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12 SPECIAL RELATIVITY §7

collision of two moving particles. It will therefore be
specified by four coordinates, three of spatial position and
‘one of time, for example (x, y, z, f), if we employ
rectangular Cartesian space-coordinates x, p, z. Our
investigations will be largely concerned with events. In fact, ,
all physics can be regarded as a study of the pattern of events
S 88 gostetey is s stdy of i peliorcol pole
lether or not two events which are separated in|
time occur at the sar
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> place would seem to be a very| h P
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! simple question. And so it is. Clearly, however, two{ vil-(

\, i : . 4
- observers using different frames of reference will not
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Vig foc oo | can be said to produce the “real” answer we see that |
sl ek | spatial position is purely relative and that Newton’s premise |
L ¢ & | «gpace is absolute ” must be abandoned. This is a com- |
mALff\’.‘:‘E . paratively simple mental adjustment. !
e Jh Let us now examine the complementary problem,
(R ‘l' namely how to determine whether two events which are
3 161 separated in space occur at the same time or not. It had
qfu; long been taken for granted that, in any given case, the
il verdict of all competent observers would be unanimous.

{ And yet this is not so. We shall adopt the following

L nt Y o - practical definition of simultaneity: fwo events occurring

ts P

G jf and only if light emitted at the two evemgganfﬁ:es i
X simultaneously Jar _the midpoint of the segment PO in .
This definition is implied by the law of light-propagation
of §6 and it avoids all mention of clocks which would
here be an unnecessary complication. Now let # and 2
be two events occurring simultaneously at points P and @
of an inertial frame & and let M be the midpoint of PQ
in . Let & be a second inertial frame moving in the
direction of PQ and let P* and Q' be the fixed points in
&' at which 2 and 2 occur, and let M’ be the midpoint
of P'Q" in &’ (see Fig. 1 (2); the two figures 1 (a) and

1 (b) are “ snapshots” made in &). Since # and 2
ot pshllh  ompdh |
14 SPECIAL RELATIVITY §8

agreed spectral line. By direct measurement, or by means
of a base line, two theodolites and an assistant (and
Euclidean geometry), the observer can then assign right-
handed rectangular Cartesian space-coordinates x, y, 2z
to any event he observes. Knowing the distance of the
event and HWM it
he can, by appeal to the law of light-propagation, also
uniquely assign a time-coordinate ¢ to it. Such coordinates
(x, ¥, z, ), which we shall call standard coordinates, will
be presupposed throughout this book.

In theory it is most convenient to think of the (standard)
coordinates of an event as determined locally by auxiliary
observers. Once space-coordinates are assigned to all
points of the frame, we can imagine identical standard
clocks to be placed at the lattice points and observed by
auxiliary observers. These clocks can be identified with the
free particles defining the frame. They can be synchronized
by a control signal emitted, let us say, from the origin at

¥ time £y by the origin clock. When the signal arrives at a
o %loc'k whose distance from the origin is r, that clock must

e set to indicate time fo+r/c. On the classical theory this
«, process would evidently synchronize all the stationary
clocks of the frame so that equal pointer readings of any
two of them always constitute simultaneous events in the
sense of the definition of § 7. Now none of the relevant
classical laws, in particular the law of light-propagation
concerning fixed sources and observers, is affected by
relativity. Consequently in relativity, too, the process
is a valid one for clock synchronization,t Our imaginary
+ It should be noted that, although the light-signalling method is
the one usually described for clock synchronization, we could theo-
retically synchronize the clocks in the frame by purely mechanical
means: e.g., by projecting standard particles from standard guns in all
directions from a given point. The speed of such particles could be
previously determined by projecting one from a point 4 to a peint B
whereupon a second must at once be projected back from B to 4.
The speed sought is evidently twice the distance 4B divided by the
time elapsed at 4.

«Ml‘-,‘r .

’“ﬁ, 4 }f necessarily agree on the answer. Since no one observer!| “l i, .
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§8 THE SPECIAL PRINCIPLE OF RELATIVITY 13

are simultaneous in &, the light-signals from 2 and 2
will meet at M. By this time M and M’ will have separated
owing to the finite velocity of light (Fig. 1 (8)). Since ‘{"i o
the signals cannot meet both at M and at M’, it follows ™
that in ' the events are not simultaneous. We conclude —%.=

sl
that simultaneity at different places is _a relative.concept. di

=

“time is absolute ” is a very much more painful mental
process than that of his first.

It is the great achievement of Minkowski to have dis-
covered in the wreckage of absolute space and time some-
thing which, if perhaps less simple, is nevertheless absolute |
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once more and constitutes-a suitable-new background for
our intuitive thought about the physical world: four-
%@j%&-ﬂgm This is vgry much more than a
w we shall see in chapter IV.
§ 8. The Lorentz Transformation. In this section we
shall consider the transformation of the coordinates of a
given event from one inertial frame to another. But as a
preliminary we should be quite clear about the method of
assigning coordinates to an event in any one frame. For
this purpose we assume that each observer presiding over
an inertial frame is equipped with (i) a standard clock,
which may be based on any agreed periodic phenomenon,
e.g. the vibration of the caesium atom (which has actually
been used for time measurements), and (ii) a standard
of length, based, for example, on the wavelength of an

A B vl mapthd rifa
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coordinate lattice carrying auxiliary clocks and observers
now allows the space- and time-coordinates (x, y, z, f) of
any event to be determined locally.

Let us consider two such frames, © and &', in uniform
relative motion. Let the standard coordinates x, y, z,
in © and x', §', 2, ' in &' be chosen in such a way that
(i) &' moves in the direction of the positive x-axis of &
with constant velocity v; (ii) the two x-axes and their

y i J
IS &'
» —ZD v
3 -
/ ! x / &
2 z
Fie. 2

positive senses coincide; (iii) the coordinate planes y = 0
and z =0 coincide permanently with the coordinat
planes ' =0 and z' =0, respectively; and (iv) th
two spatial origins coincide when their local clocks both
read zero. We shall in future call this the standard|
configuration of two frames G and &' (Fig. 2). Outside
of classical mechanics the feasibility of stipulations (ii)
and (i) needs justification. We return to this point below
(on p. 17); till then the argument is independent of the
configuration.

If (x, ¥, z, #) and (x', )/, ', 1) are the coordinates in
© and &' respectively of an arbitrary event, our problem
is to find the relations between these two sefs of numbers.
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16 SPECIAL RELATIVITY §8
- The simple so-called Galilean transformation,
R W=y By TS (1.D

which is valid in Newtonian mechanics, is not in accord-

ance with our result that simultaneity is relative. More-

over we cannot remedy this defect by a mere amendment

of the last member, for a simple consideration shows that

the transformation of the x-coordinate is affected by the

same objection (see § 10, penultimate paragraph). We

shall therefore derive the required transformation equations

afresh by appeal to the relativity principle and the law of

light-propagation.

Consider any event 2 and a neighbouring event 2

( (close to @ in & and ©') whose coordinates differ from

those of # by dx, dy, dz, dt in & and by dx’, dy’, dz’,

dr’ in &'. Suppose that at the event & a flash of light is

emitted and that 2 is the event of some particle in space

p} ~¢+  being illuminated by that flash. In accordance with the

1 law of light-propagation the observer in G will find that
Q(.E-',_W (&2 +dy2+d22) = cdt, or

i dx®+dy? +dz? —c2di =0, di>0, (1.2)
= -

\i%d, similarly, the observer in &’ will find that
dx?+dy?+dz?—c*dt? =0, d'>0. (1.3)
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I (1), p. 21) that it must therefore be a multiple of the

,quadratic in (1.2). And since only the ratios of the |
| differentials matter here, we have introduced no restriction | [ |~

by confining our attention to an infinitesimal neighbourhood | e

| of . Thus at any event 2 the following relation holds: |

A dy? b de— o2 = K(d24-dy2+dz?— c2ard), (L4)| L

" where K is independent of the differentials. Furthermore,

K at 2 is independent of the choice of standard coordinates
in © and ©'. For, since the frames are Euclidean, the
values of dx2+4dy2+dz2 and dx'2+dy'24-dz'2 relevant to 2
and 2 are independent of the choice of axes, and by the
hg:pgg_eniity_of_ﬁm the values of dr2 . andgz,_’_z_m
pendent of the choice of the origins of time. Without
MWWMWOW choose
coordinates so that # = (0,0, 0, 0) in € and &'. Since
the orientations of the rectangular axes in € and &’ can
be arbitrary for the present argument, and since inertial
frames are isotropic, the relation of & and &' relative to
each other and to the event £ is now completely sym-
metric whence we must have, as well as (1.4), o

dx’7—+dy 2 de?— 22 = K(dx2+dy2+dzlgc2dr2) | l‘};’v Led.
It follows that K = +1 K = —1 can at once be dis- \J{’ erdat,

missed, since (1.4) must remain valid as s—»O Conquently, | - :‘;‘E‘h

Conversely, any event near # whose coordinates satisfy ?
either (1.2) or (1.3) is illuminated by the flash from £ and
therefore its coordinates will satisfy borh (1.2) and (1.3)..
Now, no matter what the transformations between the

coordinates themselves may be, provided they are differ-
entiable, the transformations between the differentials at -

dx2+dy2+dz2—c2di? = dx'2+dy'2+dz'2 edrz (1. 5) louk otk

for differentials at 2 and evidently at all other events too. | {""’;S: 'J

. Equation (1.5) implies that the transformation equations | Otind
between the primed and unprlmed coordinates must be/ y, s o
linear. (For a proof, see exercise IV (1), p. 74. The proof is| ¢/ W

= : tponed only because the most convenient notation for |~
any fixed event 2 are linear and homogeneous. (as always) Pos .Y
and fhus the Teft member of (1.3) equals a homogeneous I i‘ (;5)’ ‘;0‘2;“)“'0‘1““" until chapter IV. Sec also exercisy % o

quadratic in dx, dy, dz, dt. This quadratic, as we have
just seen, must vanish for all real values of the differentials
which satisfy (1.2). It can easily be shown (see exercise

The linearity of the transformation implies that the. 5
| coordinate axes can indeed be oriented to give the -

C‘( *’{L*”Fq 50 fz.yt‘_f“fcgw’a-f T L

¥ .
4 = o
= ; Vll' i
dnnds J‘ 4, 2 Z / %
\""]'M }Liﬁuwc;b SM/@& f,/k.h]/,,”:%aw,“ ; Ay P (Ji
- I —— =
" Léirmih X020 e lammn | o TN F) A J
Chy {?{ y;:{gti;ql rw PV‘*"’ Rt s >
Ln‘v vk t © UL Gl Sr\l"- €
18 SPECEAL RELATI a pa u ;..,. §8 THE SPECIAL PRINCIPLE OF RELATIVITY 19
ki stax_:ldard conﬁguratiorj " mentioned above. In ] In virtue of (1.8), equation (1.6) now reduces to
consider a_ﬁxed plane with equation Ix+my+nz+p = 0. X2—C2f2 = x'2—24"2 (1.9
In & this becomes, say Na,x'-+byy' +ec .z’ +dit'+e,) : e e 2
+m(ayx'+..)+n(asx' +..)+p = 0, which represents a Since x* = 0 must imply x = v, we can set
moving plane unless Id; +md,+nd; = 0, i.e., unless the x' = B(x—wr), /

normal vecterX(l, m, n) to the plane in & is perpendicular
to the vector (dy, d,, d3). All such planes evidently intersect
in lines which are fixed in both & and &', and which are
parallel to the vector (dy, d,, d3) in &. These lines must
correspond to the direction of relative motion of the
frames. By symmetry, two such planes which are ortho-
gonal in & must also be orthogonal in &’. This allows the

choice of the two common coordinate planes,
i Uinder @ gm transformation the finite coordinate
lta. o | differences satisfy the same transformation equations as
jwe 4 the differentials. It therefore follows from (1.5) when
eev ' lapplied to the event (0, 0, 0, 0) that, for any event with
T & ) coordinates (x, y, z, f) in © and (¥, ), 7, ) in &', the

T & 2
L, dt following relation holds:
e X4 p2bz2 el = X'24 24 72— 22, (1.6)

2 il Now, by hypothesis, the coordinate planes y = Oand ' = 0

}i'i_:"_ coincide permanently. Thus y = 0 must impl‘)' ,y‘_= (),
il whence we can set g Sitt ¥ XLy
5 @) brery ¥ = Ay, 1 e ol )

e Jipv Where A4 is a constant (possibly depending on v). By

Yoy reversing the directions of the x- and z-axes in G and &'
livj3x /we can intemhange the roles of these frames (presupposing

el * sisotropy as in the argument for X) without affecting (I. 7

@yt ;. but then, by symmetry, we also have
»

pl y =4y,
" whence 4 = +1. The negatlve sign can again be dlsmlssed
A since v—+0 must imply y'~, and so 4 = 1. The argument
for z is similar, whence we have

Y=y 2=z ¢ (1.8)
as in the Galilean case. V9 T'- Y ol Bxan biee
10 9 et !
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where B is a constant (possibly depending on »). From
this and (1.9) it follows that ¢’ is of the form -
LEC
t = Cr+Dr, (hnpw €20 #( tFz
— whdr g

where C and D are constants (poss1bly depenafﬁn on b)
When these expressions for x’ and ¢* are substituted in
(1.9), and the three equations that result from comparing
the coefficients of x2, xt, 2 are solved, we find

B D 1z . —ufe?

+(1—v?/c?)? +(1—v?fc?)

where again we must choose the positive sign for the
same reason as before. Thus, collecting our results, we
have obtained the transformation equations

oo Xt —ux/c
== ’z—z,tg— , (1.10
(1—v?/c?)* ¥y=J L e T | i

which are wewally called the Lorentz equations. If t} i rentz equatmns If the
relati v1typ inciple is true Men all thela sics which
i rame must be mgaﬂam under

nsformation equations. _We proceed to list some
of Tir more 1mp0rfa.nTpropbrtIes
°
(i) The Lorentz equations replace the older Galilean
equations (1.1), to which they nevertheless approximate
whenvissufficiently small. (For example, (1 —v?/¢?) ™% <101
as long as v<}e, at which speed the earth is circled ia

-one second.) This is in agreement with the high degree

of accuracy with which Newtonian mechanics (invariant
under the Gdlilean transformation) describes a large domain
of nature.
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over into (1.1).

v inertial frames cannot exceed the speed of light,

correspond to equal values of .

(i) We can see how intimately the difference between
the Galilean and the Lorentz equations is connected with

the finite speed of light by letting ¢~ co, when (1.10) goes

(iii) When p = ¢, two members of (1.10) become infinite,
and v>c Jeads to Imaginary values. This is the first
indication of a fact we shall examine more closely in the
next chapter, namely that the relative velocity between

(iv) The appearance of the Space-coordinate x in he
transformation of the time is the mathematical expression
of the relativity of simultaneity. It implies that two events
corresponding to equal values of ¢ do not necessarily

b (v) Equations (1.10) are symmetric not only in y and z

but also in x and /. (The reader should verify this b
v writing T/c for ¢ and T/ for ¢ in (1.10) and multiplying
: * the last equation by ¢.) In the sequel we shall often find
J ©f a more convenient variable than r.

that a-lg = g1 —

inverse elements

(vi) The Lotentz transformations are non-singular (their
determinant is easily seen to be unity) and they possess the
two so-called 8roup properties.t First, direct algebraic

1 The requirements for an abstract multiplicative group are (i) the
product of two elements isan element of the &roup; (ii) the associatiyve ,
law (ab)e = atbe) holds: (iii) there is a ynit clement ¢ satisfying’
ae = ea = g for all q; (iv) each element o has an inverse -1 such

A transformation group is a set of transformations which form a
group in which the product of two transformations is their resuitant
transformation, the unit element is the identity transformation ang
i are inverse transformations in the usual sense, Now
any set of transformations ig associative; if the set is non-void and

solution of (1.10) for x, y, z, ¢ gives
' ot ' +vx’[c? (L11)
o Ay, saran SARIE
: ot formation
i 3 is entz transfor
argd s !hetlgvcfsve i(r)igtga‘(}l())ofl hvz,i I::? l‘must indeed be the
s parammae - try considerations, Second, the resultant
oft frzﬁléessive Lorentz transformations, with paramletlegi
glf 2:'13 vy respectively, is also foun%l;g be of type (1.
v .
e parau:etsgnt‘;u? (:l:;; 053]/;1%:.:': 2whose speed of propa- |
‘We_no G is ﬁn;te and constant could have h.eeu useq, as
g Ufzr?fc?le derivation of the Lorentz equations. Smo]i
ol waes,t;ansformation can be valid, it follqws that all sulce :
:E'leit:t;usl be propagated with_the speed of lflgl;t. uEex;(:JiJe;S)
are provided by electromagnetic waves of all freq A

Exercises I ]
ise indi & and & will always
(Unless bt;ﬁlerylse ll'lltdilﬁ,t;g, i;wg fn_:'mgs il
XIJ (1) Proveé that if the polynomial

T
= aX?4+bY? 422 +dT? +gXT+hY
o +kZT+IYZ+mXZ+nXY

vanishes whenever the polynomial
0=X*4Y*+22-T2
vanishes for real X, ¥, Z, Tand T>0, then P can differ from

int: substitute into P
t a constant factor. |Hin L ’
i%%rittn];‘:sfoﬁowing obvious zeros of 0: (+1, 0, 0, 1)

0, 142 142, 1), (W2 0,
/@ £1,0,1),(0,0, £1, 1)’(1’ and solve the resulting
12, D, (U142, 12, 0, P

(a) the resultant of any two transformations of the set 13 in the set and conditions on the coefficients.

ineari formation
L) the linearity of the trans
\<bet‘§rze)e1}.T (zll;ep:fa%fd;rti coordinates in two inertial frames,
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