4. Let .S = (Ey,—,T,p) be a stochastic event structure and EO’ a
subset of E, which is closed under the operation —. Let T’ be the set of all pro-
cesses (E|E’) in T built from sequences E, E’ of events in Ej and let -’ and p’
be the restrictions of — and p to Ej and T respectively. Then S’ = (Ej,=".T".p")
is a stochastic event structure which will be called the restriction of S to Ej and

will be denoted by Slg.
0

Proof. Conditions 1), 2), 3a)-e) of definition II.1:1 for S’ follows immediately
from the corresponding conditions for .S L]

II.2 Compatibility of Events

We shall now consider sequences of events and processes as embedded in the
outcome (ei, ..., en) of a larger process (eq, ... ,emlei, ...,e}) in a given stochastic
event structure (Ey, —, T, p).

The following theorem establishes the consistency in considering a process as
embedded in the outcome of another process and the consistency in interpreting
pley, ... ,em|ei, ..., e}) as a “conditional probability”.
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Theorem II.2:5. Suppose that (eq, ..., emle’l, ...,eh) and (ei’, .,eflet, ... el)
are processes in T" such that (eq, ..., e, ei, ..., e}) is a subsequence of (ei”, cesel).
Then

p(ei’,...,eg’lel,...,em,e’l,...,e;,)=p(ei’,...,eg’lel,...,em)-p(el,...,em|ei,...,e;,).

Proof. Suppose that p(ef,....,e{|ey,...,ey) is nonzero. Then, by condition 3d)
of definition II.1:1 (ei’,...,eg’,el,...,em|ei,...,e,’1) is in T and condition 3e) of
definition II.1:1 gives that

p(ei’,...,eg’,el,...,emlei,...,e;,)=p(e1,...,em|ei,...,e;,).

The result then follows from the second statement of condition 3d) of definition
II.1:1.

If p(ei’, ...,e"eq,...,ey) =0, then condition 3b) of definition II.1:1 gives that
also
p(ei’, celleq,... ,em,e’l, ...,eh) =0 so the result is true also in this case. O

It should be noted that property 3e) of definition II.1:1 is crucial for this result.

The p-value (conditional probability) of a given outcome (ef, ..., ;) is always
defined relative to some premise (ey,...,e,). With another premise, especially
a larger one containing (eq,...,e,,), the p-value generally has a different value
(except for the important case covered by 3e) of definition II.1:1). However, for the
special case p = 1, the premise can be given a more absolute meaning according
to the following theorem.

Theorem I1.2:6. Suppose
1) E'CE”
2) There exists an E™ such that
a) (E"|E",E)isinT
b) p(E" | E") nonzero
3) (E’|E)isin T and p(E'|E)=1
4) (E"|E)isin T
Then p(E”|E) = 1.

Proof. By assumptions 1), 2a) and condition 2) of definition II.1:1 (E"”|E’, E) is
in T. By 3) and theorem I1.2:5 p(E" |E’, E) = p(E"|E’). By condition 3b) of
definition IL.1:1 p(E"|E',E) = ¥ p(E"|E",E) and p(E"|E') = Y p(E"|E")
where the sums are over all E” = (e, ... ,e,), with E” = (ey,...,e,), such that
e;=e;if e;is in E’. But, since according to theorem II.1:2

p(E"|E",E) <p(E"|E"),

the preceding equalities are possible only if all inequalities become equalities and
especially
p(E/N |Ell’ E) — p(ENI |Ell)'
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Since, by assumption 2b) p(E" | E") is nonzero, assumption 4) and theorem I1.2:5
gives
p(E"|E) = p(E"|E", E)p(E"|E") = 1.

O

Definition II.2:7. A sequence (e, ..., e,) of events is called compatible if there ex-
ists a process (ei, ...,ehler,...,e,) in T with (eq,...,e,) as outcome. A sequence
is called possible if it is compatible and plel, ... ,emley, ... ,e,) is nonzero for some
(e’l, ceeslh).

Definition I1.2:8. A set of sequences (ei, ceseh), (ei’, ...,eM), ...is called com-

patible (possible) if there exists a compatible (possible) sequence E containing all

e’l,...,e,’n,e”,...,e;,',....

Definition I1.2:9. A set A of (formal) processes (E1’|E{’ ), (E5|Eé’ ), ... is called
compatible if there exists a compatible sequence E containing E!, E 1”, Eé, Eﬁ’,
The set A of (formal) processes is called (formally) possible if there exists a pro-
cess (E"|E) in T, such that E contains all the (formal) processes (E{|E{’ ), ...
and p(E"| E") is nonzero for some subsequence E”” of E which contains all the
premises E/, Eé,

Remark 1. With these definitions, condition 2) of theorem I1.2:6 can be expressed
as “(E"|E) is formally possible®.

Remark 2. If (E|E’) is formally possible, then, by theorem I1.2:5, the property
of theorem II.1:3 holds also for events in the premise E, i.e.

p(...,e e .| )=pl..,epeeyy] o )=p(ey,.ie ] )
(provided that the corresponding (... | ...) are elements in T).

Theorem IL.2:10. A subsequence of a compatible (possible) sequence is compat-
ible (possible).

Proof. Animmediate consequence of condition 2) of definition II.1:1 and theorem
IL1:2. [

Definition I1.2:11. A (formal) process Q' is said to be a (formal) subprocess of a
process Q = (E|E’) if it has one of the forms Q' = (E,E”Eé) or Q' = (E{|Eé)
with (E{, E]) C some E ', where E{ may be empty in the first case.

Theorem I1.2:12. Let Q = (ey,... ,emle;, ...,e}) be a process in the stochastic
event structure .S = (Ey,—, T, p) and let Eé be the set containing

el,—el,...,em,—em,e{,—e{,...,e,’q,—e,’q.

Let T be the set of all subprocesses of Q and let —’ and p’ be the restrictions of

—and p to Ej and T" respectively. Then S’ = (E,—',T",p’) is a stochastic event
structure.
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Proof. One easily checks that 1), 2), 3a)—e) of definition II.1:1 for the structure
S’ follow directly from the construction and the corresponding conditions for the
structure S. O

Definition II.2:13. The stochastic event structure .S’ of theorem I1.2:12 is said
to be spanned in .S by Q. It will also be called the restriction of .S to Q and be
denoted by Slg. A stochastic event structure of this form is called simple.

A simple stochastic event structure .S’ is spanned (in itself, S") by one of its pro-
cesses. The smallest structure containing a given process is given by the following
theorem.

Theorem I1.2:14. Let QO = (E|E’) be a process in a stochastic event structure
S = (Ey,—,T,p) and Eé be defined as in theorem I1.2:12. Let T” be the set of
all subprocesses of Q of the form Q” = (E, E1’|Eé), E’, Eé C some E’ (E]’ may
be empty), with p(E|E|) nonzero if E| is nonempty, and let —” and p” be the
restrictions of — and p to Eé and T”. Then S” = (E(’), =", T", p") is a stochastic
event structure.

Every stochastic event structure which is a substructure of .S and contains Q
contains S”.

Proof. The same as that of theorem I1.2:12. The last statement follows from the
construction and condition 3d) of definition II.1:1. L]

Definition I1.2:15. A stochastic event structure of the form .S” of theorem I1.2:14
will be called the minimal simple stochastic event structure spanned by the process

of 0.

Definition 11.2:16. Let Q = (E|E’) be a process and Q' = (E, E{|Eé) or Q' =
(E { |Eé), E’, Eé C some E’ and E { nonempty, be a formal subprocess of Q. O’
is called nonsingular (singular) with respect to Q if p(E |E1’) is nonzero (zero).
A subprocess of the form (E|EJ) is defined as nonsingular. A simple stochastic
event structure .S’ spanned by Q is called nonsingular if all processes in .S are
nonsingular with respect to Q.

A minimal simple stochastic event structure is nonsingular. A nonsingular sub-
process of the form (E| |Eé), E{ C some E’, of aprocess (E|E’) is possible since
E; is a premise with p(E| E”) nonzero. A nonsingular subprocess to (E|E’) of the
form (E, E{| E}) is possible if (E| E], E}) is formally possible.

The restriction of a stochastic event structure to the set of all nonsingular sub-
processes of a given process Q defines a nonsingular simple stochastic event struc-
ture spanned by Q. (One easily verifies conditions 1)-3) of definition II.1:1.)

Theorem I1.2:17. In a minimal simple (or nonsingular simple) stochastic event
structure spanned by a process Q = (E|E’), the p-values are uniquely determined
by the p-values p(E|E") of the subprocesses to Q of the form (E|E’).

Proof. Follows from condition 3d) of definition II.1:1 and theorem II.2:5. |
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Theorem I1.2:18. Let E, be the set containing the 2(m + n) elements

€1,—€1,...,€py, _emaega_ei7 78;’1’ _ell’l
and let — be the operation on E interchanging e; and —e; and e/ and —e]. Let T be
the set of all tuples (E, E | E,) where E = (ey,...,ep), (E|, E;) C some E’ where
E"=(ej,...,e}) and E| may be empty, and Tj be the subset of T" of tuples of the
form (E|E’). Let p, be a nonnegative function on T, with

Y po(EIEN)=1.
El

Then there exists a subset T; of T' containing Tj and an extension p; of p, to T}
such that S' = (E,, —, T}, p) is a minimal simple stochastic event structure spanned
by (E|E’). T} and p; are uniquely determined by these conditions.

Proof. Let T} be the subset of T of all tuples (E, E{|E,) such that either E; is
empty or p(E|E’) is nonzero for some E’ containing E;. We define

P(EIE)= ) py(E|E") M

E'DE,
for elements in T; of the form (E|E,) (E, empty), where the sum is over all E’
containing E,. For elements in T of the form (E, E||E,), E; non-empty, we

define
PI(E,E\|Ey)) = p|(E|E, Ey)Ip|(E|E)) )

(this is possible since p;(E|E;) is nonzero in this case). By (1) we have that
(E, E|| E,) with E| nonzero is in T} iff p;(E|E;) is nonzero. We have to prove
conditions 1)-3) of definition II.1:1 for .S. 1) and 2) are obvious. The conditions
3c) and 3e) are empty in the present case and thus trivially satisfied.

By summing (1) over all E, we get

Y P(EIE)=)" ) po(EIE)= ) po(EIE)=1.
E, E'SE, all E
If E is nonempty and (E, E|E,) is in T}, we find by summing (2) over E,, that

Y P EE) = (Y pi(EIEyEx) )ipi (EIEy)
E, E,

=X X po(lig'))/pl(ElEl)=( > po(EIE) )Ipi(E|Ey)
Ey E'S(E|Ey) E'SE,
=piI(E|E)/p1(E|E)) =1.

Thus 3a) is proved for both types of elements in 7.
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To prove 3b), suppose E; C E] and (E, E1|E}) is in T. By (1)

P(EIELE)= Y pyEIEN= ) > po(EIE)
E'S(E,Ey) E)>E, E'>(E\.E))
= Z piI(E|E,, E)).
E)DE,

Putting E; empty or dividing by p;(E|E;) we get

pI(E,E||Ey)= Y pi(E,E||E})
E)DE,

and 3b) is proved.

For an element in T of the form (E| E,), condition 3d) coincides with the defi-
nition of T} and (2). If (E, E|| E,, E3) is in T and p(E, E;| E,) is nonzero, then,
by (2),

pI(E,E||Ey, E3) =p(E|E|, Ey, E3)/p|(E|E))
=p|(E,E\, Ey|E3) - pi(E|E}, Ey)/pi(E|E})
=pi(E,E\, E5|E3) - pi(E, E|| Ep)

and 3d) is proved also in this case.
Finally, the uniqueness of T; follows from definitions II.2:13 and I1.2:15 and
the uniqueness of p; follows from theorem 11.2:17 OJ

Theorem 11.2:19. Let S = (Ey,—,T,p) be a minimal simple stochastic event
structure spanned by a process Q = (E|E’) and let T’ O T be a set of nonsin-
gular formal subprocesses of Q. A necessary and sufficient condition for that p
can be extended to a p’ on T such that S’ = (E,,—,T’, p’) is a nonsingular simple
stochastic event structure is that

1) if (E{|Ey)isin T’ and E; C E,, then (E{|E3) isin T’

2) if (E{| E,, E3)isin T’ with (E|, E,, E3) C some E’ and p(E|E,, E,) is nonzero,
then (Eq, E;| E3) isin T

3) if p(E| E;, E,)isnonzero and (E,| E3)isin T’, then p(E, E{, E;| E3) = p(E, E,| E3).
If such an extension p’ of p exists, it is unique.

Proof. The necessity of 1) and 2) follows from conditions 2) and 3d) of definition
IL.1:1 (the second statement, p(E| E{, E,) nonzero, of 2) implies p(E; | E,) nonzero
if S’ is a stochastic event structure). If S’ is a stochastic event structure, condition
3) follows from 3e) of definition II.1:1 by noting that p(E,| E3) equals p(E, E,| E)
and p(E, E|, E,| E5). The uniqueness of p’ follows from theorem I1.2:17.

We now prove the sufficiency.

A formal subprocess in T’ not in T' must be of the form (E | E,) with (E;, E,) C
some E’. Define p'(E||E,) = p(E, E{| E;)/p(E| E}) in this case (p(E| E;) is nonzero
by the assumption of nonsingularity of the elements in 7’). We have to check

113



the conditions 1)-3) of definition II.1:1 for .S’. Condition 1) is obvious and con-
dition 2) follows from assumption 1). To check condition 3) we first note that
p'(Eq|E,) <1, since p(E|Eq, E;) < p(E| E}) by theorem II.1:2. Condition 3a) for
p'(E|| E,) follows from condition 3b) of definition II.1:1 applied to p(E|E|) and
P(E|E}, E,) and the definition of p’'(E | E,).

Similarly, by applying 3b) to p(E|Ey, E}) and p(E|Ey, E,), E) C E, and di-
viding by p(E|E;) we obtain condition 3b) for p’(E;|E;). Condition 3c) for
p'(Eq| E,) follows from 3c¢) for p(E|Eq, E5).

The first part of 3d) follows from assumption 2). If p(E|E;, E,) is nonzero,
then, by condition 3d) for p,

P(E|Ey, Ey, E3) = p(E|Ey, Ey) - p(E, Ey, E>| E3).
Thus, by definition of p’,
P(E, Ey, E5| E3) = p'(Ey, E3| E3).
Substituting this and dividing by p(E|E;) we get
P'(E\|Ey, E3) = p'(E\| Ey) - p'(Ey, B3| E3)

and condition 3d) is proved.

To prove condition 3e) for p’, assume (E,|E3) and (E|, E;|E3) are in T’ and
(E,, E3) C some E’. There are two cases, E; C some E’ or E| = (E.E)), E| C
some E’. Suppose E; C some E’. By the preceding argument p(E, E;, E;| E3) =
p'(Ey, E5| E5) and similarly p(E, E;|E3) = p’(E,| E3). Assumption 3) then gives
Dp'(E1, E>| E5) = p’'(E,| E3) and 3e) for p’ is proved in this case.

In the other case we have, by the same argument

p'(Ey|E3) = p(E, E5| E3) = p(E, E{, E5| E3) = p(Ey, B3| E3)
=p'(Ey, Ey| E3)
and 3e) for p’ is proved also in this case. [

We conclude this section by noting that the study of any compatible (possible)
system of events or processes can be reduced to the study of a simple (nonsingular
simple) stochastic event structure.

II.3 Time-ordered Stochastic Event Structures

Definition I1.3:20. A stochastic event structure with time is a structure (Ey, —, T, p, 1)
such that (Ey,—, T, p) is a stochastic event structure and ¢ is a realvalued function
on Ej such that

1) t(—e) =t(e) for every e in E,.

2) If (eq, ... ,emlei, ...,el)isin T, thent(e)) < ... <t(e,) < 1(e}) < ... <t(ep).
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3) If (eqs, ... ,emlei ,ep)isin T and t(e] |, = 1(e})), then

! !’
€1

k+1
(el,...,e,,,|ei,...,el’(+1,e,’€,...,e;,) isin T and
p(el,...,emle;,...,e,’(,e,’cﬂ,...,e;)=p(e1,...,emle;,...,e,’(+l,el’(,...,e;l)
4) If (e, ....ex. €41, emle],....ep) is in T and t(ey 4 1) = 1(ey), then
(el,...,ek+1,ek,...,emleg,...,e;,) isin T and
plers. ... ppts. . emlel,...oef) =pley,....ex 1. €, ... eple], ... ep)

t(e) will be called the time of e. If #(e;) = t(e;), e; and e, will be called simulta-
neous. A sequence (eq,...,e,) is called time-ordered if t(e;) < t(e;) < ... <ft(ep).

If E, and E, are two finite time-ordered sequences containing the same ele-
ments, then one of them can be obtained from the other by a finite number of
interchanges of two consecutive simultaneous events. We shall say in this case
that E; and E, are equivalent.

If (E||E]) is a process and Ey and E7 are equivalent to E; and E] respectively,
then by definition I1.3:20, (E; | E) is also a process which has the same p-value as
(E,|E}). We shall say in this cae that (E1| E}) and (E,| E}) are equivalent.

Any finite set F of events can be ordered to a a time-ordered sequence, and
this sequence is determined uniquely up to equivalence by F. Two sets F; and F,
determines uniquely up to equivalence a process (E;|E,) (if this is an element in
T) where E; and E, are time-orderings of F| and F, respectively. This makes it
consistent, when dealing with stochastic event structures with time, to introduce
the notation (F|F,) for any of these processes and thus not distinguish between
equivalent processes. Thus, e.g., we can write (E|E;, E,) without assuming that
(Eq, E,) is time-ordered. The expression “(E|Eq, E;) is a process” thus means
that time-ordering E and the union of E; and E, results in two sequences which
constitute an element in 7. ¢ defines an order relation on E; which we shall denote
by |, thus e;|e, means #(e;) < t(e;). For sequences (or sets) we shall write E’'|E”
if e’|e” forall e’ in E’ and e” in E”.

To get a general framework for a theory in concordance with the theory of
relativity, we also need a more general concept of time-ordering in a stochastic
event structure.

Definition I1.3:21. By a “time-ordered event structure” we shall mean a structure
(Ey,—, |) such that (E, —) is an event structure and | is a relation e |e,, called time
ordering, between elements e, e, in E such that

1) eq|e; implies e e, .

The relation | will generally not be supposed to be transitive. If F; and F, are
sets of events we shall write Fi|F, if e||e, for all e; € Fy, e; € F,.

If F={ey,...,e,} is a finite set of events we shall denote by F any of the 2"
sets {ey,...,e,}. The sets F are called alternatives to F.

Definition I1.3:22. By a “general time-ordered stochastic event structure” we shall
mean a structure (Ey, —, T, p,|) such that
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1) (Ey,—,|) is a time-ordered event structure.

2) T is a set of pairs denoted (F;|F,) where F; and F, are nonempty finite sets
of events in E|, such that
a) Fi|F,
b) if (F;|F,) €T and @ # F5 C F,, then (F|F3) €T for any alternative F5
to F3.
3) pis a function from T to the closed interval [0, 1] such that
a) if (F|F,) € T, then Y p(F|F,) = 1, where the sum is taken over all
alternatives to F,
b) if (F|F,) €T and @ # F5 C F>, then

p(F|F)= ) p(Fi|Fy)
Ey)DH

where the sum is taken over all alternatives F, to F, which coincide with
F; on this subset.

¢) p(F1|F,) =0if F, contains both an event e and its opposite —e.

d) if (Fl |F2 V] F3) eT, Fz, F3 56 a, F2|F3 and p(Fl |F2) > 0, then

(F] UF2|F3) €T and
p(F1|F,U F3) = p(F{| F,) - p(Fy U F| F3).

G) if (Fl UF2|F3) eT, Fl’ F2 ;é @, F1|F2 and (F2|F3) €T then
p(F\ U B| F3) = p(F,| F3).
We shall mainly (except in sections I1.5 and I1.6) restrict ourselves to structures

which are linearly time-ordered according to the following definitions.

Definition I1.3:23. Let (Ej,—,|) be a given time-ordered event structure. A se-
quence (ordered n-tuple) of events (ey,...,e,) is said to be time-ordered if e;|e;
for i < j. We shall say that a set F = {eq,...,e,} of events admits of a linear
time-ordering if (e’l, ...,e}) is time-ordered for some permutation (e’l, ....ep) of
(eq,...,ep). In this case we shall say that (e;, ...,e}) is a linear time-ordering of F.
Two time-ordered sequences containing the same elements are called equivalent.

Definition II.3:24. By a linearly time-ordered stochastic event structure we shall
mean a structure (Ey,—, T, p,|) where (Ey,—,T,p) is a stochastic event structure
and | is a relation between events such that

1) (Ey,—,|) is a time-ordered event structure
2) if (eq, ...,em|ei, ....e;) €T then

a) e,~|ej 1fl<]

b) e”e} ifi<j
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c) eile} foralli=1,....m,j=1,...,n,

3) If (E,|E) €T, E| is a time-ordered permutation of Ey, and EJ is a time-
ordered permutation of E,, then (E 1 |Eé) €T and p(E 1 |Eé) = p(E | Ey).
Two processes (Ey| E,) and (E{| E}) satisfying condition 3) are called equiv-
alent.

Theorem I1.3:25. Let S = (Ej,—,T,p,|) be a general time-ordered stochastic
event structure satisfying the condition

1) if (F}|F,) €T, then F; and F, admits of linear time-orderings.

Let T’ be the set of all pairs (E; | E,) where E; and E, are linear time-orderings of
some F| and F, respectively with (F||F,) € T and define p’(E||E,) = p(F{|F>)
in this case. Then S’ = (E,,—,T’,p’,|) is a linearly time-ordered stochastic event
structure.

Proof. Conditions 2) and 3a)—e) of definition II.1:1 for the structure (Ey,—, 7", p’)
follow from the corresponding conditions 2b) and 3a)—e) of definition I1.3:22 for
the structure S. Thus (Ey,—,T",p’) is a stochastic event structure. Conditions
1)-3) of definition II.3:24 for the structure .S’ are obvious from the definition of
T’ and p’. ]

Theorem I1.3:26. Let S’ = (E,,—,T',p’,|) be a linearly time-ordered stochastic
event structure. Let T be the set of all pairs (F;|F,) such that F; and F, are
finite sets of events and there exists a process (E;|E,) € T’ with E; and E, linear
time-orderings of F| and F, respectively and define p(F;|F>) = p’(E| E,) in this
case. Then S = (Ey,—,T,p,|) is a general time-ordered stochastic event structure.

Proof. The definition of p(F;|F,) is consistent since different representations by
time-ordered processes (E;|E,) have the same p’-value according to condition
3) of definition I1.3:24. Conditions 1), 2) and 3a)—c) of definition I1.3:22 for the
structure S follow from definition I1.3:24 and conditions 1), 2), and 3a)-c) of
definition II.1:1. To prove condition 3d) we note that F, and F3, being subsets of
F,U F; which admits of a linear time-ordering, can be represented by time-ordered
sequences E, and Ej respectively. F,|F; then implies E,|E5. Thus the process
(Fy|F, U F3) can be represented by (E||E,, E;) where (E,, E3) is time-ordered.
Condition 3d) of definition I1.3:22 then follows from condition 3d) of definition
IL.1:1 for the structure (Ey,—,T",p’). Condition 3e) is proved by a similar argu-
ment. U

Lemma II.3:27. Let A be a set and a; Ra, a relation between elements a;, a, in
A. Let A’ = (a’l, ...,ay)and A" = (ai’, ...,al) be two finite sequences of elements
in A containing the same elements and ordered with respect to R i.e. a] Ra} and
a;’Ra}’ ifi<j,i,j=1,...,n. Then A” can be obtained from A’ by a sequence
of permutations, each consisting in the interchange of two consecutive elements
ay, a, for which a; Ra, and a,Ra;.

Proof. We prove it by induction over the number #n of elements in A’ (A”). The
staement is obviously true if n =0, 1 and 2. Suppose it is true for all subsets with
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less than n elements. Let A’ = ay,a},...,a),a,A; and A” = ay,a{,...,aj,a;, Ay
be two arbitrary ordered sequences of the same n elements, where we have chosen
a notation to indicate where the first elements in the sequences a; and a, respec-
tively occurs in the other sequence. (A; and A, denote sequences which need not
be specified further.) By the ordering assumption aiRay, ayRay, ayRal, alRa,,
i=1,...,pand alRa” a”Ra1 Jj =1,...,q. By successively interchanging a,

with a,...,ap,a; we obtaln the ordered sequence a,,a,a’,...,al., A;. The two
a;,a q 2,41, 4 p> A1
sequences al, ey p, A; and a1 s q ', A, are two ordered sequences of the same

n—2 elements. Thus, by the induction assumption, the latter can be obtained from
the former by successively permuting consecutive elements. This is then true also

for the two sequences ay, ay,aj, ...,a,, A and ay,ay,af, ..., aj, Ay. Finally, by in-
terchanging a; successively with a1 S a(’I’ we obtain a,,a 1 e ag, ai, A,. Thus,
the statement is true also for sets of n elements. L]

Theorem I1.3:28. Suppose that (Ej,—,T,p) is a stochastic event structure and
that | is a relation between elements in E satisfying 1) and 2) of definition I1.3:24
and such that

1)If(el,...,emle;,...,e,’(,e,’cﬂ,... )1s1nTandek+l|e’ then
(el,...,emle;,...,el’ﬁ],el’(,..., e/)isin T and
pley,....emlel, ... ep ep ysomnep) =pleg, ... emlel,...ep . ep, ... ep)

2) If(el,...,ek,ekH,...,emlei,...,e;,) isin T and e;|ey, then
(el,...,ek+1,ek,...,emlei,...,e;,) isin T and

plers....eppps. . emlel,...oef) =ple, ... exq1. e, ... emle], ... ep).

Then (Ey,—,T,p,|) is a linearly time-ordered stochastic event structure.

Proof. Conditions 1) and 2) of definition 11.3:24 for (Ey,—, T, p,|) is satisfied by
assumption and condition 3) follows from assumptions 1) and 2) by applying
lemma I1.3:27.

Theorem I1.3:29. Let (E,,—, T, p,?) be a stochastic event structure with time and
e||e, be the relation t(e;) < t(ey). Then (Ey,—,T,p,|) is a linearly time-ordered
stochastic event structure.

Proof. Conditions 1) and 2) of definition I1.3:24 follow from conditions 1) and 2)
of definition I1.3:20. Condition 3) of definition II1.3:24 follows from conditions 3)
and 4) of definition I1.3:20 by applying theorem II.3:28 (or from the discussion
following definition I1.3:20). U

II.4 Space and Spacetime Localization of Events

Definition I1.4:30. By a stochastic event structure with time and instantaneous
space localization we shall mean a structure (E,, —, T, p,t, C) such that
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1) (Ey,—,T,p,t) is a stochastic event structure with time.
2) Cis arelation e C R between elements e in Ej and subsets R of R3 such that
a) e C Rimplies —e C R
b) e C RC R’ implies e C R’
c)eCRandeC R’ implieseC RNR'.
An event e with e C R C R3 and #(e) = t can be considered as localized to the
“space-time”-region R’ = R {t} C R3x R! = R# and we shall write e C R’
Definition I1.4:31. By space-time we shall mean R* considered as R3 x R!. For
apoint X = (x,1) = ((xy,Xp,x3),1) = (X1,X7,X3,1) in space-time, x = (xy, X2, X3)
will be called the space coordinates or components and ¢ will be called the time
component or simply the time. We define a time-ordering relation | on R* in two
different ways:
a) “pure time-ordering”: for X’ = (x/,#’) and X” = (x",t") in R* we define
X'| X" tomean ¢’ <t”
b) relativistic time-ordering”: for X’ = (xi,xé, xg, t")yand X" = (x’l’,xé’, xg’, t")
in R* we define X’| X" to mean that not both

I — )2 I — )2 P N2 (4 — )2
(x1 xl) +(x2 x2) +(x3 x3) @ -1")><0
and
>t

In both cases a) and b) we define R’|R” where R’ and R” are subsets of R%, to
mean that X’| X" for any points X’ in R’ and X” in R".

Definition I1.4:32. By a space-time localized stochastic event structure we shall
mean a structure (E,, —, T, p, |, C) such that

1) (Ey,—,T,p,|) is a general or linearly time-ordered stochastic event structure.

2) C is a relation between elements e in E( and subsets R of R* = R3xR! such
that
a) e C Rimplies —e C R
b) eC RC R’ impliese C R’
c)eC Rand e C R’ implieseC RN R’

3) ejley iff e; € R, and e, C R, for some subsets R; and R, of R* with R;|R,
where the latter |-relation is given by definition I1.4:31 a) or b).

There should be no risk of confusion in using the same symbol | for the relation
e |62 and R1|R2.

By the argument following definition I1.4:30 a stochastic event structure with
time and instantaneous space localization can in a natural way be considered as
a space-time localized stochastic event structure with pure time-ordering. On the
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other hand, let S = (Ey,—,T,p,|,C) be a linearly time-ordered space-time local-
ized stochastic event structure with either pure or relativistic time-ordering. Let
E} denote the subset of those e for which e C R {t} for some R C R3 and 7 in
R!. Then, by theorem II.1:4, S’ = (Eé,—’,T’, p') is a stochastic event structure.
Forein Ejand RC R3 we define e C R and #(e) =t if e C R X {t}. If S has pure
time-ordering, then obviously (E!,—',T',p’,t,C) is a stochastic event structure
with time and instantaneous space localization.

If S has relativistic time-ordering, let T’ be the subset of those processes
(e1,....emle},....e}) in T for which #(e)) < ... <1(ey) <t(ef) < ... <1(ep). One
easily finds, checking conditions 1), 2) 3a)—e) of definition II.1:1, that (E!,—,T", p)
is a stochastic event structure (— and p are here understood to mean restrictions to
E(’) and T respectively) and thus (E!,—,T', p,t,C) is a stochastic event structure
with time and instantaneous space localization.

IL.S Initial and Boundary Conditions

Let (Ey,—,T,p,|) be a given general time-ordered stochastic event structure.

Definition I1.5:33. By a process with boundary conditions, we shall mean a tuple
(Ey; Eg||E) of three sequences E;, Eg, E such that

1) E;|E if E; and E are nonempty
2) (E;, Eg|E) is formally possible

3) if E' C E, then, for every E” for which (E”|E;, Eg, E') is a process and
p(E"|Ey, Ep)isnonzero and forevery E' = (e, ...,e,) where E' = (ey, ..., e,)
the quantity

P(E"|E;,Ep, E)Ip(E"|Ey, Ep)

has one and the same value independent of E”. This value is denoted by
p(Er; Eg||E’). (We have adopted a notation in terms of sequences instead
of the corresponding sets. Thus e.g. Ej, Eg, E’ should be interpreted as
F;U FgU F' according to definition I1.3:22. The definition of “formally pos-
sible” for a process in a general time-ordered stochastic event structure is quite
analogous to definition 11.2:9.)

In E;; Eg|E E; will be called the initial conditions, Ep will be called the
boundary conditions and E will be called the outcome.

We shall denote this new p-function with the same letter p as that in the structure
(Ey,—,T,p,t). There will be no risk for confusion since the two functions act on
different types of arguments. It is natural to consider the function p(E;; Eg|| E) as
an extension of the p in (Ey,—, T, p,|).

Theorem I1.5:34.
0<p(E;; EBl|E)L 1.

Proof. Animmediate consequence of the analogue for general time-ordered stochas-
tic event structures of theorem II.1:2 L]

120



It will be practical to have a notation for a process with boundary conditions
in which the division into initial conditions and boundary conditions is not ex-
plicit. Let E;p denote the combined sequence of initial and boundary condi-
tions. Ejp can then be divided into an E; containing all e in E;g with e|E
and Eg = E;p — E;. This makes it consistent to use the notation (E; | E) for
a process with “initial and boundary conditions” E;g and outcome E. Note that
the definition I1.5:33, except for 1), actually does not depend on the division of
E;p = (E[,Ep)into E; and Eg. If Ep happens to be empty, then the process
(E;gllE) can be identified with the process (E;g|E) if it happens to be an el-
ement in 7. We shall also alternatively call (E;||E) a generalized process. A
process (E{|E) in T is a generalized process if (E;|E) is formally possible.

The generalized processes have properties similar to those of processes given
in definition II.1:1.

It is obvious from definition I1.5:33 that if (E; || E) is a generalized process, then
(E(||E) where E =(ey,...,e,), E=(ey,...,e,), is also a generalized process.

Theorem I1.5:35. If (E| || E) is a generalized process, then Y’ p(E || E) = 1, where
the sum is over all 2" combinations E = (e,, ..., e,), where E =(ey,...,e,).

Proof. If (E"|E|,E)isin T and p(E"|E;) is nonzero, we have according to 3b)
of definition I1.3:22 that p(E” | E}) = Y. p(E"| E}, E). Thus

Y P(E(E) =Y p(E"|Ey, EVp(E"|Ey) = 1.

O

Theorem I1.5:36. If (E|| E,) is a generalized process and E, C E|, then (E|| E,)
is also a generalized process and

PENE) =Y p(E|E)

where the sumisoverall E; = (ey,...,e,), where E| = (e, ...,e,), suchthate;, = ¢;
if e; is in E,.

Proof. Suppose (E||E) is a generalized process. Since (E, E;) is formally pos-
sible, (E|E,) is also formally possible, which proves condition 2) of definition
11.5:33 for (E|| E,) to be a generalized process.

Suppose E’ C E,, (E"|E,E’) is a process (in T) and p(E”|E) nonzero. We
have to prove that p(E” |E, E')/p(E” | E) is independent of E”. But since E’ C E|
and (E||E;) is a generalized process, this follows from the corresponding con-
dition on (E||E;) according to definition 11.5:33. Thus (E|| E,) is a generalized
process.

Choose E” such that (E"”|E, E;) is a process and p(E" | E) nonzero. (This is
possible since (E|| E;) is, by assumption, a generalized process.) Then, by 3b) of
definition 11.3:22

P(EN|Ey) = p(E"|E, Ep)lp(E" |E) = )" p(E"|E, E})/p(E" | E)
=Y p(EIE)
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and the second statement of the theorem is proved. OJ

Theorem I1.5:37. If (E||E’) is a generalized process and E” C E’, then
p(E|[E") 2 p(E||E").

Proof. By theorem 11.5:36, p(E|| E”) is a sum of nonnegative terms, one of which
is p(E||E"). L]
Theorem I1.5:38. If (E|| E, E,) is a generalized process and p(E|| E}) is nonzero,
then (E, E{|| E,) is also a generalized process and

P(E, E\||Ey) = p(E|Ey, E))/p(E| EY).

Proof. Choose E” such that (E”|E, Eq, E,) is a process and p(E" | E) is nonzero.
Then, p(E"|E, E ) = p(E"|E) - p(E|| E;) is nonzero and thus (E, E,|E,) is for-
mally possible. This proves condition 2) of definition I1.5:33 for (E, E4|| E,) to
be a generalized process. To prove 3) of definition I1.5:33, suppose E’ C E,,
(E"™|E, Eq, E’)is aprocess and p(E" | E, E{) nonzero. Since, by theorem I1.5:36
(E||E;, E’") and (E|| E;) are generalized processes, we have

p(E’"|E,E1’E/) :p(E”’|E) 'p(E“El,E,) and
p(E"|E,E|)=p(E"|E)-p(E| E/).
Thus,
p(Ele’EI,E’)/I)(E’”E,EI) =p(E||E1,E,)/P(E”E1)

is independent of E” and (E, E;||E,) is a generalized process. Since the left
member of the preceding equality equals p(E, E;||E’), the last statement of the
theorem follows if we put E' = E,. O

Definition I1.5:39. We shall write E = E’ if (E||E’) is a generalized process
and p(E||E’')=1.
Theorem I1.5:40. Suppose

1) E,CE,

2) (E,| E) is formally possible

3) El = E
Then E, = E.
Proof. Supose E' C E, (E"|E,, E') is a process and p(E”|E,) is nonzero. We
have to show that p(E”|E,, E')/p(E"|E,) is independent of E” and equals 1 if
E'=E.

By 3) and theorem 11.5:37, p(E"|E,E’) = p(E"|E{). By 3b) of definition

11.3:22 p(E"|E\, E') = Y. p(E" | E,, E"), p(E" | E}) = Y. p(E"| E;) where the sum
isoverall £, =(e;,...,e,) where E; = (ey,...,e,) such that e; = ¢; if e; is in E;.

But, since by the analogue for general time-ordered stochastic event structures of
theorem I1.1:2 p(E”|E,, E') < p(E" | E,) this is possible only if p(E”|E,, E') =
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p(E"|E,) forall E, and especially p(E"|E,, E') = p(E" | E;). By 3b) of definition
11.3:22, p(E"| E;) = ¥ p(E"| E;, E") where the sum is over all E’. Combining this
with the preceding equality we find that all terms in the sum, except the one for
which E’ = E’, equals zero. Thus the quotient p(E”|E,, E')/p(E" | E,) equals 1
if E’ = E’ and equals zero otherwise and is thus independent of E”. O

Theorem I1.5:41. If E = E; and E, C E{, then E = E,.
Proof. A simple consequence of theorems I1.5:34 and I1.5:37. L]
Theorem I1.5:42. Suppose

1) E = E,

2)E = E,

3) (E|Eq, E,) is formally possible.
Then E = (E4, E).
Proof. By 3) we can choose an E” such that (E”|E, E{, E;)isin T and p(E"|E)
is nonzero. Then, by 1),

p(E"|E,E\)=p(E"|E) - p(E| E,)

is nonzero, thus (E, E|| E,) is formally possible. Theorem II.5:40 then gives that
(E\,E]) = E,if E{ C E; and theorem IL.5:41 gives that (E,E|) = EJif
E!'CE,.

) 2

Now suppose E| C Ej, E; C E,, and E” is an arbitrary sequence such that
(E"|E, E{, E]) is a process and p(E” | E) is nonzero. We have to prove that

P(E"|E,E|, E})/p(E"|E)

is independent of E” and equals 1 when E| = E; and E} = E,. By 1) and the-
orem IL5:41 p(E”|E, E{)/p(E"|E) = 1 and thus p(E"|E, E) is nonzero. Since
(E,E]) = E], we have p(E” |E,E{,Eé)/p(E”|E,E{) = 1. Combining these re-
sults we find p(E” |E) = p(E" |E, E’, E)). By 3b) of definition I1.3:22, p(E” |E) =
> p(E"|E, E', E}) where the sum is over all E}, E}, and, in view of the preced-
ing equality, this is possible only if all terms in the sum equal zero except the one
with E| = E and Ej) = E;. Thus the quotient p(E"|E, E, E3)/p(E" | E) equals
Lif E} = E| and E) = E} and equals zero otherwise and is independent of E”.
Thus (E||Ey, E) is a generalized process and putting E| = E| and E] = E; we

find that p(E|| E;, Ey) = 1. O
Theorem I1.5:43. Suppose

1) E, = E,

2) E, = Ej

3) (E1| E,, E3) is formally possible
4) (E,||E5) is a generalized process.
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Then El = E3.

Proof. By 3) we can choose an E such that (E|Eq, E,, E5)isin T and p(E|E;) is
nonzero. Then, by 1), p(E|E,, E,) = p(E|E,) and thus p(E|E,, E,) is nonzero,
and (E;, E,| E5) is formally possible. By theorem I1.5:40, and condition 2),
(E],Ez) - E3 and

P(E|Ey, Ey, E3) = p(E|E, Ey).
Condition 4) and theorem I1.5:37 then give

1> p(E || E3) = p(E|Ey, E3)/p(E|E))
> p(E|Ey, Ey, E3)/p(E|E)) =1,

thus p(El ”E3) =1. ]

II.6 An Example: Concordance of Measurements

As an example of application of the preceding formalism, we shall prove a simple
theorem on “concordance of measurements”.

Definition I1.6:44. By a “proving registration” or “proving measurement” we
shall mean a 3-tuple (E;g|| Ep; ER) such that

1) (E;gllEp, ER) is a generalized process, and
2) (Erp, Er) = Ep.

Alternatively we shall say that (E;p; E) is a proving registration (proving mea-
surement) of Eg.

Definition I1.6:45. By a “converse proving registration” or “converse proving
measurement” or “forcing registration” we shall mean a 3-tuple (E || Ep; ER)
such that

1) (E;gllEp, ER) is a generalized process, and
2) (Erp,Eo) = Eg.

Alternatively we shall say that (E; g; Eg) is a converse proving registration (mea-
surement) of Eg.

Definition I1.6:46. A triple (E; || Ep; ER) is called a double-directed or com-
plete measurement (registration) if it contains both a proving measurement and a
converse proving measurement.

Theorem I1.6:47. If
D) (EjGllE,; E) and
2) (EJ |l Ej Efp)
are proving measurements, and

3) (Epp Efp Epo B B, Ey)
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is possible, then

(Ejp. Efp. ER. Ep) = (E[), E[)).

If in addition
4) (Ej g, EfGllEf, Ef, E, ER)
is a generalized process, then

(E} o EJ | Efy Eji E g, Ep)

is a proving measurement.

Proof. By 3) (E} 3. E] . Ep, EI’QIE’O) is formally possible. 1) and theorem I1.5:40

then gives that

(Ejp-Efp. ER. ER) = E|,.
Similarly, we get
(Ejp-Efg. ER. ER) = EJ.
By 3) also (EIB,E}’B, ;Q’EﬁlE/ ,Eg) is formally possible and theorem I1.5:42

gives

(Ej g Efp. ER. ER) = (E[), E}).
This proves the first statement of the theorem and also condition 2) of definition
I1.6:44 for the second staement. Since condition 1) of definition I11.6:44 equals
assumption 4) of the theorem, the second statement follows. O

If we put E(’) = {e}, E(’; = {—e} we find, since (E’ ,E(’;) is impossible, that
the event that both measurements 1) and 2) give affirmative result is impossible,
according to definition I1.2:7.

I1.7 Deterministic Event Structures and Approximate
Partial Differential Equations

A special case of stochastic event structure is obtained if all the probabilities
p(...|...) have value 1 or 0. We shall call such a structure a deterministic event
structure.

The preceding discussion of initial and boundary conditions generalizes the
common initial and boundary value problem of hyperbolic differential equations.
Lete.g.

o =F( s o)

be the basic equation of a relativistic field theory, where F is a function of f and
its space derivatives. Then the values of f on some spacelike surface R(¢), T} <
t <T,, is uniquely determined by f and f; on any spacelike surface S((), ty < T
which encompasses the backward light-cone projection of R(?) on S(¢,). We can
eliminate f; if we know f at two such surfaces.

The field can be described by “events” (statements on f) e; of the form

|f(t’xi)_ai| Sbi’i= 172,“-
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By using suitable regularity assumptions or a priori estimates on the space deriva-
tives of f we see that a finite set of such events describes f to a sufficient approx-
imative accuracy on the surface R(#). From the hyperbolic equation we can then
derive expressions ¢; = Gj(e/,, ... ) which gives the e;:s as uniquely determined by
suitable e/,.... in the initial condition region R;. Defining formally

pely, ... le)=1

we then get a deterministic event structure.

The discussion of boundary conditions in the preceding section means, for the
case of classical field theories, that the boundary conditions on the boundary of Rg
should in principle be derived from the combined set of field equations describing
the system and its environment.

The concept of stochastic event structure to be used for general quantum me-
chanics, generalizes the classical initial and boundary value problem in two senses.
Firstly, it is a generalization to stochastic transitions of which deterministic evo-
lutions can be considered as special cases. Secondly, it describes boundary con-
ditions in some space region surrounding the system rather than as values on a
boundary surface. This is a consequence of the fact that quantum systems, due
to the uncertainty principle, always have a finite extension in space. However,
if we derive from the underlying quantum mechanics an approximate differential
equation describing some macroscopic field, then this boundary region may be
approximated by a surface.

Initial and Boundary Conditions

The basic problem in any physical situation is to describe the behaviour of a sys-
tem under given initial and boundary conditions. In a stochastic event structure
with the events equipped with time ordering and space localization, we can give a
general precise formulation of this problem.

Let the system under consideration be confined to the space region R(¢) (which
may depend on time) and suppose that we are interested in studying the system
during the time interval (T3, T5). The behaviour of the system will be described
by a series of events ey, ...,e, localized within the space-time region Rg defined
by R(t) with ¢ varying in the interval (T}, T5) (see fig. 1). The initial conditions
will be described by a series of events ei, ..., e, all associated to times before 7.
The behaviour of the system can then be predicted by studying processes of the
form

(€]s-...epler,....en) 1)

Although the behaviour of the system can be predicted if we take into account
initial conditions in a sufficiently large space-time region R;, we often want to
separate out the course of events in the environment and treat this as given bound-
ary conditions. The course of events in the environment — boundary in a general
sense — is described by a series of events ei’, ,el’,’ localized in a suitable space-
time region Rp during the time interval (T, T5). With a sufficiently large set
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ef,...,ep we then have a process say (compare fig. 1)
(ef,....epler el e el,...) 2

describing a possible course of events of the system under concern and its bound-
ary.

yIt can now be the case that the course of events ei’, ey in the boundary region
is correlated to the initial conditions in such a way that it can be used to replace
some of the information given by the large set e, ..., e}, of initial conditions. Thus
we can, from the underlying process (2), construct and derive the properties of
generalized kinds of processes

(ei”,...,eg’;e’l’,...,egllel,...,e,,) 3)
where ei”, ey is a smaller set of initial conditions (e.g. a subset of ei, cees€l)
compensated by the series of boundary conditions ef,...,e;. The mathemati-

cal formulation and derivation of boundary conditions in a quantum-mechanical
stochastic event structure will be the central question in any application of this
theory. It has to be worked out in concrete form separately for every special class
of problems, by using the concrete form of the underlying dynamics described by
the Schrodinger equation.

space
boundary conditions
Rp

el ...

"
e 2

initial conditions R;

’
¢
€ RS

’
63...

system

e/

time

I1.8 Approximation of Stochastic Event Structures

Lemma I1.8:48. Let (S; = (Ey,—,T1,p1)) and S, = (Ey,—, 1>, p,) be two non-
singular simple stochastic event structures spanned by (E|E"), E' = (e],....ep).
Suppose

)T, CT,
and for every E’
2) IpI(EIE") = py(EIE")| <&
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and
3) either p;(E|E")=0or p;(E|E") > pg, pp > 0.
Then
I° |p(E|E)) — po(E| E})| < 2" Lg, for every subprocess in T} of the form (E| E)),
E, Csome E’
2 |p1(E1|Ey) — po(Ey | E))| < €= ,2,—260 for every (E|Ep) in T}.
If p;(E|E") = po(E|E") except for at most m values of E’, then the right members
of 1° and 2° can be replaced by me and 2me/p, respectively.

If S, is a minimal simple stochastic event structure and py > &, then the as-
sumption Ty C T, is unnecessary (follows from 2) and 3)).

Proof. For an element in T} of the form (E|E;) we get, by 3b) of definition II.1:1

P(EIED= Y p(EIE), i=12 M
E'DE|
and
IPH(EIE) = paEIED| =| Y e(E))|
E'SE
where (E") = p;(E|E") — py(E|E"), |[e(E")| < ggand ¥, - €(E) = 0. Since

=| X e

E’ notin F

s=| ¥ eE)
E'inF

where one of the sums contains at most 2"~! terms, we have s <2"~1.¢, and thus
|p1(E|E)) = po(E|Ey)| < 2"eg. If py(E|E,) = py(E|E,) except for at most m
values of E’, we can obviously replace the factor 27~1 by m.
For an element in 7 of the form (E, E| |Eé), E{ nonempty, we have p;(E, E; |E£) =

p}/p! where p! = p;(E|E/, EJ), p! = p;(E|E}), i = 1,2. Using the identity

PL_Py_ 1 P

—r = o7 = 2 |(PL =Py + 2Py = pY) )

by P P b
py/py <1 and 1/p} < 1/py by (1) and assumption 3), we get

(E.E'|E})— py(E,E'|ED| <2- L .on-1g = 2" ¢
|p1 s 2 P2 [l 2 | = p_O 0= p_O 0-

If (E{|E))isinTy with Ef C some E’, then, by 4¢) of definition IT.1:1, pi(E{|E)) =
pi(E, E] |Eé) so 2° is satisfied also in this case.

Suppose .S} is a minimal simple stochastic event structure. If p, > g, then
pl(ElE{) nonzero implies p;(E|E") nonzero for some E’' D Ej, and by assump-
tions 2) and 3), p,(E|E’) nonzero, i.e. p,(E|E () nonzero. Ty C T, follows from
this using theorem I1.2:14 L]
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Remark. When we approximate the p-values in a stochastic event structure by
values differing less than a given small €, we will consider 1 — ¢ as a “confidence
level”. This means that p-values differing less than € are considered as equal (“in-
distinguishable™), p-values less than € are considered as zero, i.e. probabilities
of impossible outcomes and p-values greater than the confidence level 1 — ¢ are
considered probabilities of certain outcomes. This also means that p:s which are
supposed to be nonzero in theorems on stochastic event structures must, when ap-
proximation of p:s are considered, in critical cases be supposed to be significantly
different from zero i.e. greater than some py > €.

Lemma I1.8:49. Let S = (Ey,—,T,p) be a nonsingular simple stochastic event
structure spanned by (E|E’), E' = (e[, ..., ep), satisfying

1) for every E’ either p(E|E’) > py or p(E|E') < &, where py > 2(2" — 1)e.

Then there exists a minimal simple stochastic event structure S’ = (Ey,—,T’,p’)
spanned by (E|E") satisfying

I°T'cT

2 (E,E||Ey) is in T" if p(E| Ey) > po

3° forevery E| C some E’ either p’(E|E;)=0or p'(E|E,) > py=po—(2"—1e
4 |p'(EIE") = p(E|E)| < (2" = e for every E'

Proof. Choose p’(E|E’)=0if p(E|E') < € and change the other p(E|E’):s by a
small amount to a p’(E|E") such that -, p'(E|E’) = 1. This can obviously be
done in such a way that 4° is satisfied. Let .S’ be determined by p’ according to
theorem I1.2:18. 3° is satisfied by construction and 1° follows from lemma II.8:48
(since py—2(2"—1)e > 0). If p(E| E{) > py, then, by 4°, p’(E|E;) > pg—(2"—1)e >
0 and 2° follows from 2d) of definition II.1:1. [
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Chapter 111

Equiangular Sequences of
Projections

Asinchapter].1 we denote by M, M, M, ... closed subspaces and by P, P;, P/, ...
projections in a given complex separable Hilbert space H. With projections (or

projection operators) we always mean orthogonal projections. We shall denote by

P any of the two operators P and P¢ = 1— P. Subspaces which are not necessarily

closed will be denoted by N, N{,N’,....

III.1 P-equiangular Projections

Definition IIL.1:1. Let P be a projection and N be a nonzero (not necessarily
closed) subspace. P is called equiangular with respect to N (or N-equiangular)
if

| Pull/ el = [|-Pu” ||/]]u" |
for any nonzero u,u’ in N, and the common value of || Pu||%/||u||? is denoted by
p(N|P). If N =0, any P is N-equiangular and we define p(N|P) =0.

To distinguish from e-equiangularity (approximate equiangularity) defined be-
low we shall sometimes say exactly equiangular or 0-equiangular.

Obviously 0 < p(N|P)<1and p(N|P)=1iff 0# N C R(P). p(N|P,) =0 iff
N C R(P)¢ = R(P°).
Definition IT1.1:2. Let P, and P, be projections. P, is called P;-equiangular if P,
is M -equiangular with M; = R(P;) and we write p(P;|P,) for p(M;|P,)

Theorem III.1:3. If P is N-equiangular, then P¢ is also N -equiangular and if N
is nonzero, then
p(N|P¢)=1—p(N|P).

Proof. If P is N-equiangular, then

1/2
1Peul i) "
=1|1- =|1—-p(N|P
Tl e PIN|P)

is independent of u in N, u nonzero. L]
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Lemma IIL1:4. If u, u’ are vectors in H and ||u+au’||? = ||u||?+ ||u’||? for every
complex number a with |a| =1, then u and u’ are orthogonal.

Proof. From

Nl + 11w/ 112 = llu+ au’'||> = (u+au’,u+au’)
= |lul|? + |lu]|> + 2Re [a(u,u’)]

follows Re [a(u,u’)| = 0 for every a with |a| = 1. Thus (u,u’) = 0 and u and v’
are orthogonal. O
Theorem IIL.1:5. If u, u’ are orthogonal vectors in N and P is N-equiangular,
then Pu and Pu’ are orthogonal.

Proof. Suppose P is N -equiangular, u, u’ orthogonal in N # 0 and set p = p(N | P).

(The theorem is trivial if N =0.) Then, for arbitrary complex a with |a| = 1 we
have

1Pu+aPu'||* = || P(u+au)||* = pllull* + pllw’|I> = || Pull> + || Pu’ || .

Lemma I11.1:4 then gives that Pu and Pu’ are orthogonal. [
More generally, if p(/N | P) is nonzero, then P on N is angle-preserving, i.e. the
angle between Pu and Pu’ equals that between u and u’. This can be seen from

the fact that U = P/ [p(N |P)] 2 defines an isometric mapping of N onto PN.
This also proves the following converse to theorem III.1:5

Theorem III.1:6. If P is N-equiangular with nonzero p(N | P), u and u’ are in N
and Pu and Pu’ are orthogonal, then u and u’ are orthogonal.

Theorem IIL.1:7. Suppose that Pu and Pu’ are orthogonal for any orthogonal u,
u’ in N. Then P is N-equiangular.

Proof. Suppose that Pu’ and Pu” are orthogonal for any orthogonal ’, u” in N.
For arbitrary nonzero u’, u” in N we can choose u in N orthogonal to u’ with
[lu'|] = ||lu|| and u” = au’ + bu, a and b complex numbers. Then, (u+u',u—u') =
|le||?= ||’ ||%> = O, thus u+u’ and u—u’ are orthogonal. Then P(u+u’) and P(u—u')
are orthogonal and 0 = ( Pu+ Pu’, Pu— Pu’) = || Pu||*— || Pu’||? since Pu and Pu’
are orthogonal, thus || Pu||% = || Pu’||? and

| Pu”||? = laPu’ +bPull> = |a|?|| Pu’||* +|b]?|| Pull?> = (|al* +|b]?)|| Pu'||?
= [lu” 1211 Pu (1271w’ ]2
Thus || Pu”||/||u”||> = || Pu’||*/||u’||? for arbitrary nonzero u’, u” in N and P is
N-equiangular. U
Theorem III.1:8. If P, is Pj-equiangular and M = R(P,), then P, M is closed.

Proof. Set p=p(P;|P). If p=0, then P,M =0. If p > 0, then M| C, R(P,) with
e=(1-p)”2 <1 and P; is closed according to theorem 1.1:12 O
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Theorem III.1:9. If P is N-equiangular, N’ C N, N” C N and N’ and N” are
orthogonal, then PN’ and PN" are orthogonal.

Proof. An immediate consequence of theorem III.1:5. L]

III.2 P-equiangular n-tuples of Projections

We shall now consider equiangularity in connection with ordered n-tuples (P, ..., P,).
Let us first consider successive equiangularity in the case of n =2.

Theorem III1.2:10. Suppose

1) P, is N-equiangular

2) P, is P;N-equiangular

3) P, is P{N-equiangular

4) PPN and P,P{ N are orthogonal.
Then P, is N-equiangular.
Proof. Suppose 1)—4) are satisfied and that u is a nonzero vector in N. From the
identity P; + P =1 follows P,u = P, Pyu+ P, Pfu where P, Pju and P, Pfu are
orthogonal according to 4). Thus || Pyu||? = || P, Pul|> + || P, Pful|*. By 2) and 1)

| P, Pyul|?> = p(Py N | Py)|| Pyul||?> = p(P, N | P,)p(N | P))||ul|?
Similarly, by 3) and 1)

| P, P{ul|? = p(Pf N | Py)p(N | PP ull*.

Thus
Pyu||?
””;”'2' = p(N|P)P(P N | Py) + p(N | PO)p(PEN| Py)
is independent of u in N and P, is N-equiangular. [

This makes it natural to introduce the following definition
Definition III.2:11. If conditions 1) — 4) of theorem III.2:10 and the condition
5) PZCPI N and P2c PIC N are orthogonal,

are satisfied, we shall say that (P, P,) is N-equiangular. If N = R(P) we shall
also say that (P;, P,) is P-equiangular.

Theorem III.2:12. If (P}, P,) is N-equiangular and N is nonzero, then the num-
ber || P, Pyul|/||u|| u nonzero vector in N, is independent of u.

Proof. Follows from the proof of theorem II1.2:10. 0

Definition IT1.2:13. If (P;, P,) is N -equiangular (P-equiangular), N (P) nonzero,
then the number || P, Pyul|?/||u||?, u nonzero vector in N (R(P)), is denoted by
p(N| Py, P,)or p(P| Py, P,) respectively. If N =0 (P =0) we define p(N | Py, P,) =
0 and p(P| Py, P,) =0.

Theorem II1.2:14. If (P, P,) is P-equiangular, then so is (P¢, P,) and
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1) p(P|Py, P,) = p(P|Py) - p(PyM | P,), M = R(P)
2) p(P|Py) = p(P| Py, P,) + p(P|P{, Py).
Proof. Follows from definition II1.2:13 and the proof of theorem III.2:10. [

If (P, P,) is P-equiangular, then by theorem III.1:3, so is (P, ch), thus all four
combinations (P, P,), P, = Py or P{, P, = P, or P§ are P-equiangular. This
can be generalized to n-tuples of projections.

Definition I11.2:15. We shall say that the ordered sequence (P, ..., P,) is N-equi-
angular if
1) For every integer i = 1,...,n P; is equiangular with respect to all the 2/~!
subspaces P;_ P, ... P|N (where P; is either P; or ch). If i =1, this shall
mean that P; is N-equiangular.
2) All the 2" subspaces P, P,_; --- PN are orthogonal.
If N = R(P) we shall also say that (P, ..., P,) is P-equiangular.

Theorem I11.2:16. If (P;,..., P,) is N-equiangular (P-equiangular), then so is
any (£1’ e 7£n)‘

Proof. Follows immediately from definition III.2:15 L]

Theorem II1.2:17. Suppose (P, ..., P,) is N-equiangular, N nonzero, and let
(£y,....P,) be any sequence with P; = P; or ch, j =1,...,n. Then for any
integer i = 1,...,n the quantity ||P,P;_; -+ P ul|/||lull, u nonzero vector in N, is
independent of u.

Proof. By condition 1) of definition II.2:15 we have (z nonzero vector in N)
PPy Pyull>=p(P;_y -+ P N|P)... || Pi_y - Pyull*.

Repeating successively this argument on the last factor we get
|PP;_y - Pyull>=p(P;_y =+ PyN|P) -+ p(N|Py)- [lull?

and the result follows. L]

Definition IIL.2:18. If (Py,..., P,) is N-equiangular and u nonzero vector i N,
then the number || P, P,_ --- Pyu||?/||u||? is denoted by p(N | Py, ..., P,).

If N =0, we define p(N | Py, ...,p,) =0.

If N = R(P) we shall also denote this number by p(P| Py, ..., P,).

Theorem II1.2:19. If (P, ..., P,) is N-equiangular, then
p(N|£17 sBj) :p(ngls 9£i—1)p(£i—l "‘21N|£i)

for any integeri = 1,2, ...,n.

Proof. Follows immediately from the proof of theorem II.2:17 and definition
II1.2:18. O
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Theorem II1.2:20. Suppose (Py, ..., P,) is N-equiangular and N nonzero. Then
Y p(NIPy,....P)=1,

where the sum is over all the 2 combinations P; = P; or ch, j=1,....n

Proof. Repeated use of the identities 1 = P; + ch, j=1,...,ngives

u=y PP, i P

where the sum is over all combinations P;. If (Py, ..., P,) is N-equiangular and u
is in N, then all 2” terms in this sum are orthogonal according to condition 2) of
definition II1.2:15. Since N is nonzero we can assume that ||u|| = 1. Then

1= YIIP,P,_; -~ Pul>= p(N|Py,...,P,)

by definition I11.2:18. [
Theorem IIL.2:21. Suppose (P, ..., P,)is N-equiangular and let (i1, ...,i,) be an
ordered subsequence of (1, ...,n) and (P/, ..., P ) the corresponding subsequence

of (Py,...,P,). Then (P/,..., P))is N-equiangular and

P(NIP[,....P)) = p(N|Py,....P,)

where the sum is over all (P, ..., P,) which contain (P/, ..., P)) as subsequence.
i.e. such that P, =Pk=Pj’ ifk=i;,j=1,....p.

Proof. The theorem is trivially true if N = 0. Suppose N is nonzero. Using the
identity P¢ + P, =1forall k=1,...,n not equal to any of i;, we get the identity

PP/E;)—I - Plu= 2'£n£n_l - Pu
where the sum is over all Py, ..., P, such that P, = P, = Pjif k =i, and P, =£l’1
ifk=igq=1,...,p—1.If (P,..., P,)is N-equiangular and u is in N, the terms

in the sum are orthogonal by condition 2) of definition III1.2:15. Then, if ||u|| =1,

’ !’
1B P,y -~ Piul>= Y|P, P, Pul?= Y p(N|Py,-.P,) (1)

) ||P}§£1;_1 -« Plu|| is independent of u. By a similar argument, ||£1;_1 -+ Plul| is
independent of u. Thus, either P)_; --- Piu =0 in which case P, -+ P|N =0,
or ||Pp’£1’,_1 ---£1u||/||£1;_1 -« Plu|| is independent of u. Since every vector in

P - P{Nisoftheform P,_, - Pjuwithuin N, this proves that Py is equian-
gular withrespect to P}, -+ P{ N. Repeating the argument for every (P}, -+, Py),
g=p-—2,...,1, we find that condition 1) of definition III.2:15 for the

N -equiangularity of (P/, ..., P}) is satisfied.
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From the identity
Py Plu=Y PP, - Pu
S

where the sum is over the set S of all (P,...,P,) with P, = P, = P/ if k =iy,
j=1,....,pie. those P,..., P, which contain P/, ..., P; as subsequence, we get

P, PINCE@P, PN
S

where the direct sum is over the same set .S. For different choices of (P7, ..., 21’7),
the corresponding 21’, -« P{N are included in direct sums over disjoint sets .S
The orthogonality of all 21’7 -« P{N then follows from the orthogonality of all
P, --- P, N according to condition 2) of definition III.2:15 for the N -equiangularity
of (Py, ..., P,). This proves condition 2) of definition III.2:15 for the
N-equiangularity of (P},..., P}).

Having proved the N-equiangularity of (P}, ..., P}), the formula (1) above, with
all P} = P;, gives

P(N|P/,...,P))=Y p(N|P,...,P,)
S

and the last part of the theorem is proved. O

Theorem II1.2:22. If (P, ..., P,) is N-equiangular and N’ C N, then (Py,..., P,)
is also N'-equiangular and if N’ is nonzero, then

p(N'|P,,....,P)=p(N|P,,...,P,).

Proof. Suppose N’ C N. By definition III.1:1 it is obvious that for any P we
have that if P is N-equiangular, then P is also N’-equiangular. Now suppose
(Py,..., P, is N-equiangular. Then conditions 1) and 2) of definition III.2:15 for
N’-equiangularity follow from the corresponding conditions for N -equiangularity
by noting that
P;P; -P N CP;P; |--PN

forj=1,...,n.

The last part of the theorem follows directly from definition I11.2:18. O

Theorem II1.2:23. Suppose (P, ..., Py, Pl’ ,...,P})is N-equiangular. Then
(P/,...,P}))is equiangular with respect to Ny = P, P,,_; --- P|N and
P(N|Py,..., Py, P[,....P))=p(N|Py,..., Py)- P(N{|P/],.... P)).

Proof. Suppose (P, ..., Py, P, ..., P;)is N-equiangular and N nonzero, the case
N = 0 being trivial. Let u be a vector in N with ||u|| = 1. Then, by theo-
rem I1.2:17 ||P/P;_, -+ P\ P, -+ Pyul| is independent of u for any k = 1,...,n.
Similarly, p = ||P}_; ... P{ Py -+ Pyul| is independent of u. If p =0, then N’ =
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Pj_,...P|Py-- PPN =0and P/ is N’-equiangular. Suppose N’ nonzero. Since
every nonzero vector u’ in N' is of the form u’ = P;_, --- P{P,,--- Pyu" with u”
in N, we have that

Pl _ PPy - Py Py P’ |
flu'] Py -+ PPy Prun||

is independent of u" and thus P/ is N’-equiangular. Thus (P/,..., P;) satisfies
condition 1) of definition II1.2:15 for equiangularity with respect to Nj.

Since the set of all P,,--- P{ N is a subset of the set of all P}, --- P{P,, - P|N,
the condition 2) of definition II1.2:15 for (P/, ..., P}) to be N;-equiangular follows
from that of (Py,..., Py, Pl’, ..., P})to be N-equiangular.

Having thus proved that (P/,..., P)) is Ny-equiangular, we have

P(N|Py,..., Py, Pl ..., B)) =[P} -+ P! Py Pyul|?
=p(N{|P!,....P)) - || P+ Pl =p(N{|P!,...,P})- p(N|Py,..., P

and the last part of the theorem is proved. L]

The following theorem is a partial converse of theorem III.2:23 and generalizes
theorem II1.2:10

Theorem II1.2:24. Suppose

1) (Py,..., Py is N-equiangular

2) (P/,...,P})is N’-equiangular for every N'=P, P, _,-- PN

3) all the 2"+" subspaces P, P,_,--- P{P, P, |- PN are orthogonal.
Then (P, ..., Py, Pl’, ..., P})is N-equiangular.

Proof. Condition 3) of the theorem is identical with condition 2) of definition
[1.2:15 for N-equiangularity of (P, ... ,P,,,,Pl’, ..., P!). From condition 1) of
the theorem follows that P; is equiangular with respect to all P;,_;...P;N, i =
1,...,m. Thus it suffices to prove condition 1) of definition III.2:15 for

i=m+l,...,m+n, ie. that P! is equiangular with respectto P;_, --- P\ P, --- P|N.
By condition 1) of the theorem and theorem II1.2:21, P/ is equiangular with re-
spectto P, -+« P N so condition 1) of definition IIL.2:15 is satisfied for i = m+1.
From condition 2) of the theorem and theorems II1.2:16 and III1.2:23 follows that
(P}, ..., P;)is equiangular with respect to P{ P, ... P, N. Thus we can repeat the
argument for i =m+2,...,m+ n and the theorem is proved. O

Theorem II1.2:25. Suppose (P, ..., P,)is N-equiangular. Then p(N | Py, ..., P,) =
liffO?éNchCN2C...CNnWhCI'GNj=Pij_1...PIN,j=1,...,n.

Proof. Suppose p(N|Py,...,P,) = 1. It follows from theorem II1.2:23 that 1 =
p(N|Py,...,P,)=p(N|Py):-p(N{|Ps, ..., P,). Since both factors lie in the interval
[0, 1] it follows that p(N|P;) = 1 and p(N{| P, ..., P,) = 1 which implies that
0 # N C N,. Repeating the argument on p(N,|Pjy,...,P,) for j =2,...,n—1
we find that Ny C N, C...C N,.

The converse of the theorem is obvious from definition II1.2:18. [
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Theorem I11.2:26. Suppose (Py, ..., P,) is N-equiangular and P; = Pj? for some
i,j,1<i,j<n. Then p(N|Py,...,P,)=0.

Proof. Suppose P, = PjC and i < j. Then, by theorem IIL.2:21 (P, Pf) is
N-equiangular and

P(N|P;, PS)=p(N|P;, Pj) 2 p(N|Py, ..., P)

since p(N | P;, P;) is a sum of nonnegative terms, one of which is p(N | Py, ..., P,).
But, by definition II1.2:18 p(N | P;, P¢) = 0 and the theorem follows.

Theorem II1.2:27. Suppose (P, ..., P, Piy1,...,P,) is N-equiangular and P
and P, commute. Then (Py,..., Py, Py, ..., P,) is N-equiangular and

p(N|P1,...,Pk,Pk+1,...,Pn)=p(N|P1,...,Pk+],Pk,...,Pn)

Proof. Under the assumptions of the theorem we have to prove conditions 1) and
2) definition II1.2:15 for the N -equiangularity of (P, ..., P41, Py, ..., P,). Condi-
tion 2) is obviously satisfied. Condition 1) is also obvious if i # k+1 and it suffices
to prove that Py is equiangular with respect to Ny = P P,_..., P N. This is
obvious if Ny =0 so we can assume that N; # 0. Let u be an arbitrary vector in
N with “Ll” =1. Then ”PkPk+1Pk—l P1u|| = ”Pk+1PkPk—1 P1u|| is indepen-
dent of u. Also || Py Py ... Pyu|| is independent of u since (P, ..., Py, Pryq) is
N -equiangular by theorem II1.2:21. Thus || P, Py Pe—y == Prull/|| Pegt Pi—y -+ Prul|
is independent of u and since every vector u; in N is of the formuy = Py 1 Py_q - Piu
with u in N, this shows that P, is N;-equiangular.

Having thus proved that (Py,..., Piy1, Py ... P,) is N-equiangular, the second
part of the theorem is obvious from definition I11.2:18. O

II1.3 Equiangular (m,n)-tuples of Projections

Definition IIL.3:28. We shall say that (P/, ..., P;) is equiangular with respect to
(P,..., Py) (or (Py,..., Py)-equiangular) if (P/,..., P}) is equiangular with re-
spectto N = P,,P,,_1 --- P,R(P;). We shall then also say that the (m, n)-tuple
(Pyy..., Pyl P/,..., P}) is equiangular and define

p(Py,....Py|P!,...,P))=p(N|P!,...,P]).

Theorem I11.3:29. If the (m,n)-tuple (Py, ..., Py| P/, ..., P), Pl”, e, Pp”) is equian-
gular, then (P, ..., Pm,Pl’, .., PIP", ... ,Pp”) is equiangular and

P(Py,...,Pyl|Pl,...,P/,P, ..., P}
= p(Pisecc. Pu| Pl P)) - p(Pys.cs Py P PIIPY, .., P)).

Proof. A reformulation of theorem II1.2:23 by means of definition I11.3:28. [

Theorem II1.3:30. Suppose (P, ..., P,|P/,..., P}) is equiangular. Then
(Pr,... ,Pk”,Pl, ..., Py| P/, ..., P))is equiangular and, if P,, -+ Pl‘Pk” PZ”R(PI”)
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is nonzero, then
p(Pl”,...,Pk”,Pl,...,PmIP’,...,Pn’)=p(P1,...,PmlPl’,...,P,{).

Proof. Follows from theorem II1.2:22 observing that Py, --- P; - P! --P'R(P/") C
P, .- B,R(P)). O

Theorem II1.3:31. Suppose (Pi,..., P, Piiq, ..., Pyl Pl’, ..., P}) is equiangular
and that P, and P, ; commute. Then (Py,..., Pyy1, P, ..., Pl P/, ..., P})is equian-
gular and

p(Pl,...,Pk,Pk+1,...,Pmlpl,...,Pn,)=p(P1,...,Pk+1,Pk,...,Pm|P,,...,P,{).

Proof. Follows directly from definition III.3:28 noting that
Py Py P+ BLR(P) = Py oo PPy - BR(Py). O

II1.4 Stochastic Event Structures of Projections

Theorem I11.4:32. Suppose E is a set of projections, closed under the operation of
orthogonal complement (i.e. P in E implies P¢in E). Let T be a set (m, n)-tuples
(P Pyl P!, ..., P}), myn=1,2,... such that

a) all Pl,...,Pm,Pl’,...P,,’ arein E
b) (Py,..., P,|P/,..., P))is equiangular
c) P,P,_; -+ P,R(P)) is nonzero.
Suppose also that the set T has the properties

d) if (P, ..., Py|P!,...,P))isinT,sois (P, ..., Py|PY,..., P)), wherePl” ..., P
is any subsequence of P/, ..., P,.

e) ifPl,...,Pm|P’,...,Pn’,Pl”,...,Pk”isinTandp(Pl,...,Pm|P’,...,Pn’)isn0n-
Zero,
then (Pl,...,Pm,Pl’,...,P,{|P”,...P]é’)isinT.

Let p: T — [0,1] be defined as in definition II1.3:28 and let —P stand for the
operation of orthogonal complement —P = P¢. Then (E,—,T,p) is a stochastic
event structure.

Proof. We have to prove conditions 1)-3) of definition II.1:1. 1) is obviously sat-
isfied, E being closed under the operation — meaning orthogonal complement.
Condition 2) of definition II.1:1 follows from assumptions a) and d). (Condition
d) of the the theorem is consistent with b) according to theorem I11.2:21.) Con-
dition 3a) of definition II.1:1 follows from assumptions b) and c) and theorem
I11.2:20. Condition 3b) of definition II.1:1 follows from assumptions b) and the-
orem II1.2:21. Condition 3c) of definition II.1:1 follows from the assumption b)
and theorem I11.2:26. The first part of the condition d) of definition II.1:1 is iden-
tical with assumption e) and the second part of condition d) follows from theorem
II1.3:29. Finally, condition 3e) of definition II.1:1 follows from theorem II1.3:30
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and assumption c). (Condition e) of the theorem is consistent with b) according
to theorem I11.3:29.) [

Theorem II1.4:33. Let E be a set of projections, closed under the operation of
orthogonal complement. Let | be a relation on E such that

1) if P;| P, then P,| P,
2) if Pj| P, and P,| P, then P, and P, commute.

Let T be the set of all (m, n)-tuples of projections in E satisfying conditions a) b)
and c) of theorem II1.4:32 and the condition

3) If(P,...,Py|P/,...,P))isin T then
a) P|Pifi<j,i,j=1,....m
b) Pi’|Pj’ ifi<j,i,j=1,....,n
c) P,-|Pj’ foralli=1,...,n,j=1,...,n.

Define — and p as in theorem I11.4:32. Then (E,—, T, p, |) is a linearly time-ordered
stochastic event structure.

Proof. We first use theorem I11.4:32 to prove that (E,—,T, p) is a stochastic event
structure. We have to prove that conditions d) and e) of theorem II1.4:32 are sat-
isfied, the other conditions being obvious.

Suppose (P, ..., Py|P/,..., P})isin T and that Pl”, ..., P! is a subsequence of
P/,...,P;. Then, by theorem II1.2:21 (P, ... , PulP7,...,P)) is equiangular and
obviously satisfies the statements corresponding to assumptions a) b) and ¢) of
theorem II1.4:32 and conditions 3a)—c) of the present theorem. Since T is the set
of all tuples with these peoperties, it follows that (P, ..., P,|P{,...,P/)isin T
and condition d) of theorem I11.4:32 is proved.

Similarly, to prove condition e), suppose that (P, ..., P,| Pl’, P, Pl”, e, Pk”)
isin T and p(Py,...,P,|P/,..., P}) nonzero. Then, by definitions III.3:28 and
11.2:18, P; -+ P{ Py -+ P,R(Py) is nonzero and, by theorem III.3:29 it follows that
P,... ,Pm,Pl’,... , PP, ...,P]é’ is equiangular. Then
(P, ...,Pm,Pl’, R 4 |Pl”,...,Pk”) obviously satisfies conditions a) b) and c) of
theorem I11.4:32 and conditions 3a)—c) of the present theorem and thus belongs
to T. Thus condition e) of theorem II1.4:32 is satisfied. Thus (E,—,T,p) is a
stochastic event structure.

We now prove the conditions of theorem I1.3:28 for (E,—, T, p,|) to be a linearly
time-ordered stochastic event structure. Conditions 1) and 2) of definition I1.3:24
are identical with assumptions 1) and 3) respectively. To prove condition 1) of
theorem I1.3:28, we note that if (P, ..., P,| P/, ...,Pk’,Pk’H, ...,P))isin T and
P! " |Pk’ , then P! and P! 4+ commute according to assumption 2). Condition 1)

of theorem I1.3:28 then follows from theorem II1.2:27. Similarly, condition 2) of
theorem I1.3:28 follows from theorem II1.3:31 O
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III.S Equiangularity and Factorization. Represen-
tation of a Minimal Simple Stochastic Event
Structure

If P, is M-equiangular and p = p(M |P;) # 0, then, by definition III.1:1, U; =
\/L;Pl restricted to M gives an isometric mapping of M onto P M and, if also
p#1,then U, = —#Pf restricted to M gives an isometric mapping of M onto
PEM. Uy =U,U ! is then an isometric mapping of PyM onto Pf M.
Conversely, we have the following construction of a pair M, P such that P is
M -equiangular.
Theorem II1.5:34. Suppose the subspaces M| = R(P;) and M, = R(P,) are or-
thogonal and let U, be an isometric mapping of M, onto M,. Set U = {/p+
V1-pUpand M =UM,. Thenany P with M; C R(P) C M5 is M -equiangular
and p(M|P) = p.

Proof. Since M; and M, = U, M, are orthogonal, U is an isometric map of
M, onto M. Then any u in M is of the form u = \/Eul + +/1 — pu, where u
isin M; C R(P) and u = Uppu is in M, C R(P¢). Thus Pu = |/pu; where
[lu|| = ||uq]| and the result follows. |

Theorem IIL1.5:35. P’ is M-equiangular with p(M | P’) = p iff there exist map-
pingsU;: M - P’"M and U,: M — P'M onto P’ M and P’ M respectively,
which are either isometric or zero, such that

\/EU1+ \/l—pU2:1
InthiscaseU1=\/L[;P’ on M if p>0and U, =\/+7P’C on Mifp<l.
-p

Proof. A simple reformulation of the proof of theorem II1.5:34 and the preceding
discussion. 0

Theorem IIL.5:36. Suppose P’ and P” are projections in a Hilbert space # and
that the corresponding subspaces M’ = R(P’) and M” = R(P”) are infinite
dimensional. P” is M'-equiangular and M"” — P" M’ and M"¢ — P"¢M' are
each infinite or zero dimensional iff there exists a tensor product decomposition
T:g #\ X7, — Z withdimZ| <4, a vector uy, in # and a subspace M| in
%1 with dlliﬂ < 2 such that M’ =Upy ®T %2 and M" = M1” ®T %2.

Proof. 1f such arepresentation of M’ and M " by uy, and M " exists, the M’-equi-
angularity of P” and the condition that M” —P” M’ and M "¢—P"< M are infinite
or zero dimensional are obvious.

Suppose P” is M’-equiangular and that M” — P" M’ and M "¢ — P"¢M' are
infinite or zero dimensional. By theorem III1.5:35 there exist mappings U : M’ —
M;=P'M"and Uy: M" - M, = P"*M’ onto M; and M, which are either
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isometric or zero. Since M” — P" M’ and M "¢— P”¢ M are either infinite or zero
dimensional, there exist mappings Uy : M’ - M3;=M"—P"M’'andU,: M' —
My=M"¢— P"M’ onto M3 and M, which are either isometric or zero. Let I
be the subset of {1, 2, 3, 4} such that U; is nonzero for i in I. Then lemma I.1:34
gives with 7| = I2(I) and #, = M afactorization T : g #X > — F. Suppose
allUy,...,Usnonzeroie. I ={1,2,3,4}. Since M" = M| ® M5 we have M" =
M/ ®r %, where M is the subspace of %} = I2(I) = C* spanned by the vectors

(1,0,0,0) and (0,0,1,0). Set p=p(M’'|P") and up; = (\/_, 1/1—=p,0,0). Then,
by the construction of T'according to lemma I.1:34 we have for arbitrary uin M’ =
7>

u:P”u+P”"u=\/EU1u+ V1=-pUru=up Qru,
thusM’=uM®TM’=uM®T%”2.

If some of the Uy, ..., U, are zero, we just have to drop the corresponding di-
mensions in [2({1, 2, 3, 4}) and get a Hilbert space #; = [2(1) with dimension 1,
2 or 3 (both U; and U, cannot be zero). [

The following straightforward generalization of theorem II1.5:36 is useful for a
construction of an M -equiangular sequence (Py, ..., P,).

Theorem IIL.5:37. The following conditions 1) and 2) are equivalent

1) a) M;, j=1,...,J are infinite dimensional and orthogonal
b) P is Mj-equiangular, j =i,...,J
¢) all 2J subspaces PM; are orthogonal,
d) R(P) - (®; PM;) and R(P¢) — (@, P°M;) are each infinite or zero-
dimensional

2) There exists a tensor product decomposition T, : #'\ X, — Z withdim Z| <
2J +2, dim Z’, = oo, orthogonal vectors u;, j =1,...,J in Z and a subspace
M in 7| with dim M < J + 1 such that

szuj®T%2,j=1,...,J
R(P)=M Q1 7,

and all 2J vectors Pju; are orthogonal, where P, is the projection (in #}) on
M

Proof. Tt is easily checked that 2) implies 1). Suppose 1) is satisfied. Let 7,
be any infinite-dimensional separable Hilbert space. Since all M; are infinite-
dimensional (separable) Hilbert spaces there exist isometric onto mappings

By theorem II1.5:35, there exist isometric or zero, onto mappings
Uj,l . MJ _)M;,l :PMJ,
Ujgzl MI—)M;J:PCMJ,
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and, by assumption d), there exist isometric or zero mappings

Setting #| = C?/*2, p; = p(M;|P), u; = (0,0,...,\/p_j,\/l —Dj,.--,0,0) and M
being spanned by the J + 1 vectors

(1,0,...,0)
0,0,1,0,...,0)
0,0,...,1,0),

the statements of condition 2) follow as in the proof of theorem II1.5:36. (If some
of the p; or 1—p; equal zero, or if M5 or M, equals zero, we drop the corresponding
dimensions in #.) 0

Theorem II1.5:38. Let .S be a minimal simple stochastic event structure spanned

by the process (e, ..., em|ei, ..., ). Then there exists a minimal simple stochastic
event structure S’ of projections, spanned by an equiangular sequence

Py, Pyl P!, ..., P))

with the same p-values (e.g. p(Pi,..., Py|P},....P;) = pley,....emlel,....e})
i.e. .S and S’ are isomorphic.

Proof. By definition II1.3:28, it obviously suffices to show the existence of an
M -equiangular sequence (Py,..., P,) with given p-values. We prove this by in-
duction and assume that there exist M, Py,..., P,_; in & such that M is infinite-
dimensional, (P, ..., P,_1) is M-equiangular and

p(M|P,...,P,_)=pley,... ,emlg’l, sl ) (this being trivial if n = 1). Let M,
j=1,...,2""1 be the 2"~ orthogonal subspaces P,_, --- P;M (which are zero or
infinite-dimensional) and p; the corresponding values of

p(eq, ...,emlg’l,.. enipey, ... ,emlgi, csel )

>=n—1"
where we define p; = 0 if p(ey, ... e,,,le P =0. (if n = 1 we take p; =
pley,....eplel)). By the proof of theorem III 5: 37 there exist P’ and orthog-
onal M w1th dlmMj’ =dimM;, j = 1,...,2""!, and dlm( (@,MJ’)) =
dim (H - (@ij)), such that P’ is Mjf—equiangular with p(MjflP’) = p; and
with all 2" P'M ]’ orthogonal. There exists a unitary transformation in H such
that M;=UM], j=1,... ,2"=1. Set P, =UP'U~!. Then P, is M;-equiangular
with p(M,|P,) = p; and all P, M; are orthogonal. Then, by theorem II1.2:24,

(P, ..., P,) is M-equiangular and by the definition of p; and theorem I11.2:23, we
have

PMIPy,....P) = pley,....enle]s....e]).
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The equality for all p-values in S and .S’ follows from theorem I1.2:17 OJ

III.6 Approximately Equiangular (p, €)-equiangular
Sequences

Definition II1.6:39. P, is called e-equiangular with respect to N if
| P |2 = 1Py ] < €

for any u’/, u” in Ny with ||u’|| = ||u”|| = 1. If P, is e-equiangular with respect
to N;, we denote by p(N,|P,) any of the values || Pul|%, u in Ny, |lu]| = 1. If
N, = 0 we define any P, to be e-equiangular with respect to N and we define
p(N{|Py)=0. If N; = R(P;) we also say that P, is e-equiangular with respect to
P; and that (P;| P,) is e-equiangular and write p(P;|P,) for p(N1|P,).

Note that p(N;|P;) = p(P;|P,) is here an approximately defined quantity. It
is only defined to the accuracy €. Any of these values is called a representative
of the approximate quantity. An equality between two approximate quantities,
as in the following theorem, is then to be understood to hold for at least some
representatives. For € = 0, the concepts of e-equiangularity and equiangularity
(0-equiangularity) (definitions III.1:1 and II1.1:2) coincide.

Theorem IIL.6:40. If P, is e-equiangular with respect to Ny, then so is P and

p(N{|P5)=1—p(N{|Py).

Proof. Follows directly from the identities || Pyu’||? = 1 — || P’ ||> and || P{u’||? —

||P2Cu”||2 = || Pou” |2 = || Py’ |2, w/, ™ in Ny, ||lu’|| = lu”|| = 1. O

Theorem I11.6:41. If M, = R(P,) and N| C, M,, then P, is £2-equiangular with

respect to Ny and p(N{|P,) > 1—€2.

Proof. Follows directly from theorem 1.1:15 OJ
Conversely we have:

Theorem II1.6:42. If P, is e-equiangular with respect to Ny and p(N{|P,) > 1—

€1, then N; C, R(Py) with e2 =€ +¢;.

Proof. Suppose u in Ny, ||u]| = 1. Then ‘||P2u||2 —p(Nlle)’ < € by definition

11.6:39. Thus || Pul|> > p(N;|P,) —€ > 1 —€ — | = 1 — &3 and the result follows
from theorem I1.1:15. L]

The following theorem generalizes theorem III.1:8

Theorem I11.6:43. Suppose (P;|P,) is e-equiangular and that M; = R(P)). If
p(Pi|Py) > ¢, then P, M is closed. If p(Py|P,) <1—¢, then Py M) is closed.
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Proof. Set p=p(P;|P,) and suppose u is in My. If p > ¢, then

| Poul|* > (p— ) lull>.
Thus, by theorems 1.1:15, 1.1:12 and definition 1.1:14, dist(M{, R(P)) < 1 and
P, M is closed. Interchanging P,, Py, the second statement follows. [

Definition II1.6:44. (P, ..., P,) is (py, €)-equiangular with respect to N if py > €
and

DAIP, - Py |2 =P, Pyu"||?| <&
for every u’, u” in N with ||u/|| = ||u”] =1
2) for every Py, ..., P, we have either
a) || P, - Pull? > po for every u in N with ||ul| =1, or
b) ||P, - Pul|? < e forevery uin N with |lul| =1
3) all subspaces P, --- Py N with (P, ..., P,) satisfying 2a) are £-orthogonal.

(P/,...,PL| Py, ..., P, is called (py,e)-equiangular if (P, ..., P,) is
(Po, €)-equiangular with respect to N = Py, --- P/ R(P/).

If (Py,..., P, is equiangular (0-equiangular) with respect to N and 0 < py <
all possible values of p(N | P, ..., P,), then (P, ..., P,) is obviously (py, 0)-equi-
angular. Conversely, if (P,...,P,) is (py,0)-equiangular with respect to N it
is also equiangular with respect to N. To see this, condition 2) of definition
II1.2:15 is obvious and condition 1) then follows from 1) of definition III.6:44
by an argument similar to the proof of theorem I11.2:21 For the case n =1, P, is
(po, €)-equiangular with respect to N, if P, is e-equiangular with respect to N;
and € < py < the least positive value of p(N|P;) — € and p(N 1| P§) — €.
Theorem IIL.6:45. Set N; = P;--- PNy, j = 1,...,n. If N;_| Ce R(P)), j =
1,...,n,ne2 <1, and ne? < py < 1 —ne?, then (P, ..., P,) is (py, ne2)-equiangular
with respect to Nj.

Proof. Let u be an arbitrary vector in N with |[u|| = 1. Then, by theorem I.1:15,

12 |[Pyee Prull> 2 (1= )| Py -+ Pl 2 ...
> (1—&2)"||ull? = (1 - ne?) 2 py.

If some Py,..., P, is Pkc, then
”En £1u||2 < ||PkC£k_1 EW”Z < 52”£k—1 21””2 < 2.

Conditions 1)-3) of definition II1.6:44 obviously follow from this. ]
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III.7 Stochastic Event Structures of
(po, €)-equiangular Sequences

We shall now modify theorem II1.4:33 to take into account processes, build on a
given time-ordered set E, of projections, which are only (p, €)-equiangular.

Let us recall (see section I1.3) that when we are discussing time-ordered stochas-
tic event structures, processes which can be obtained from each other by permu-
tations, within the premise and within the outcome, conserving the time order,
are considered as equivalent. By a time-ordered simple stochastic event structure
spanned by a process (E|E’) we shall mean a structure .S, which, together with a
subprocess Q of (E|E’), contains all formal processes equivalent to Q and such
that all processes in S are of this form.

Theorem IIL.7:46. Let (E,|) be a time-ordered set of projections satisfying 1)
and 2) of theorem II1.4:33 and (E|E’) = (Py, ..., Py|P/,...,P]) be a

(po, €)-equiangular (m, n)-tuple of projections in E with 2"tle < 1, which is time-
ordered i.e. satisfies 3) of theorem II1.4:33. Let —P denote P¢. Suppose u is a
vector in N = P, --- P,R(P)) with |lu|| = 1. Then there exists a linearly time-
ordered minimal simple stochastic event structure .S = (Ey,—, T, p, |) spanned by
(E|E") such that

I° p(Py,...,Py|PY,...,P)) = ||£;---£iu||2+5, 0 <2¢
and, for every u’ in N with [|u’]| =1

2 p(Pl,...,Pm|£',...,£;>—||£,’,-~-£1u’||2|s61=e+6

3 \p(Py,..., Pyl P, ....P)—|IP} ---£i’u’||2’ <&, =2""1(3¢ + §) for every
(P,....,Pl)CE' =(P|,....,P))

4° p(Pl, ,Pm,Pl”,... ’Pk//lPll”’ ’le)_”Pl” lepkﬂ Pl”u’||2/||Pk” Plr/u/”2

<ez= % for every (P/, o, PIL P+ P") C some E’, with

p(Py,..., Pyl P/, ..., P) 2 py.
1°— 4° also hold if (Py,..., Py,) or (P/,...,P)) are replaced by any time-ordered
permutations.

Assuming po > 6 +2(2" — 1)g, there also exists a time-ordered minimal simple
stochastic event structure S’ = (Ey,—, T, p’,|) spanned by (E|E’) with p’ satisfy-
ing 2°, 3° and 4° with £, £; and &3 replaced by €] = 2", £/, =2"(2" - 1)e; + &5
and €} = 2¢//p, and such that

5° for every E’, either p’(E|E') > py=po—06—(2"—1)e; or p'(E|E")=0.

Proof. Let py(Py, ..., Py| P}, ..., P)) = || P} -+ Plul|* + & with
Y Pi(Pisee s Pyl Py Py = D I|Py - Phul 4276 = 1. M
E' E/
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For every (E”|E") where E” and E” are time-ordered permutations of E and
E’ respectively, we define pj(E”|E") = p;(E|E’). By theorem I1.2:18, p; can
then, for every (E”|E") be extended to a p} such that (Ey, —, T;.p) is a minimal
simple stochastic event structure and where T is a set of formal subprocesses of
(E"|E"). By the definition of the pis and theorem I1.2:17, subprocesses, which
are equivalent with respect to the time-ordering then have the same p-values so
S =(Ey,—,T,p,|), with T equal to the union of all the TO’ and p joining all the pi,
is a time-ordered simple stochastic event structure satisfying 1°. 2° then follows
from 1° and the definition I11.6:44. For 6 see below.

To prove 3°, we set for a given E” = (PY,...,P}) Csome E', s = P} --- P{u’ =
> u;, where u;, i =1,...,2", denotes the 2" vectors P, --- P{u’ and the sum is over
all E'=(P},....P,)D E".

Let n; be the number of terms in the sum. Obviously we can suppose k < n and
ng < 2"=1 the case k = n being covered by 2°.

For the sum we get, by 3) of definition I11.6:44

!
s =" lluill>+ R 2)

where R = Zlf#(u,-,uj) and

! !/
RI<e Y ull gl < (1= De 3l = (= De (Il = R)
and, since obviously ||s|| <1,

(ny—1De _
|R| < m < 2(ns De 3)

since (n; — 1)e <2"~e < | by assumption.
But ) )
| el = 3112, Prul?| < me 0
by 1) of definition II1.6:44, and
!’ !’
D IRy Plull® +nge =Y p(Py,..., Pyl Pj,.... P})
:p(Pl""’PmIEH’“"EIZ) )
by 1) and 2b) of definition II.1:1. Putting (1)-(5) together, we get
PPy, . PulP.....P}) = [P} - Pl |]?] <
! !
nsd -+ | 3 1B+ Pl = 3 uall?|+ |l = 12 - PYu || <
<ng-8+ng-e+2(n,— e <27 1(3e +6).

Using the preceding result and formula (2) in the proof of lemma I1.8:48, we get
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for the left member of 4°

p(Py,... ’PmIPI”v-“ ’Pk”’Pll”’ ’le) ~ ”P[m ,_,Pl///Pk// _”P{/u/llz <.

1
PPy, Pl Py, PT) P Plurll? po 276
Using the arguments for the proof of condition 3°, putting u’ = u, E” empty and
thus ny = 2", ||s|| = 1 and 2"6 taking the place of |R| according to (1) we get
by (1), (2) and (3) 2”6 < e(2" — 1) - (1 +2"6) and, since by assumption 2" < %
26 <2-(2"—1)e and 6 < 2e.

By the assumed commutation property 1) and 2) of theorem I11.4:33, 1°—4° are
still valid if (Py, ..., P,) or (P/,..., P}) are replaced by any time-ordered permu-
tations.

To prove the existence of S/, we note that, by 1° and by the assumption of
(py, €)-equiangularity, every p(E|E’) is either > py—6 or < e+ 6 = £;. We can
then use lemma I1.8:49 to construct an S’ such that 5° is satisfied. This is possible
since, by assumption, pg—& > 2(2" —1)ey. 2° and 3° then follow from 4° of lemma
I1.8:49 and 1° of lemma I1.8:48 respectively and 4° follows from 3° as above. [

II1.8 Physical Remarks

Differences to the Conventional Quantum-Mechanical Formal-
ism

The present theory can be considered as embedded in the conventional quantum-
mechanical formalism. Our series of successive events (projections P) could be
considered as a series of conventional quantum-mechanical measurements, with a
special prescription for preparation of a state after measurement, namely that mea-
suring P on a “state” u results in “state” Pu. We are then considering apparently
special series of measurements of localization observables, (leaving out most of
the conventional formalism such as canonical commutation relations, complete
sets of commuting variables, density operators, etc.). The restriction to equian-
gular sequences then means that any state vector (or density operator), which can
be prepared from some other previous state by successive measurements of the
observables describing the initial conditions, will give (approximately) the same
probabilities for the following measurements, so these probabilities can be calcu-
lated from a knowledge of these initial observables only.

However, a different point of view is to consider the restriction to equiangular
sequences of localization statements as an extra dynamical postulate (a “princi-
ple of equiangularity”), restricting the possible combinations of events. This ex-
tra postulate is lacking in the conventional formalism, where any state vector or
any density operator is a possible state and any selfadjoint operator is a possible
observable, which can be measured at any time by applying a suitable external
measuring equipment.

In conventional quantum-mechanical formalism, the measurement process has
received a central position, connected with the interpretation of the theory. In
the present theory, a stochastic quantum transition is considered as a fundamental
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objective occurrence in reality — it is not considered, as in conventional quantum
mechanics, to be a disturbance caused by a measurement. In those cases, where we
actually have a measuring equipment, measuring a certain observable P, we can
include the measurement apparatus in a larger process containing both the object
of measurement and the measurement apparatus. That an object can be forced
to undergo a quantum transition is not a phenomenon reserved for measurement
situations. Quite generally, the initial and boundary conditions forces a system to
undergo quantum transitions. This is described by the concept of stochastic event
structure.

To summarize, the present theory differs from the conventional formalism in
the following respects:

1° The only operators postulated to correspond to observables are the projection
operators corresponding to space localization. All other physical quantities
will be indirectly defined in terms of these.

N

We avoid use of the concept of “state”, described by state vectors or density
operators. Instead the theory is based on a description of initial conditions by
means of a series of previously occurred events at different times described by
the observables according to 1°. The restriction to equiangular sequences of
projections makes it possible to determine transition probabilities completely
from the projections describing the initial conditions.

(O8]
°

We consider the “collapse” of the wave functions (transition from u to Pu in
our cases) as an integrated part of the formalism. It is not pushed aside to
an interpretation of the theory connected with a measurement process. The
concept of equiangular sequences of projections describes a series of succes-
sive, really occurred “collapses”. The observables thus describe objectively
occurred events.

o

4° Instead of allowing more or less arbitrary state vectors or density operators
and measurement of observables corresponding to arbitrary selfadjoint op-
erators, the restriction to equiangular sequences of projections puts a strong

restriction on which series of events are possible.

()1
°

Instead of introducing an extra statistical distribution (density operator), extra
assumptions concerning this distribution and assumptions that certain mean
values describe macroscopic systems, the present theory handles macroscopic
systems in a direct and deductive way. The confidence estimates can be used
at different levels of description. Macroscopic estimates concerning gross dis-
tributions of large number of particles can be derived directly from the wave
equations just as e.g. a cross-section formula or an estimate of a bound-state
energy level can be.
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Summary

General principles for deductive physical theories are discussed. It is claimed that
a deductive physical theory should in principle be a pure mathematical theory (or
a set of coupled mathematical theories) together with an identification of certain
quantities/concepts (“observables”) in the theory and corresponding observable
entities in the real world. This identification — the “interpretation” of the theory —
should be unproblematic, both for the theoretician and the experimentalist.

A general basis for a deductive physical theory, comprising both classical and
quantum physics in a unified way, is proposed. The theory is based on succes-
sive confidence estimates on quantum-mechanical wave functions corresponding
to space-localizations of particles. This allows a direct and simple way of describ-
ing both macroscopic and microscopic phenomena by means of the same basic
concepts. Especially, this gives a simple, direct, kinetic, radical alternative to the
ensemble methods of classical and quantum statistical mechanics.

The theory takes as its starting point the general basic ideas and problematics of
quantum theory that was formulated in the 1920:s. The theory is thus consistent
with conventional quantum mechanics in the sense that it is based on the same
mathematical formalism of Hilbert spaces, projection operators, the Schrodinger
equation (and its relativistic generalization, the Schrédinger-Schwinger-Tomonaga
equation), etc., together with the — although from an axiomatic point of view, as
formulated, unsatisfactory — original primitive statistical interpretation.

However, it is claimed that this is only half of the theory — half the set of condi-
tions in a complete set of axioms. This leaves a manifest and obvious ambiguity.
It is claimed that this is the root of the controversial interpretation problems and
paradoxes of the conventional expositions of quantum theory.

Central in the axiomatics of the outlined theory is the concept of equiangu-
lar sequences of projections (projection operators). It describes a successive se-
quence of “collapses of the wave function”. It is proposed that the restriction of
general physical processes to fit an underlying structure of equiangular sequences
— a “principle of equiangularity” — together with the restriction to projections cor-
responding to space-localizations of particles could give the extra conditions, con-
stituting the other half of the theory.

From equiangular sequences of projections is abstracted the general structure of
“stochastic event structure”. It gives an axiomatization of the ordinary (classical!)
probability theory (based on classical — not “quantum” — logic) and, at the same
time, an axiomatization of the concept of causality, which generalizes the ordinary
“deterministic” causality to what we call “stochastic causality”. It can be applied
to problems far beyond physics.

Characteristic of the outlined theory is the avoidance of the concepts of “states”
and “systems” as basic concepts. The basic concept of the theory is the concept of
events, represented by projection operators corresponding to confidence estimates
of localization of particles to many-particle space regions.

An event can be characterized as a “partial statement” about the actual physi-
cal situation. Thus any concrete physical situation is described by a more or less
exhausting set of partial statements, complementing each other. This description
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can often be complemented by other events, for instance on a deeper level of de-
scription. The set of — simultaneously often “overlapping” — partial statements
can, in the quantum domain, generally not be reduced to the classical concepts of
“system” and “state” and the incomplete instantaneous specification of the situa-
tion is complemented by giving events at different times. This is an expression of
the so called “quantum unity”.

The avoidance of the concept of state as basic concept means that the wave
functions, and the corresponding vectors (or rays) in the Hilbert space are not
(generally) given the status or meaning as states. The term “state vector” is thus
abandoned. The time-dependent wave functions are instantaneously coupled to
events of instantaneous space localizations. At other times they are to be con-
sidered as auxiliary dynamical quantities for determining probabilities. This is in
accordance with the original Heisenberg idea of the S-matrix.

If we detail a description of a process described by events at times #; and ,,
t; < tp, by intercalating extra events e’, ... at times t’,..., between #; and ¢,, the
resulting time-dependent wave function(s) extrapolated to ¢, will, due to the col-
lapses corresponding to e’, ... change. The axioms of equiangular sequences guar-
antee the consistency of such intercalations of events.

In the cat paradox case the process can be detailed by a description of what
really happens — when the poisoning capsule explodes, when and how the cat dies
etc., in case of a finally found dead cat — or, what the cat did during the process,
in case it comes out living.

On the other hand, quantum mechanics puts strong limits on what can be de-
tailed with respect to the time development. In a two-split experiment with a single
electron we cannot say that the electron has passed through one and not the other
slit. An arrangement that would determine through which slit the electron passes
is incompatible with the two-split arrangement in the sense of the definition of
compatibility given in the theory.

The limits on detailization is determined by the restrictions of equiangularity
and the ultimate restriction to space-localizations together with the dynamics of
wave-mechanics.

Another characteristic of the outlined theory is that it is not — contrary to the
conventional quantum theory — based on the concept of measurement. The events
are to be considered as really occurred “elements of reality” irrespectively of
whether or not a systematic measurement or observation is coupled to the object
system under concern. For a discussion of measurements in the proposed theory,
see Part II1.

The concept of equiangular sequences of projections can be considered as a
generalization of the concept of S-matrix (and its factorizations/subdivisions into
subprocesses) to finite regions in space and time.

It is also a characteristic of the proposed theory that it is fundamentally in-
deterministic/stochastic. This is contrary to common ideas that physical laws
are fundamentally deterministic and time-reversible. This determinism and time-
reversibility is formal and concerns only the one half of the theory mentioned
above.

The proposed theory gives a basis for a general theory of irreversible processes
based directly on quantum mechanics. It gives an alternative definition of entropy
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and an alternative derivation of entropy increase in irreversible processes. It shows
a deep relation between thermodynamics and quantum theory.

Irrespective of physical applicability, the concepts of confidence estimates on
L2-functions and their Fourier transforms, equiangular sequences of projections
and stochastic event structures have interesting properties that deserve a separate,
pure mathematical study, see Part III.
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