
5 Fourier Analysis

We discussed the expansion of an arbitrary vector A in terms of basis vectors êi which are orthogonal (and
normalised);

êm · ên = δm n . (5.1)

On the other hand, we saw that an arbitrary function of cos θ can be expanded as a series of Legendre
polynomials, which are orthogonal (and normalised);∫ +1

−1

Pm(x) Pn(x) dx =
2

2m + 1
δm n . (5.2)

The two formulae look very similar. The crucial difference between the two is that the scalar product is
defined differently in the two cases. For the Legendre polynomials, the scalar product of two of them is given
by an integral from −1 to +1. The factor of 2/(2m + 1) on the right hand side is of no real importance — one
doesn’t have to work with basis vectors of length one.

5.1 Fourier Series

The other place where you have met the expansion of functions in terms of orthogonal functions is in the Fourier
series that you saw in the Waves and Optics course in the first year. A pure note on a violin corresponds to a
sinusoidal variation in both position x and time t. However, when the violinist bows the instrument, she or he
excites a whole range of notes. To find the notes, the initial signal must be expanded in a Fourier series. We
want here to justify and extend some of these first year techniques.

The orthogonality integral is most elegant in terms of complex exponentials:∫ +π

−π

e−imx einx dx = 2πδm n . (5.3)

Using Euler’s relation, eimx = cos mx + i sinmx, we can then convert Eq. (5.3) into integrals for sines and
cosines to give ∫ +π

−π

cos mx sinnx dx = 0 for all m,n. (5.4)

Provided that m,n 6= 0,∫ +π

−π

cos mx cos nx dx =
∫ +π

−π

sinmx sinnx dx = π δm n . (5.5)

If m = n = 0, the the sine integral vanishes and we are just left with the cosine integral∫ +π

−π

1 dx = 2π . (5.6)

Thus the functions
1√
2π

,
1√
π

cos mx ,
1√
π

sinmx , (5.7)

with m a positive integer, form an orthonormal set with respect to integration over the interval −π ≤ x ≤ +π.
I claim that an arbitrary function f(x) in the interval −π ≤ x ≤ +π may be written in the form

f(x) = 1
2a0 +

∞∑
n=1

an cos nx +
∞∑

n=1

bn sinnx , (5.8)

where the Fourier coefficients are given by

am =
1
π

∫ +π

−π

f(x) cos mx dx ,

bm =
1
π

∫ +π

−π

f(x) sin mx dx . (5.9)
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Proof: Multiply both sides of Eq. (5.8) by sinmx and integrate from −π to +π.∫ +π

−π

f(x) sin mxdx = 1
2a0

∫ +π

−π

sinmxdx +
∞∑

n=1

an

∫ +π

−π

sinmx cos nx dx

+
∞∑

n=1

bn

∫ +π

−π

sinmx sinnx dx . (5.10)

The first two terms on the right hand side clearly vanish because the integrands are odd. The third term is only
non-zero if m = n, which means that there is only one term in the sum. Using Eq. (5.5), this gives∫ +π

−π

f(x) sin mxdx =
∞∑

n=0

bn π δm n = π bm , (5.11)

as required.
Alternatively, multiplying by the cosine,∫ +π

−π

f(x) cos mxdx = 1
2a0

∫ +π

−π

cos mxdx +
∞∑

n=1

an

∫ +π

−π

cos mx cos nx dx

+
∞∑

n=1

bn

∫ +π

−π

cos mx sinnx dx . (5.12)

It is the third term which now vanishes for all m and n. If m = 0, only the first term survives and∫ +π

−π

f(x) cos mxdx = 1
2a0 2π = π a0 , for m = 0 . (5.13)

On the other hand, if m 6= 0, it is the second term which is non-vanishing and∫ +π

−π

f(x) cos mxdx =
∞∑

n=0

an π δm n = π am . (5.14)

You now see why I introduced the 1
2 factor in front of a0 in Eq. (5.9). It means that we can get a consistent

formula for all the am.

Example 1: Rectangular wave. Consider the function

f1(x) =
{

+1 for 0 < x < π
−1 for − π < x < 0

Note that this is an odd function, i.e. f(x) = −f(−x). Using Eq. (5.9), this means that all the even coefficients
an = 0. [The cos nx are even functions and, when multiplied by f(x), give odd integrands.] On the other hand

bn =
1
π

∫ π

0

sinnx dx− 1
π

∫ 0

−π

sinnx dx =
1

nπ

[
− cos nx

]π

0

− 1
nπ

[
− cos nx

]0
−π

=
1

nπ
[1− cos nπ + 1− cos(−nπ)] =

2
nπ

[1− cos nπ] =
4

nπ
×
{

1 for n odd
0 for n even.

Thus the Fourier series becomes
f1(x) =

4
π

∑
n odd

1
n

sinnx .

As an example of how things look if we just take a finite number of terms, the picture shows what happens
when the series is truncated at n = 21. You see there are lots of little oscillations (typically 21) and the sizes
of these oscillations get smaller as the number of terms increases. However, with a finite number of terms like
this, the representation of a function which changes so sharply near x = 0 is not perfect! Note that the original
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function was not defined at x = 0 but the Fourier series has resulted in a representation with f(0) = 0. This
is typical of a case where the function is discontinuous and the Fourier series will then converge to the mean of
the results to the left and right of the discontinuity at x = x0:

−→ lim
ε→0

1
2 {f(x0 + ε) + f(x0 − ε)} . (5.15)

No matter how many terms you add, you never get it quite right at a discontinuity. Thus in the next picture
there are are 100 terms and there is still an overshoot of about 18%. With more terms, the overshoot always
stays the same size but it just gets squeezed into a smaller region in x. This is known as the Gibbs phenomenon.
On the other hand, one could not get anything like as good a description of a discontinuous function using a
power series.

Periodic Functions
So far we have looked at functions defined in the region −π ≤ x ≤ +π. What happens outside this region?

Going back to Eq. (5.8), we see that the function is periodic with period 2π since

f(x + 2π) = 1
2a0 +

∞∑
n=0

an cos n(x + 2π) +
∞∑

n=1

bn sinn(x + 2π)

= 1
2a0 +

∞∑
n=1

an cos nx +
∞∑

n=1

bn sinnx = f(x) . (5.16)
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Therefore we can use Fourier series either on a function which is defined just over an interval −π ≤ x ≤ +π, or
one which is periodic with period 2π.

Example 2: A function f2(x), which is periodic with period 2π, is defined by

f2(x) = x , 0 ≤ x ≤ π ,

= −x , −π ≤ x ≤ 0 .

Sketch the function in the range −4π ≤ x ≤ 4π and then find its Fourier series.

f2(x) is an even function, as shown in the picture.
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Due to the eveness, the bn all vanish since the integrands are odd. This is a very general trick — an odd
function only has sines in its expansion whereas an even function has only cosines. The even coefficients are:

a0 =
2
π

∫ π

0

x dx =
[
x2

π

]π

0

= π ,

where use has been made of the even character to integrate over half the interval.

an =
2
π

∫ π

0

x cos nx dx =
2
π

[
x

n
sinnx +

1
n2

cos nx

]π

0

.

The sine function vanishes at both limits, so that

an = − 2
πn2

[1− (−1)n] .

This means that an = −4/π if n is odd but that an = 0 for even n.
Hence

f2(x) =
π

2
− 4

π

∑
n odd

1
n2

cos nx .

This series converges rather faster than the first example since, keeping terms only up to n = 5, we get the
picture:

The reason for this better behaviour is that, unlike the case in example 1, the original function f(x) has no
sudden jumps, although it has sudden changes in slope. Note, however, that with a finite number of terms the
Fourier series never quite gets to zero.

Often at the end of an examination question there will be a little sting in the tail which uses the earlier
results. Thus, since f2(x) should vanish at x = 0, rearranging the Fourier series at this point we obtain

∑
n odd

1
n2

=
π2

8
·

The right hand side ≈ 1.234. Keeping only three terms on the left hand side gives 1 + 1/9 + 1/25 ≈ 1.151,
which differs from the true answer by about 7%. This is another manifestation of the convergence of the Fourier
series.
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General interval
So far we have looked at a range in x between ±π but the same the same formulae are valid for any range

of the same size, such as 0 ≤ x ≤ 2π. If, on the other hand, the fundamental interval is −L ≤ x ≤ +L, just
change variables to y = πx/L. Then

f(x) = 1
2a0 +

∞∑
n=1

an cos nπx
L +

∞∑
n=1

bn sin nπx
L , (5.17)

where the Fourier coefficients are given by

am =
1
L

∫ +L

−L

f(x) cos mπx
L dx ,

bm =
1
L

∫ +L

−L

f(x) sin mπx
L dx . (5.18)

The conditions under which a Fourier expansion is valid go by the name of Dirichlet conditions, which are
discussed by Boas. Roughly speaking, if f(x) is periodic with period 2L with a finite number of discontinuities,
then the expansion is valid provided that ∫ +L

−L

| f(x) | dx is finite. (5.19)

Differentiation of Fourier series
The general motto is be careful ! In the examples that we have looked at,

f1(x) =
d

dx
f2(x) .

Does this hold for their Fourier series? Just try and see!

d

dx
f2(x) =

d

dx

(
π

2
− 4

π

∑
n odd

1
n2

cos nx

)
=

4
π

∑
n odd

1
n

sinnx = f1(x) ,

which works fine.
Now go one step further and look at the Fourier series for the next derivative

d

dx
f1(x) =

4
π

∑
n odd

cos nx .
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The series clearly must blow up at x = 0 or x = ±π because we then have an infinite number of terms equal
to +1 or −1. Away from these points, the Fourier series oscillates around zero as in the picture, which was
calculated with terms up to n = 21. If one takes more terms the peaks at x = mπ get higher but narrower.

To repeat, if the function is smooth then we can differentiate its Fourier series term by term. At any discon-
tinuities we have to be careful — sometimes very careful!

Parseval’s Identity
Suppose that f(x) is periodic with period 2π such that it has the Fourier series

f(x) = 1
2a0 +

∞∑
n=1

an cos nx +
∞∑

n=1

bn sinnx . (5.20)

Parseval’s theorem is that the average value of f2 is given by

< f2(x) >=
1
2π

∫ +π

−π

[f(x)]2 dx =
(a0

2

)2

+
1
2

∞∑
n=1

(a 2
n + b 2

n) . (5.21)

We can insert the representation of Eq. (5.20) into the left hand side of Eq. (5.21) and simply carry out all the
integrations. Now, by Eqs. (5.4, 5.5), there are no cross terms which survive the integration, so that

1
2π

∫ +π

−π

[f(x)]2 dx =
1
2π

∫ +π

−π

dx

{(
1
2a0

)2 +
∞∑

n=1

a 2
n cos2 nx +

∞∑
n=1

b 2
n sin2 nx

}
. (5.22)

Now the average value < cos2 nx >=< sin2 nx >= 1
2 , so that Parseval’s identity follows immediately.

Let us now see what this gives us for the two examples that we have worked out. In the first case, f 2
1 (x) = 1,

and hence
1 =

1
2

16
π2

∑
n odd

1
n2

,

that is ∑
n odd

1
n2

=
π2

8
·

But this is already the result that we got from looking at the sum of the Fourier series in the second example
at the position x = 0. The two answers are the same!

In the second case of the saw-tooth wave,

< f 2
2 (x) >=

1
2π

∫ +π

−π

x2 dx =
[

x3

6π

]+π

−π

=
π2

3
.
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Hence
π2

3
=
(π

2

)2

+
8
π2

∑
n odd

1
n4

.

Thus ∑
n odd

1
n4

=
π4

96
·

This agrees with the output from Mathematica!

Complex Fourier series
For those of you who are happy with complex numbers, the complex Fourier series are easier to handle than

the real ones. If f(x) is periodic, with period 2π, then

f(x) =
+∞∑

n=−∞
cn einx , (5.23)

where the complex coefficients are given by

cn =
1
2π

∫ +π

−π

e−inx f(x) dx . (5.24)

The proof of this follows immediately using the orthonormality condition of Eq. (5.3):∫ +π

−π

e−imx einx dx = 2πδm n .

Example: Let us do example 1 again and show that we get the same answer.

cn =
1
2π

∫ 0

−π

e−inx (−1) dx +
1
2π

∫ +π

0

e−inx (+1) dx =
1
2π

[
−1
−in

e−inx

]0
−π

+
1
2π

[
1
−in

e−inx

]π

0

=
1

nπi
(1− (−1)n) .

This means that all the even coefficients vanish and the odd ones are cn = 2/(nπi). The complex Fourier series
becomes

f(x) =
2
πi

+∞∑
n=−∞

1
n

einx (n odd) =
2
πi

−1∑
n=−∞

1
n

einx +
2
πi

+∞∑
n=1

1
n

einx

= − 2
πi

∞∑
n=1

1
n

e−inx +
2
πi

+∞∑
n=1

1
n

einx =
4
π

+∞∑
n=1

1
n

1
2i

(
einx − e−inx

)
,

where all the sums are over the odd values of n. You recognise the expression for sinnx in the last bracket and
so we have obtained the same result as before.

There is a form of Parseval’s identity which is valid for complex Fourier series:

1
2π

∫ +π

−π

| f(x) |2 dx =
1
2π

∫ +π

−π

f∗(x) f(x) dx =
+∞∑

n=−∞
| cn |2 . (5.25)

5.2 Fourier Transforms

Go back to the expressions of eqs. (5.17, 5.18) for the Fourier series and Fourier coefficients in the case of an
arbitrary interval of length 2L:

f(x) = 1
2a0 +

∞∑
n=1

an cos nπx
L +

∞∑
n=1

bn sin nπx
L ,
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where

am =
1
L

∫ +L

−L

f(x) cos nπt
L dt ,

bm =
1
L

∫ +L

−L

f(x) sin nπt
L dt.

Putting these together as one equation,

f(x) =
1

2L

∫ +L

−L

f(t) dt +
1
L

∞∑
n=1

cos nπx
L

∫ +L

−L

f(t) cos nπt
L dt +

1
L

∞∑
n=1

sin nπx
L

∫ +L

−L

f(t) sin nπt
L dt . (5.26)

Using the trigonometric addition formula

cos nπx
L cos nπt

L + sin nπx
L sin nπt

L = cos nπ
L (t− x) , (5.27)

the Fourier series result can be written in the more compact form

f(x) =
1

2L

∫ +L

−L

f(t) dt +
1
L

∞∑
n=1

∫ +L

−L

f(t) cos nπ
L (t− x) dt . (5.28)

Fourier transforms are what happens to Fourier series when the interval length 2L tends to infinity. To bring
this about, define

ω =
nπ

L
and ∆ω =

π

L
. (5.29)

In the limit that L →∞, the first term in Eq. (5.28) goes to zero provided the infinite integral converges. Hence

f(x) =
1
π

∞∑
n=1

∆ω

∫ +∞

−∞
f(t) cos ω(t− x) dt . (5.30)

Now since ∆ω → 0 as L →∞, the sum in Eq. (5.30) can be replaced by an integral to reveal the fundamental
expression of Fourier transforms:

f(x) =
1
π

∫ ∞

0

dω

∫ +∞

−∞
f(t) cos ω(t− x) dt . (5.31)

Since cos ω(t − x) is an even function of ω, we can extend the integration limit to −∞ provided that we
divide by a factor of 2:

f(x) =
1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) cos ω(t− x) dt . (5.32)

On the other hand, sin ω(t− x) is an odd function of ω, which means that

0 =
1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) sin ω(t− x) dt . (5.33)

Adding i times Eq. (5.33) to Eq. (5.32), we get

f(x) =
1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) [cos ω(t− x) + i sinω(t− x)] dt =

1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
f(t) eiω(t−x) dt . (5.34)

Splitting up the exponential, we get to the final result that

f(x) =
1
2π

∫ +∞

−∞
dω e−iωx

∫ +∞

−∞
f(t) eiωt dt . (5.35)

Now introduce the Fourier transform

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx , (5.36)
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and its inverse

f(x) =
1√
2π

∫ +∞

−∞
g(ω) e−iωx dω . (5.37)

The two equations look the same except that in one there is a +i in the exponent, whereas in the other there
is a −i. Eqs.(5.36, 5.37) have been defined symmetrically, each with a 1

√
2π factor. Many books put a 1/2π

factor in front of one integral and unity in front of the other.
The variable ω introduced here is an arbitrary mathematical variable but in most physical problems it

corresponds to the angular frequency ω. The Fourier transform represents f(x) in terms of a distribution of
infinitely long sinusoidal wave trains where the frequency is a continuous variable. You will come across this in
Quantum Mechanics, where such waves are eigenfunctions of the momentum operator p̂. Then g(ω) = g(p) is
the momentum-space representation of the function g(x).

Example
Consider

E(t) = E0 e−γt/2 e−iω0t = E0 e−i(ω0−
1
2γ)t for t ≥ 0

and which vanishes for negative values of t. This could represent a damped oscillating electric field which was
switched on at time t = 0. The Fourier transform is

g(ω) =
1√
2π

E0

∫ +∞

0

eiωt e−i(ω0−
1
2 iγ)t dt =

1√
2π

E0
1

iω − iω0 + 1
2γ

[
ei(ω−ω0+

1
2 iγ)t

]∞
0

Because of the damping, the integated term vanishes at the upper limit and so we are left with

g(ω) =
1√
2π

iE0

ω − ω0 + 1
2 iγ

·

The intensity spectrum

I(ω) = | g(ω) | 2 =
E 2

0

2π

1
(ω − ω0)2 + γ2/4

is peaked at ω = ω0 with a width of γ. In plotting the figure we have taken γ = 1.

Useful results

1) If f(x) is an even function of x, then

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx =

1√
2π

∫ +∞

−∞
f(x) cos ωxdx

is an even function of ω.
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2) Similarly, if f(x) is an odd function of x, then g(ω) is an odd function of ω:

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx =

i√
2π

∫ +∞

−∞
f(x) sin ωxdx .

3) Differentiating Eq. (5.37),

f ′(x) =
1√
2π

∫ +∞

−∞
[−iω g(ω)] e−iωx dω , (5.38)

so that −iω g(ω) is the Fourier transform of f ′(x). By extension, (−iω)n g(ω) is the Fourier transform of
dnf/dxn.

4) From Eq. (5.37),

f(x + a) =
1√
2π

∫ +∞

−∞
[e−iωa g(ω)] e−iωx dω , (5.39)

so that e−iωa g(ω) is the Fourier transform of f(x + a).

The Dirac delta function

The Kronecker delta symbol δi j has the property that

ai =
∑

i

δi j aj (5.40)

for any vector aj , provided that the sum includes the term where i = j. The Dirac delta function is the
generalisation of this to the case where we have an integral rather than a sum, i.e. we want a function δ(x− t),
such that

f(x) =
∫ +∞

−∞
δ(x− t) f(t) dt . (5.41)

This means that δ(t − x) is zero everywhere except the point t = x but there it is so big that the integral is
unity. This is rather like having a point charge in electrostatics — it is an idealisation. δ(t−x) is not a function
in the normal sense; it is just too badly behaved.

Going back to Eq. (5.35),

f(x) =
1
2π

∫ +∞

−∞
dω e−iωx

∫ +∞

−∞
f(t) eiωt dt ,

we can rearrange it as

f(x) =
∫ +∞

−∞
f(t) dt

{
1
2π

∫ +∞

−∞
dω eiω(t−x)

}
. (5.42)

Thus we can identify

δ(t− x) =
1
2π

∫ +∞

−∞
dω eiω(t−x) . (5.43)

We have to be a bit careful about the convergence of the integral at large values of ω. Let us cut off the
integration at ω = ±N and then study what happens as N gets large.

δN (t− x) =
1
2π

∫ +N

−N

dω eiω(t−x) =
sinN(t− x)

π(t− x)
. (5.44)

With N = 50, the figure shows a strong spike at t = x, but with lots of oscillations. The spike gets sharper
as N gets larger, but the lobes at the bottom remain a constant fraction 2/3π of the central value. Note that
δ(x) = δ(−x); the Dirac delta is an even function.
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Parseval’s theorem
There is an equivalent of Parseval’s theorem for Fourier transforms and this is easily proved with the help

of the Dirac delta-function. From Eq.(5.36),

g(ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx ,

g∗(ω) =
1√
2π

∫ +∞

−∞
f∗(y) e−iωy dy , (5.45)

where I have replaced x by y in the second integral so as not to get confused. Now multiply the two expressions
together and integrate over ω.∫ ∞

−∞
g∗(ω) g(ω) dω =

1
2π

∫ +∞

−∞
f∗(y) dy

∫ +∞

−∞
f(x) dx

∫ +∞

−∞
eiω(x−y) dω . (5.46)

But the last integral is just 2π δ(y−x). The delta function removes the y integration and puts y = x everywhere.
The 2π factor knocks out the 1/2π factor outside and we are left with∫ ∞

−∞
g∗(ω) g(ω) dω =

∫ ∞

−∞
f∗(x) f(x) dx . (5.47)

In words, the total intensity of a signal is equal to the total intensity of its Fourier transform. You should check
this on the example given in class where

| E(t) |2=| E0 |2 e−γt and | g(ω) | 2 =
E 2

0

2π

1
(ω − ω0)2 + γ2/4

.
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Convolution theorem (if sufficient time)
The idea of convolution comes up naturally when we investigate a physical quantity f(x) with an apparatus

which is not perfect and has a resolution function g(y). What the experimentalist will actually measure is the
convolution of the signal with the resolving power of the apparatus:

h(z) =
1√
2π

∫ +∞

−∞
dx f(x) g(z − x) . (5.48)

The 1/
√

2π factor isn’t necessary, but it is convenient for the later formulae. Often in the books you will see
the convolution written formally as

h = f ∗ g . (5.49)

The convolution theorem says that the Fourier transform of h is the simple product of the Fourier transform of
f with the Fourier transform of g:

FT [h] = FT [f ]× FT [g] . (5.50)

With so many functions and Fourier transforms to confuse, let us define

F (ω) =
1√
2π

∫ +∞

−∞
f(x) eiωx dx ,

G(ω) =
1√
2π

∫ +∞

−∞
g(x) eiωx dx ,

H(ω) =
1√
2π

∫ +∞

−∞
h(x) eiωx dx . (5.51)

Thus

H(ω) =
1
2π

∫ +∞

−∞
eiωx dx

∫ +∞

−∞
dz f(z) g(x− z) . (5.52)

This can be rearranged to be

H(ω) =
1√
2π

∫ +∞

−∞
dz f(z)

1√
2π

∫ +∞

−∞
eiωx dx g(x− z) =

1√
2π

∫ +∞

−∞
dz f(z) eiωz G(ω) . (5.53)

The first term on the right hand side is just the Fourier transform of f , so that we get the desired result:

H(ω) = F (ω)×G(ω) . (5.54)

Coming back to our experimental measurement problem, we should in principle do the following to find the
true signal. Divide the Fourier transform of the observed distribution by that of the resolution function for each
value of ω. Then take the inverse Fourier transform of the result. This procedure is straightforward for explicit
mathematical examples but is not so easy in the real World where the data in x might only be known at discrete
values of x with significant error bars.

67


