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1 Linear Vector Spaces and Matrices

1.1 Revision of determinants

3× 3 determinants were introduced briefly in the first year course and I am going to spend the first hour or so
reinforcing this material.

1.1.1 Two-by-Two Determinants

Let us start off with a 2× 2 determinant, which is an object with two rows and columns, sandwiched between
two vertical lines. It just represents an ordinary scalar quantity. The numerical value of a 2× 2 determinant is
given by

∆ =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 . (1.1)

for any set of four numbers aij . The notation with the indices is conventional and we will see why it is chosen
when we discuss matrix multiplication. As a simple example, consider

∆ =
∣∣∣∣ 1 3

4 2

∣∣∣∣ = 1× 2− 3× 4 = −10 .

Rule 1
Interchanging rows and columns leaves a determinant unchanged.

∆′ =
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ = a11a22 − a21a12 =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .

Rule 2
A determinant vanishes if one of the rows or columns contains only zeroes.

Rule 3
If we multiply a row (or column) by a constant, then the value of the determinant is multiplied by that

constant.

∆′ =
∣∣∣∣ α a11 α a12

a21 a22

∣∣∣∣ = α a11a22 − α a12a21 = α

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .

Rule 4
A determinant vanishes if two rows (or columns) are multiples of each other. For example, if ai2 = α ai1 for

i = 1, 2, then ∆ = α a11a21 − α a11a21 = 0.

Rule 5
If we interchange a pair of rows or columns, the determinant changes sign.

∆′ =
∣∣∣∣ a12 a11

a22 a21

∣∣∣∣ = a12a21 − a11a22 = −
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .
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Rule 6
Adding a multiple of one row to another (or a multiple of one column to another) does not change the value

of a determinant.

∆′ =
∣∣∣∣ (a11 + α a12) a12

(a21 + α a22) a22

∣∣∣∣ = (a11 + α a12)a22 − a12(a21 + α a22)

= [a11a22 − a12a21] + α [a12a22 − a12a22] =
∣∣∣∣ a11 a21

a12 a22

∣∣∣∣ + 0 .

This is a very useful rule to help simplify higher order determinants. In our 2× 2 example, take 4 times row 1
from row 2 to give

∆ =
∣∣∣∣ 1 3

4 2

∣∣∣∣ =
∣∣∣∣ 1 3

0 −10

∣∣∣∣ = 1× (−10)− 3× 0 = −10 .

By this trick we have just got one term in the end rather than two.

1.1.2 Three-by-Three Determinants

All the above rules will be valid for a general N ×N determinant. A 3× 3 determinant can be expanded by the
first row as

∆ =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31 . (1.2)

Thus we can express the 3× 3 determinant as the sum of three 2× 2 ones. Note particularly the negative
sign in front of the second 2× 2 determinant.

Alternatively, we could expand the determinant by the second column say;

∆ =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = −a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a22

∣∣∣∣ a11 a13

a31 a33

∣∣∣∣− a32

∣∣∣∣ a11 a13

a21 a23

∣∣∣∣ ,

and this gives exactly the same value as before. Pay special attention to the terms which pick up the minus
sign. The pattern is: ∣∣∣∣∣∣

+ − +
− + −
+ − +

∣∣∣∣∣∣ .

The rule of Sarrus
One simple way of remembering how to expand a 3× 3 determinant is through the rule of Sarrus. Note that

this is not valid for a 4× 4 or higher order determinant. In this prescription, we write down again the first and
second columns at the end of the determinant as:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

(1.3)

There are now SIX diagonals that lead from the top row to the bottom. The ones pointing to the right get a
plus sign, those to the left a minus sign. Thus a12a23a31 is positive, whereas a12a21a33 is negative. This agrees
with the result given in Eq. (1.2).

Examples

1. Evaluate

∆ =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ ·
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∆ = 1
∣∣∣∣ 5 6

8 9

∣∣∣∣− 2
∣∣∣∣ 4 6

7 9

∣∣∣∣ + 3
∣∣∣∣ 4 5

7 8

∣∣∣∣ = (45− 48)− 2 (36− 42) + 3 (32− 35) = 0 .

The answer is zero because the third row is twice the second minus the first.

2. Evaluate

∆ =

∣∣∣∣∣∣
1 −3 −3
2 −1 −11
3 1 5

∣∣∣∣∣∣ ·
Add three times column 1 to both columns 2 and 3.

∆ =

∣∣∣∣∣∣
1 0 0
2 5 −5
3 10 14

∣∣∣∣∣∣ =
∣∣∣∣ 5 −5

10 14

∣∣∣∣ =
∣∣∣∣ 5 0

10 24

∣∣∣∣ = 120 .

When determinants are evaluated on a computer, the algorithm generally involves subtracting linear com-
binations of rows (or columns) such that there is only one element at the top of the first column with zeros
everywhere else. This reduces the size of the determinant by one and can be applied systematically. With pencil
and paper, this often involves keeping track of fractions. Different books call this technique by different names.

1.1.3 Higher order determinants

A 4× 4 determinant can be reduced to four 3× 3 determinants as∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣− a12

∣∣∣∣∣∣
a21 a23 a24

a31 a33 a34

a41 a43 a44

∣∣∣∣∣∣ + a13

∣∣∣∣∣∣
a21 a22 a24

a31 a32 a34

a41 a42 a44

∣∣∣∣∣∣− a14

∣∣∣∣∣∣
a21 a22 a23

a31 a32 a33

a41 a42 a43

∣∣∣∣∣∣ (1.4)

Alternatively, we can reduce the size of the determinant by taking linear combinations of rows and/or
columns. This can be generalised to higher dimensions.

1.1.4 Solving linear simultaneous equations: CRAMER’s rule

Consider the simultaneous equations

a11 x1 + a12 x2 + a13 x3 = b1 ,

a21 x1 + a22 x2 + a23 x3 = b2 ,

a31 x1 + a32 x2 + a33 x3 = b3 (1.5)

for the unknown xi. The solution is

x1 =

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
/

∆ , x2 =

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
/

∆ , x3 =

∣∣∣∣∣∣
a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣
/

∆ , (1.6)

where

∆ =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ . (1.7)

We just replace the appropriate column with the column of numbers from the right hand side. This is called
Cramer’s rule and gives just the same results as matrix inversion — but rather quicker!
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Example
Use Cramer’s rule to solve the following simultaneous equations just for the variable x1:

3x1 − 2x2 − x3 = 4 ,

2x1 + x2 + 2x3 = 10 ,

x1 + 3x2 − 4x3 = 5 .

We can expand the determinant appearing here by the first row as

∆ =

∣∣∣∣∣∣
3 −2 −1
2 1 2
1 3 −4

∣∣∣∣∣∣ = 3(−4− 6) + 2(−8− 2)− 1(6− 1) = −55 .

Alternatively, adding simultaneously columns 2 and 3 to column 1 gives

∆ =

∣∣∣∣∣∣
0 −2 −1
5 1 2
0 3 −4

∣∣∣∣∣∣ .

Expand now by the first column (not forgetting the minus sign)

∆ = −5(8 + 3) = −55 .

Now by Cramer’s rule,

∆× x1 =

∣∣∣∣∣∣
4 −2 −1

10 1 2
5 3 −4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
4 −2 −1
0 −5 10
5 3 −4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
4 −2 −5
0 −5 0
5 3 2

∣∣∣∣∣∣ = −5(8 + 25) = −165 .

Hence x1 = 3.

1.2 Three-dimensional Vectors

You were introduced to vectors in an ordinary (real) 3-dimensional Euclidean space in the first year 1B21
course. We are going to start this course by going over some of the results obtained there and then generalise
the definitions and results to complex spaces with n-dimensions. This will be of importance for the 2B22
Quantum Mechanics course.

We can define a three-dimensional Euclidean space by introducing three mutually orthogonal basis vectors
ı̂, ̂ and k̂, as was done in 1B21. However, it is awkward to generalise this notation to an arbitrary number of
dimensions and so we use instead ê1 = ı̂, ê2 = ̂, and ê3 = k̂. These basis vectors have unit length,

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1 , (1.8)

and they are perpendicular to each other;

ê1 · ê2 = ê2 · ê3 = ê3 · ê1 = 0 . (1.9)

These properties may be summarised in one equation as

êi · êj = δij , (1.10)

where the Kronecker delta δij is a very useful shorthand notation for

δij =
{

1 if i = j
0 if i 6= j

(1.11)
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Any vector v in this three-dimensional space may be written down in terms of its components along the êi.
I am switching notation here so that I shall underline vectors, rather than putting an arrow on the top. This
brings it into line with the notation for matrices. Thus

v = v1 ê1 + v2 ê2 + v3 ê3 ,

where the coefficients vi may be obtained by taking the scalar product of v with the basis vector êi;

vi = êi · v . (1.12)

This follows because the êi are perpendicular and have length one.
If we know two vectors v and u in terms of their components, then their scalar product is

u · v = (u1 ê1 + u2 ê2 + u3 ê3) · (v1 ê1 + v2 ê2 + v3 ê3) = u1 v1 + u2 v2 + u3 v3 =
3∑

i=1

ui vi . (1.13)

A particularly important case is that of the scalar product of a vector with itself, which gives rise to
Pythagoras’s theorem

v2 = v · v = v 2
1 + v 2

2 + v 2
3 . (1.14)

The length of a vector v is

v =| v |=
√

v2 =
√

v 2
1 + v 2

2 + v 2
3 . (1.15)

A unit vector has length one.
A vector is the zero vector if and only if all its components vanish. Thus

v = 0 ⇐⇒ (v1 , v2 , v3) = (0, 0, 0) . (1.16)

The vector v is a linear combination of the basis vectors êi. Note that the basis vectors themselves are
linearly independent, because there is no linear combination of the êi which vanishes – unless all the coefficients
are zero. Putting it in other words,

ê3 6= α ê1 + β ê2 , (1.17)

where α and β are scalars. Clearly, something in the x-direction plus something else in the y-direction cannot
give something lying in the z-direction.

On the other hand, for three vectors taken at random, one might well be able to express one of them in
terms of the other two. For example, consider the three vectors given in component form by

u =

 1
2
3

 : v =

 4
5
6

 : w =

 9
12
15

 . (1.18)

Clearly then
w = u + 2v . (1.19)

We then say that u, v and w are linearly dependent. This is an important concept.
The three-dimensional space S3 is defined as one where there are three, BUT NO MORE, orthonormal

linearly independent vectors êi. Any vector lying in this three-dimensional space can be written as a linear
combination of the basis vectors. All this is really saying is that we can always write v in the component form;

v = v1 ê1 + v2 ê2 + v3 ê3 .

Note that the êi are not unique. We could for example rotate the system through 45◦ and use these new
axes as basis vectors.

So far we haven’t done anything which was not done in 1B21, although the notation is a little bit different
with the êi. We now have to generalise all this to an arbitrary number of dimensions and also let the components
become complex.
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1.3 Linear Vector Space

A linear vector space S is a set of abstract quantities a , b , c , · · ·, called vectors, which have the following
properties:

1. If a ∈ S and b ∈ S, then

a + b = c ∈ S.

c = a + b = b + a (Commutative law)

(a + b) + c = a + (b + c) (Associative law) . (1.20)

2. Multiplication by a scalar (possibly complex)

a ∈ S =⇒ λ a ∈ S (λ a complex number) ,

λ (a + b) = λ a + λ b ,

λ (µa) = (λ µ) a (µ another complex number) . (1.21)

3. There exists a null (zero) vector 0 ∈ S such that

a + 0 = a (1.22)

for all vectors a.

4. For every vector a there exists a unique vector −a such that

a + (−a) = 0 . (1.23)

5. Linear Independence
A set of vectors X1 , X2 , · · · Xn are linearly dependent when it is possible to find a set of scalar coefficients
ci (not all zero) such that

c1 X1 + c2 X2 · · · cn Xn = 0 .

If no such constants ci exist, then we say that the Xi are linearly independent.

By definition, an n-dimensional complex vector space Sn contains just n linearly independent vectors.
Hence any vector X can be written as a linear combination

X = c1 X1 + c2 X2 · · · cn Xn . (1.24)

6. Basis vectors and components
Any set of n linearly independent vectors can be used as a basis for an n-dimensional vector space, which
means that the basis is not unique. Once the basis has been chosen, any vector can be written uniquely
as a linear combination

v =
n∑

i=1

vi Xi .

Up to this point we have not assumed that the basis vectors are orthogonal. For certain physical problems
it is very convenient to work with basis vectors which are not perpendicular — for example, when dealing
with crystals with hexagonal symmetry. However, in this course we are only going to work with basis
vectors êi which are orthogonal and of unit length.

7. Definition of scalar product
The only difference with the results of the 1B21 course is that we want now to let the coefficients ci in
Eq. (1.24) be complex. Such complex spaces are important for the Quantum Mechanics course.
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Suppose that we write a vector v in terms of its components vi along the basis vectors êi, and similarly
for another vector u. Then the scalar product of these two vectors will be defined by

(u , v) = u · v = u∗1 v1 + u∗2 v2 + · · ·+ u∗n vn . (1.25)

The only difference to the usual form on the right hand side is that we have introduced complex conjugation
on all the components ui since the vectors have to be allowed to be complex. This is the only essential
difference with the straightforward real vectors used in 1B21. To stress this difference though, we sometimes
use a different notation on the left hand side and denote the scalar product by (u , w) rather than u · w.

Note that
(v , u) = v∗1 u1 + v∗2 u2 + · · ·+ v∗n un = (u , w)∗ . (1.26)

Thus, in general, the scalar product is a complex scalar.

8. Consequences of the definition

(a) If y = α u + β v then (w , y) = α (w , u) + β(w , v).

(b) Putting u = v, we see that

u2 = (u , u) = u∗1 u1 + u∗2 u2 + · · ·+ u∗n un =| u1 |2 + | u2 |2 + · · ·+ | un |2 . (1.27)

This is the generalisation of Pythagoras’s theorem for complex numbers. Since the | ui |2 are real
and cannot be negative, then u2 ≥ 0. It therefore makes sense to talk about u =

√
u2 as the real

length of a complex vector. In particular, if u = 1, we call u a unit vector.

(c) We say that two vectors are orthogonal if (u , v) = 0.

(d) Components of a vector are given by the scalar product vi = (êi , v).

Representations
Given a set of basis vectors êi, any vector v in an n-dimensional space can be written uniquely in the form

v =
n∑

i=1

vi êi. The set of numbers vi, i = 1, · · · , n (the components) are said to represent the vector v in that

basis. The concept of a vector is more general and abstract than that of the components. The components
are somehow man-made. If we rotate the coordinate system then the vector stays in the same direction but
the components change. This whole business of matrices (and much of the third year Quantum Mechanics) is
connected with what happens when we change the basis vectors.

1.4 Linear Transformations

Suppose that we perform some operation on a vector v which changes it into another vector in the space Sn.
We could, for example, rotate the vector. Let us denote the operation by Â and, instead of tediously saying
that Â acts on v, write it symbolically as Â v. By assumption, therefore, u = Â v is another vector in the same
space Sn. To agree with the notation of the 2B22 Quantum Mechanics course, I shall try to put a hat on all
the operators.

In 1B21 you were shown that all the manipulations of vectors were simplified by working with components.
To investigate this further, we have first to see how the operation Â changes the basis vectors ê1, ê2, · · · , ên. For
the sake of definiteness, let us look at ê1, which has a 1 in the first position and zeros everywhere else:

ê1 =


1
0
0
:
0

 (n terms in the column). (1.28)

7



Now look at the result of acting upon ê1 with the operator Â. This gives rise to a vector which we shall
denote by a1 because it started from ê1. Thus

a1 = Â ê1 . (1.29)

To write this in terms of components, we must introduce a second index

a1 =


a11

a21

a31

:
an1

 . (1.30)

To specify the action of Â completely, we must say how it acts on all the basis vectors êi;

ai = Â êi =


a1i

a2i

a3i

:
ani

 . (1.31)

This means that we have to give the n2 numbers aji, (j = 1, 2, · · · , n; i = 1, 2, · · · , n).
Instead of writing ai explicitly as a column vector, we can use the basis vectors once again to show that

ai = a1i ê1 + a2i ê2 + a3i ê3 + · · ·+ ani ên =
n∑

j=1

aji êj . (1.32)

We have here used the fact that êi has 1 in the i’th position and 0’s everywhere else.
Just as in 1B21, once we know how the basis vectors transform, it is (in principle) easy to evaluate the action

of Â on some vector v =
∑

i vi êi. Then

u = Â v =
∑

i

(Â êi) vi =
∑
i,j

aji vi êj . (1.33)

But, writing u in terms of components as well,

u =
∑

j

uj êj , (1.34)

and comparing coefficients of êj , we find

uj =
n∑

i=1

aji vi . (1.35)

As we shall see in a few minutes, this is just the law for matrix multiplication. Many of you will have seen it
for 2× 2 matrices from GCSE. For n× n, the sums are just a bit bigger! Some of you will notice that the basis
vectors transform with

∑
j aji êj , whereas the components involve the other index

∑
i aji vi.

The set of numbers aij represents the abstract operator Â in the particular basis that we have chosen; these
n2 numbers determine completely the effect of Â on any arbitrary vector. We say that the vector undergoes a
linear transformation. It is convenient to arrange all these numbers into a square array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

: : · · · :
an1 an2 · · · ann

 , (1.36)

and this construct we call a matrix. This one is in fact a square matrix with n rows and n columns.
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The lecturer in 1B21 insisted that you signify a vector by putting an arrow on the top, underline it, or put
a tilde under or over it or write it in bold in order to distinguish it from a scalar. The 2B21 lecturer similarly
exhorts the students to write something on the A in order to show that it is a matrix. The textbooks tend to
use bold face — here we are going just to underline the symbol.

Concrete example # 1
Let Â be the operator which rotates a vector in two dimensions through an angle φ anticlockwise.

-

6

����
���

���*

�
�
�
�
�
�
�
�
�
��

ê1

ê2

v

Â v

α

φ

We want to find the matrix representation of the operator Â. Do this by looking at what happens to the
basis vectors under the rotation.

-

6

���
���

���
�*

A
A

A
A

A
A

A
A

A
AK

ê1

ê2

a1 = Â ê1

a2 = Â ê2

φ

φ

Using simple trigonometry,

a1 = Â ê1 = cos φ ê1 + sinφ ê2

= a11 ê1 + a21 ê2 .

Hence a11 = cos φ and a21 = sinφ.
Similarly,

a2 = Â ê2 = − sinφ ê1 + cos φ ê2

= a12 ê1 + a22 ê2 ,

so that a12 = − sinφ and a22 = cos φ.
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The two-dimensional rotation matrix therefore takes the form

A =
(

a11 a12

a21 a22

)
=

(
cos φ − sinφ
sinφ cos φ

)
. (1.37)

We now have to check whether this gives an answer which is consistent with the first picture. Here(
v1

v2

)
=

(
v cos α
v sinα

)
so that(

u1

u2

)
=

(
cos φ − sinφ
sinφ cos φ

) (
v cos α
v sinα

)
=

(
v cos α cos φ− v sinα sinφ
v sinα cos φ + v cos α sinφ

)
=

(
v cos(α + φ)
v sin(α + φ)

)
.

The latter is exactly what you get from applying trigonometry to the diagram.

Concrete example #2

We want the matrix representation for a reflection in the x-axis.

-

6

���
���

�*

HHH
HHH

Hj

ê1

ê2
v

Â v

In this case

Â ê1 = ê1

Â ê2 = −ê2 .

Hence a11 = 1, a22 = −1, a21 = a12 = 0 and

A =
(

1 0
0 −1

)
.

As a test, see what happens to the vector in the picture:

w = A v =
(

1 0
0 −1

) (
v1

v2

)
=

(
v1

−v2

)
,

entirely as expected.

1.5 Multiple Transformations; Matrix Multiplication

Suppose that we know the action of some operator Â on any vector and also the action of another operator B̂.
What is the action of the combined operation of B̂ followed by Â? Consider

w = B̂ v

u = Â w .

u = Â B̂ v = Ĉv . (1.38)
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To find the matrix representation of Ĉ, write the above equations in component form:

wi =
∑

j

bij vj

uk =
∑

i

aki wi

=
∑
i,j

aki bijvj

=
∑

j

ckj vj . (1.39)

Since this is supposed to hold for any vector v, it requires that

ckj =
n∑

i=1

aki bij . (1.40)

This is the law for the multiplication of two matrices A and B. The product matrix has the elements ckj . For
2× 2 matrices you had the rule at A-level or even at GCSE!

Matrices can be used to represent the action of linear operations, such as reflection and rotation, on vectors.
Now that we know how to combine such operations through matrix multiplication, we can build up quite
complicated operations. This leads us quite naturally to the study of the properties of matrices in general.

1.6 Properties of Matrices

In general a matrix is a set of elements, which can be either numbers or variables, set out in the form of an
array. For example (

2 6 4
−1 i 7

)
or

(
0 −i

3 + 6i x2

)
(rectangular) (square)

A matrix having n rows and m columns is called an n×m matrix. The above examples are 2× 3 and 2× 2.
A square matrix clearly has n = m. The general matrix is written

a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
· · · · · · · · · · · ·

 .

There is often confusion between the matrices discussed here and the determinants which were introduced
in the 1B21 course. The only obvious apparent difference when you look at them is that a matrix is an array
surrounded by brackets whereas a determinant has rather got vertical lines. They are, however, very different
beasts. The determinant | A | is a single number (or algebraic expression). A matrix A is a whole array of n×m

numbers which represents a transformation.
A vector is a simple matrix which is n× 1 (column vector) or 1× n (row vector), as in

v1

v2

v3

· · ·
vn

 or (v1, v2, v3, · · · , vn) .
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Rules

1. Two matrices A and B are equal if they have the same number n of rows and m of columns and if all of
the corresponding elements are equal.

2. There exists an n×m zero-matrix where all the elements are zero.

3. There exists a unit matrix. This is an n × n square matrix with ones down the diagonal and zeros
everywhere else.

I = E =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
· · · · · · · · · · · ·

 .

Some books do use E for this. In component form

Iij = δij ,

where the Kronecker-delta has been employed.

4. Addition or Subtraction.
The sum of two matrices A and B can only be defined if they have the same number of n rows and the
same number m of columns. If this is the case, then the matrix C is also n×m and has elements

cij = aij + bij .

It follows immediately that A+B = B +A (commutative law of addition) and (A+B)+C = A+(B +C)
(associative law).

5. Multiplication by a scalar.
B = λA =⇒ bij = λaij .

6. Matrix multiplication:

C = A B =⇒ cij =
n∑

k=1

aik bkj .

Note that matrix multiplication can only be defined if the number of columns in A is equal to the number
of rows in B. Then if A is m× n and B is n× p, then C is m× p.

Note that matrix multiplication is NOT commutative; A B 6= B A. One of the multiplications might not
even be defined! If A is m× n and B is n×m, then A B is m×m and B A is n× n.

Matrices do not commute because they are constructed to represent linear operations and, in general, such
operations do not commute. It can matter in which order you do certain operations.

On the other hand,

A (B C) = (A B) C

A (B + C) = A B + A C .

I shall assume that you are all familiar with the actual multiplication process in practice. If you are not,
then you have been warned!

12



Example #1

Let A represent a rotation of 90◦ around the z-axis and B a reflection in the x-axis.

-

6

���
���

�*

A
A

A
A

A
A

AK

(x0, y0)

(x1, y1)
A

-

6

���
���

�*

HHH
HHH

Hj

(x0, y0)

(x1, y1)

B

For the combination B A, we first act with A and then B. In the case of A B it is the other way around and
this leads to a different result, as shown in the picture.

-

6

�
���

���*

A
A

A
A

A
A

AK

�
�

�
�

�
�

��

(x0, y0)

(x1, y1)
B A

(x2, y2)

-

6

�
���

���*

HH
HHH

HHj

�
�
�
�
�
�
��

(x0, y0)

(x1, y1)

(x2, y2)
A B

Clearly the end point (x2, y2) is very different in the two cases so that the operations corresponding to A

and B obviously don’t commute. We now want to show exactly the same results using matrix manipulation, in
order to illustrate the power of matrix multiplication.

We have already constructed 2× 2 matrix representing the two-dimensional rotation through angle φ.

A =
(

a11 a12

a21 a22

)
=

(
cos φ − sinφ
sinφ cos φ

)
=

(
0 −1
1 0

)
for φ = 90◦ .

Similarly, for the reflection in the x-axis,

B =
(

1 0
0 −1

)
.

Hence

A B =
(

0 −1
1 0

) (
1 0
0 −1

)
=

(
0 1
1 0

)
B A =

(
1 0
0 −1

) (
0 −1
1 0

)
=

(
0 −1

−1 0

)
,
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so that in the A B case x2 = y0 and y2 = x0. The x and y coordinates are simply interchanged. In the other
case both x2 and y2 get an extra minus sign. This is exactly what we see in the picture.

Example #2

It may of course happen that two operators commute, as for example when one represents a rotation through
180◦ and the other a reflection in the x-axis. Then

A =
(
−1 0

0 −1

)
, B =

(
1 0
0 −1

)
, A B = B A =

(
−1 0

0 1

)
.

The combined operation describes a reflection in the y-axis.
Geometrically these operations correspond to

-

6

��
���

��*

��
���

���

HH
HHH

HHY
(x0, y0)(x2, y2)

B A

(x1, y1)

-

6

��
���

��*

HH
HHH

HHj

HH
HHH

HHY
(x0, y0)

(x1, y1)

(x2, y2)

A B

You should note that the final point (x2, y2) = (−x0, y0) is the same in both diagrams, but the intermediate
point is not.

Determinant of a Matrix Product
By writing out both sides explicitly, it is straightforward to show that for 2× 2 or 3× 3 square matrices the

determinant of a product of two matrices is equal to the product of the determinants.

| A B |=| A | × | B | . (1.41)

However, this result is true in general for n× n square matrices of any size.
One consequence of this is that, although A B 6= B A, their determinants are equal. In the first example

that I gave of matrix multiplication, we see that | A B |=
| B A |= −1. This result for the determinant of products will prove very useful later.

1.7 Special Matrices

Multiplication by the unit matrix
Let A be an n× n matrix and I the n× n unit matrix. Then

(A I)ij =
∑

k

aik δkj = aij ,

since the Kronecker-delta δij vanishes unless i = j. Thus

A I = A . (1.42)
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Similarly
(I A)ij =

∑
k

δik akj = aij ,

and
I A = A . (1.43)

The multiplication on the left or right by I does not change a matrix A. In particular, the unit matrix I (or
any multiple of it) commutes with any other matrix of the appropriate size.

Diagonal matrices
A diagonal matrix is a square matrix with elements only along the diagonal:

A =


a1 0 0 · · ·
0 a2 0 · · ·
0 0 a3 · · ·
· · · · · · · · · · · ·

 .

Thus
(A)ij = ai δij .

Now consider two diagonal matrices A and B of the same size.

(A B)ij =
∑

k

Aik Bkj =
∑

k

ai δik δkj bk = (ai bi) δij .

Hence A B is also a diagonal matrix with elements equal to the products of the corresponding individual ele-
ments. Note that for diagonal matrices, A B = B A, so that A and B commute.

Transposing matrices
The transposed matrix AT is just the original matrix A with its rows and columns interchanged. Hence

(AT )ij = (A)ji . (1.44)

The transpose of an n×m matrix is m× n.

Consequences
a) Clearly (AT )T = A.

b) If AT = A, we call A symmetric.
If AT = −A, we call A antisymmetric.

c) There is a trick when transposing a product of matrices. To see this, look at C = A B, which has elements

cij =
∑

k

aik bkj .

Now
(CT )ji = cij =

∑
k

aik bkj =
∑

k

(AT )ki (BT )jk =
∑

k

(BT )jk (AT )ki = (BT AT )ji .

Hence
(A B)T = BT AT . (1.45)

When you transpose a product of matrices, you must reverse the order of the multiplication. This is true no
matter how many terms there are;

(A B C)T = CT BT AT .

This rule, which is also true for operators, will be used by the Quantum Mechanics lecturers in the second
and third years.
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d) If AT A = I, we say that A is an orthogonal matrix. You should check that the two-dimensional rotation
matrix

A =
(

cos φ − sinφ
sinφ cos φ

)
.

is orthogonal. For this, all you really need is cos2 φ + sin2 φ = 1. The matrix A rotates the system through
an angle φ, while the transpose matrix AT rotates it back through an angle −φ. Because of this, orthogonal
matrices are of great practical use in different branches of Physics.

Taking the determinant of the defining equation, and using the determinant of a product rule, we find that

| AT | | A |=| I |= 1 .

But the determinant of a transpose of a matrix is the same as the determinant of the original matrix — it
doesn’t matter if you switch rows and columns in a determinant. Hence

| A | | A |=| A |2= 1 ,

so that | A |= ±1.

e) Suppose A and B are orthogonal matrices. Then their product C = A B is also orthogonal.

CT C = (A B)T (A B) = BT AT A B = BT I B = BT B = I .

The physical meaning of this is that, since the matrix for the rotation about the x-axis is orthogonal and so is
the rotation about the y-axis, then the matrix for a rotation about the y-axis followed by one about the x-axis
is also orthogonal.

Complex conjugation
To take the complex conjugate of a matrix, just complex-conjugate all its elements:

(A∗)ij = a∗ij . (1.46)

For example

A =
(

−i 0
3− i 6 + i

)
=⇒ A∗ =

(
+i 0

3 + i 6− i

)
.

If A = A∗ we say that the matrix is real.

Hermitian conjugation
This is just a combination of complex conjugation and transposition and it is probably more important than

either – especially in Quantum Mechanics. It is sometimes called the Hermitian adjoint and denoted by a
dagger (†).

A† = (AT )∗ = (A∗)T . (1.47)

Thus (A†)† = A.
For example

A =
(

−i 0
3− i 6 + i

)
=⇒ A† =

(
+i 3 + i
0 6− i

)
.

If A† = A, we call A Hermitian.
If A† = −A, we call A antiHermitian.

Clearly all real symmetric matrices are Hermitian, but there are also other possibilities. For example,(
0 i
−i 0

)
is Hermitian.
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The rule for Hermitian conjugates of products is exactly the same as for transpositions, so that

(A B)† = B† A† . (1.48)

Unitary Matrices
A matrix U is unitary if

U† U = I . (1.49)

At the risk of being very repetitive, let me stress that unitary matrices are very important in Quantum Mechanics!
Just as we did for orthogonal matrices, we can find out something about the determinant of U by using the

determinant of a matrix product rule.
| U† | | U |=| I |= 1 .

Changing rows and columns in a determinant does nothing, but the Hermitian conjugate also involves complex
conjugation. Hence

| U |∗ | U |= 1 ,

and so | U |= eiφ, with φ being real.

1.8 Matrix Inversion

Explicit 2× 2 evaluation
We want now to define the inverse of a square matrix A and obtain a simple way of evaluating it. The

inverse, B = A−1, is defined to be that matrix which, when multiplied by A, gives the unit matrix;

B A = I .

Consider the following concrete example where

A =
(

1 2
4 3

)
and B =

(
a b
c d

)
.

We have to determine the unknown numbers a, b, c, d from the condition that

B A =
(

a + 4b 2a + 3b
c + 4d 2c + 3d

)
=

(
1 0
0 1

)
,

and this gives

a + 3
2b = 0 c + 4d = 0 ,

a + 4b = 1 c + 3
2d = 1 .

These simultaneous equations have solutions a = − 3
5 , b = 2

5 , c = 4
5 , and d = − 1

5 . In matrix form

A−1 = 1
5

(
−3 2

4 −1

)
.

Rule for 2× 2 matrices
We clearly need some automated way of evaluating inverse matrices so that the lecturer can ask questions

in the examination paper! Let me try to motivate the result with this particular numerical example. Then we
shall generalise and only justify it afterwards. From this example

A =
(

1 2
4 3

)
and (A−1)T = − 1

5

(
3 −4

−2 1

)
.

You will notice that inside the bracket, all the coefficients are exchanged across the diagonal between A and
A−1. There are a couple of minus signs, but these are coming in exactly the positions that one gets minus signs
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when expanding out a 2× 2 determinant. The only remaining puzzle is the origin of the factor − 1
5 . Well this is

precisely
1

| A |
=

1
(1× 3− 4× 2)

= −1
5
·

The determinant | A | has come in useful after all.
We have to show that this simple observation is true for the inverse of any 2× 2 matrix. Consider a general

A =
(

α β
γ δ

)
.

According to the hand-waving observation above, one would expect

(A−1)T =
1

(αδ − βγ)

(
δ −β

−γ α

)
and A−1 =

1
(αδ − βγ)

(
δ −γ

−β α

)
.

It is left as a simple exercise for the student to verify that the A−1 defined in this way does indeed satisfy
A−1 A = I.

IMPORTANT Do not forget the minus signs and do not forget to transpose the matrix afterward.

Cofactors and minors

In the first lecture I asserted that a 3× 3 determinant can be expanded by the first row (Laplace’s rule) as

∆ =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ .

The 2× 2 sub-determinants are obtained by striking out the rows and columns containing respectively a11, a12

and a13. We call these sub-determinants 2× 2 minors of the determinant ∆.
Define the 2× 2 minor obtained by striking out the i’th row and j’th column to be Mij . From the examples

given above, it is fairly clear that

∆ =
∑

j

aij Mij (−1)i+j =
∑

i

aij Mij (−1)i+j . (1.50)

The first form corresponds to expanding by row-i, the second to column-j. After summing over j, the answer
does not depend upon the value of i, i.e. on which row has been used for the expansion.

One trouble about this formula is the irritating (−1)i+j factor which always arises in expanding determinants.
One way of sweeping it under the carpet is to define the cofactor matrix C = [Cij ] with this explicit factor
contained therein:

Cij = (−1)i+j Mij , (1.51)

so that
∆ =

∑
i or j

aij Cij . (1.52)

This merely puts the minus sign problem somewhere else!
If A is a 3 × 3 matrix, then so is C. We define the adjoint matrix to be the transpose of C, which means

that the indices i and j are switched around:

[Aadj]ij = Cji . (1.53)

Theorem
For any square matrix,

A−1 = Aadj/ | A | . (1.54)
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This clearly agrees with our experience in the case of a 2× 2 matrix. For a 3× 3 matrix one can write down the
most general form, carry out the operations outlined above, to show explicitly that A−1 A = I. The formula in
Eq. (1.54) is valid for any size matrix, but you won’t be asked to work out anything bigger than 3 × 3 in this
course. All that I will do now is give you an explicit example to show how to carry out these operations in practice.

Example Find the inverse of

A =

 −1 2 3
2 0 −4

−1 −1 1

 .

The matrix of minors is

M =

 −4 −2 −2
5 2 3

−8 −2 −4

 .

The cofactor matrix changes a few signs to give

C =

 −4 2 −2
−5 2 −3
−8 2 −4

 .

The adjoint matrix involves changing rows and columns:

Aadj =

 −4 −5 −8
2 2 2

−2 −3 −4

 .

Now
| A |= −1× (−4)− 2× (−2) + 3× (−2) = 2 .

Hence

A−1 =
1
2

 −4 −5 −8
2 2 2

−2 −3 −4

 .

You can check that this is right by doing the explicit A−1A multiplication.
Note that if | A |= 0, we say that the determinant is singular and Aadj does not exist. [It has some infinite

elements.]
There are lots of other ways to do matrix inversion, such as Gaussian or Gauss-Jordan elimination, as de-

scribed by Boas. These methods become steadily more important as the size of the matrix goes up.

Properties of the inverse matrix

a) A A−1 = A−1 A = I; a matrix commutes with its inverse.

b) (A−1)T = (AT )−1; the operations of inversion and transposition commute.

c) If C = A B, what is C−1 ? Consider

B−1 A−1 I = B−1 A−1 C C−1 = B−1 A−1 A B C−1 = B−1 B C−1 = C−1 = (A B)−1 .

Hence
(A B)−1 = B−1 A−1 . (1.55)

Just as in transposing products, one reverses the order before inverting each matrix.

d) If A is orthogonal, i.e. AT A = I, then A−1 = AT .

e) If A is unitary, i.e. A† A = I, then A−1 = A†.

f) Using the determinant of a product rule, it follows immediately that | A−1 |= 1/ | A |.

g) Matrix division
Division of matrices is not really defined, but one can multiply by the inverse matrix. Unfortunately, in general,

A B−1 6= B−1 A .
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1.9 Solution of Linear Simultaneous Equations

In the 1B21 course you were shown how to solve simultaneous equations of the form

a11 x1 + a12 x2 + a13 x3 = b1 ,

a21 x1 + a22 x2 + a23 x3 = b2 ,

a31 x1 + a32 x2 + a33 x3 = b3

for the unknown xi as the ratio of two determinants. The result was proved in the 2 × 2 case and I want here
to give an indication of a more general proof.

The equations can be written in matrix form a11 a12 a13

a21 a22 a23

a31 a32 a33

  x1

x2

x3

 =

 b1

b2

b3

 ,

that is
A x = b or

∑
j

aij xj = bi .

One can write down the solution immediately by multiplying both sides by A−1 to leave

x = A−1 b .

All that remains is to evaluate the result!
Using the previous expression for the inverse matrix,

xj =
∑

i

(Aadj)ji bi/ | A | .

Assuming for the moment that the determinant does not vanish, this leads to Cramer’s rule discussed in the
first lecture.

∑
i

(Aadj)ji bi is the determinant obtained by replacing the j’th column of A by the column vector

b. There are many special cases of this formula; I draw your attention to only two:

a) Suppose that | A |= 0. In such a case the matrix A is singular and we cannot define the inverse matrix.
Provided that the equations are mutually consistent, this means that (at least) one of the equations is not
linearly independent of the others. We do not have n equations for n unknowns but rather only n−1 equations.
We must therefore limit our ambitions and try to solve the equations for n− 1 of the xi in terms of the bi and
one of the xi. It might take some trial and error to find which of the equations to throw away.

b) If all of the bi = 0, we have to look for a solution of the homogeneous equation

A x = 0 .

There is, of course, the uninteresting solution where all the xi = 0. Can there be a more interesting solution?
The answer is yes, provided that | A |= 0.

1.10 Eigenvalues and Eigenvectors

Let A be an n× n square matrix and X an n× 1 column vector such that

A X = λ X = λ I X , (1.56)

where λ is some scalar number. In such a case we say that λ is an eigenvalue of the matrix A and that X is
the corresponding eigenvector. Half of Quantum Mechanics seems to be devoted to searching for eigenvalues!

To attack the problem, rearrange Eq. (1.56) as

(A− λ I) X = 0 . (1.57)
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This is a set of n homogeneous linear equations which only has an interesting solution provided that

| A− λ I |= 0 . (1.58)

Writing this out explicitly, ∣∣∣∣∣∣∣∣
(a11 − λ) a12 a13 · · ·

a21 (a22 − λ) a23 · · ·
a31 a32 (a33 − λ) · · ·
· · · · · · · · · · · ·

∣∣∣∣∣∣∣∣ = 0 . (1.59)

This is an equation for the required eigenvalues λ. It is a polynomial of degree n in λ and hence there must be
n solutions. These roots are not necessarily real (even if all the aij are real) and some of the roots may be equal
to others. This polynomial equation is called the characteristic equation of the eigenvalue problem.

Let us label the roots as
λ1, λ2, · · · , λn .

If two of the eigenvalues are equal, then we say that the eigenvalue has a two-fold degeneracy, or that it is
doubly-degenerate. Similarly, if there are r equal roots then this corresponds to an r-fold degeneracy.

Suppose that we have solved the characteristic equation to get the eigenvalues λi. We then have to solve

(A− λi I) Xi = 0

to find the corresponding eigenvector xi. There are therefore n eigenvectors Xi which can be written in terms
of components as

Xi =


x1i

x2i

:
:

xni

 .

Example Find the eigenvalues and eigenvectors of the matrix

A =
(

3 2
1 4

)
.

The characteristic equation is

| A− λ I |=
∣∣∣∣ (3− λ) 2

1 (4− λ)

∣∣∣∣ = (3− λ)(4− λ)− 2 = 0 ,

giving solutions λ1 = 5 and λ2 = 2.
In the case of λ1 = 5, we have(

(3− λ) 2
1 (4− λ)

) (
x11

x21

)
==

(
−2 2

1 −1

) (
x11

x21

)
= 0 .

This gives the two equations

−2x11 + 2x21 = 0,

x11 − x21 = 0.

Of course these equations are not linearly independent and so the solution must involve some arbitrary
constant c1;

x11 = x21 = c1 .

Similarly, for λ2 = 2, we get
x12 = c2, x22 = − 1

2c2 .
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In summary

λ1 = 5 =⇒ X1 = c1

(
1
1

)
,

λ2 = 2 =⇒ X2 = c2

(
1
− 1

2

)
.

The ci are arbitrary constants but for many purposes it is convenient to choose their sizes such that the Xi

are unit vectors. You remember that we defined the scalar product of two (possibly complex) vectors through

(a , b) = a∗1 b1 + a∗2 b2 + · · ·+ a∗n bn = a† b .

In order that the lengths of the eigenvectors be unity, we need

X†
1 x1 = X†

2 x2 = 1 .

The first of these equations means that

(c∗1 c∗1)
(

c1

c1

)
= 2 | c1 |2= 1 .

The phase of c1 is really completely arbitrary — this equation only fixes the magnitude of a potentially complex
number c1. Taking it to be real and positive, then c1 = 1/

√
2.

The second equation results in

(c∗2 − 1
2c∗2)

(
c2

− 1
2c2

)
= 5

4 | c2 |2= 1 ,

and so c2 = 2/
√

5.
The final answer is, therefore,

λ1 = 5 =⇒ X1 =
1√
2

(
1
1

)
,

λ2 = 2 =⇒ X2 =
2√
5

(
1
− 1

2

)
.

1.11 Eigenvalues of Unitary Matrices

By definition, any unitary matrix U satisfies

U† U = U U† = I .

To find the eigenvalues, we have to solve the equation

U X = λ I X . (1.60)

Now take the Hermitian conjugate of Eq. (1.60),

(U X)† = (λ I X)†

X† U† = λ∗ X† I . (1.61)

Note here the trick that the Hermitian conjugate interchanges the order in a product.
Multiply the left hand sides of Eqs. (1.60, 1.61) together and also the right hand sides:

X† U† U X = λ∗λ X† X . (1.62)

But U† U = I, and X† X = X2. Hence
X2 =| λ |2 X2 . (1.63)

Since X2 6= 0, we can divide out by this factor to find that | λ |= 1, i.e. all the eigenvalues are (possibly complex)
numbers of unit modulus;

λ = eiφ with φ real. (1.64)
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1.12 Eigenvalues of Hermitian Matrices

A Hermitian matrix is one for which H = H†. Consider two eigenvector equations corresponding to different
eigenvalues λi and λj ;

H Xi = λi Xi , (1.65)

H Xj = λj Xj . (1.66)

Take the Hermitian conjugate of Eq. (1.65);

(H Xi)
† = (λi Xi)

† ,

X†
i H† = X†

i H = λ∗i X†
i . (1.67)

Now multiply Eq. (1.67) on the right by Xj to get

X†
i H Xj = λ∗i X†

i Xj . (1.68)

Go back to Eq.(1.66) and multiply it on the left by X†
i ;

X†
i H Xj = λj X†

i Xj . (1.69)

The left hand sides of Eqs. (1.68) and (1.69) are identical and so, for all i and j, the right hand sides have
to be as well;

(λ∗i − λj) X†
i Xj = 0 . (1.70)

Take first i = j :

(λ∗i − λi)X†
i Xi = (λ∗i − λi) X 2

i = 0 . (1.71)

But since all of the X 2
i are non-zero, we see that

λ∗i − λi = 0 , (1.72)

which means that all the eigenvalues are real.

Now take i 6= j :

If the eigenvalues are non-degenerate, i.e. i 6= j =⇒ λi 6= λj , then

X†
i Xj = 0 , (1.73)

which means that the corresponding eigenvectors are orthogonal.
If two of the eigenvalues are the same, i.e. a particular root is doubly degenerate, then the proof fails because

one can then have λi − λj = 0 for i 6= j. Nevertheless, it is still possible to choose linear combinations of the
corresponding eigenvectors to make all the eigenvectors orthogonal.

Orthogonal basis set
Suppose that we normalise the eigenvectors of a Hermitian matrix as we did in the 2 × 2 example. Then

the X̂i are unit orthogonal vectors, which we can take as basis vectors for this n-dimensional space. As a
consequence, any vector can be written as

V =
∑

i

Vi X̂i .

This simple result will be used extensively in one form or another in the second and third year Quantum
Mechanics course. The Hamiltonian (Energy) operator is Hermitian and so its eigenfunctions are orthogonal.
Any wave function can be expanded in terms of these eigenfunctions.
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1.13 Useful Rules for Eigenvalues

If we group all the different X̂i column vectors together in a single n×n matrix X, then the eigenvector equation
can then be written in the form

A X = X Λ , (1.74)

where Λ is the diagonal matrix of eigenvalues

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
: : · · · :
0 0 · · · λn

 . (1.75)

Take the determinant of Eq. (1.74) and use the determinant of a product rule to show that

| A | | X |=| Λ | | X | .

Hence
| Λ |=| A | .

We can use this to check that we got the right answer for the 2 × 2 matrix
(

3 2
1 4

)
. This has determinant

∆ = 10 which is indeed equal to the product of the eigenvalues 5 and 2. Great!
Another valuable check is through the trace of a matrix. This quantity is defined as being the sum of the

diagonal elements;
tr{A} =

∑
i

aii . (1.76)

For example, the simple 2× 2 matrix given above has tr{A} = 7, which is equal to the sum of the eigenvalues
2 and 5. Is this just luck or is it much deeper?

Rewrite Eq. (1.74) by taking X over to the other side as an inverse matrix.

A = X Λ X−1 .

Now take the trace. Writing it out explicitly with indices,

tr{A} =
∑

i

aii =
∑
i,j,k

(X)ij (Λ)jk (X−1)ki

=
∑
i,j,k

(Λ)jk (X−1)ki (X)ij = tr{Λ X−1 X} = tr{Λ} =
∑

i

λi .

The trace of a matrix is equal to the sum of the eigenvalues.
A third useful result is that if the original matrix A is Hermitian, then X is unitary because

X†
i Xj = δij .

1.14 Real Quadratic Forms

The general real quadratic form may be written as

F = XT A X =
∑
i,j

aij xi xj . (1.77)

We can simplify the problem a bit by taking the matrix A to be symmetric, i.e. aij = aji. The coefficients can
then be read off by inspection. For example, if (Boas, p.422),

F = x2 + 6xy − 2y2 − 2yz + z2 ,
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then a11 = 1 is the coefficient of the x2 term. Similarly, a12 = a21 = 3 is half the coefficient of the xy term. The
coefficient is shared between two equal elements of the matrix.

We now want to rotate the coordinate system

X = R Y (1.78)

such that the quadratic form has no cross terms of the kind y1y2. Thus

F = Y T RT A R Y = Y T D Y , (1.79)

where D is a diagonal matrix.
Since we are interested in rotating the axes, the matrix R is orthogonal, RT R = I. From Eq. (1.79), we see

that we have to find an R such that
RT A R = D . (1.80)

But we have, in principle, already solved this problem. Going back to the notes, we see that D is the diagonal
matrix of eigenvalues Λ, and R is the matrix of eigenvectors.

Example
Diagonalise the quadratic form

F = 5x2 − 4xy + 2y2 .

First write the form in terms of a matrix

F = (x , y)
(

5 −2
−2 2

) (
x
y

)
.

Next find the eigenvalues, which means solving the quadratic equation∣∣∣∣ (5− λ) −2
−2 (2− λ)

∣∣∣∣ = λ2 − 7λ + 6 = 0 .

There are two solutions, λ1 = 6 and λ2 = 1. [You could check these by showing that the trace of the matrix
equals 7 and its determinant equals 6.]

In the case of λ1 = 6, the eigenvector equation is(
−1 −2
−2 −4

) (
r11

r21

)
= 0 ,

which gives r11 = −2r21. In order that the eigenvector be normalised, we get

r1 =
1√
5

(
−2
1

)
.

Similarly for λ1 = 1, the eigenvector equation is(
4 −2

−2 1

) (
r12

r22

)
= 0 ,

which gives r22 = 2r12. The normalised eigenvector is

r2 =
1√
5

(
1
2

)
,

and the whole rotation matrix

R =
(
−2/

√
5 1/

√
5

1/
√

5 2/
√

5

)
.

Thus
F = 6x′ 2 + y′ 2 ,
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where (
x′

y′

)
= RT

(
x
y

)
,

i.e.

x′ =
1√
5

(−2x + y) ,

y′ =
1√
5

(x + 2y) .

You should check this by putting the expressions for x′ and y′ into the new expression for F .

1.15 Normal Modes of Oscillation

As a concrete example of the kind of problem to be attacked now, consider two point particles, each of mass
m, attached by light inextensible strings of length ` to a horizontal beam, the points of suspensions being a
distance d apart. Now connect the two masses by a light spring of natural length d and spring constant d. The
force pulling the two masses together is k(x2− x1), where x2 and x1 are the instantaneous displacements of the
masses from equilibrium. The tension Ti in the string produces a restoring horizontal force of mgxi/` (for small
displacements).

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A~ ~#######################

d

` `

T1 T2

k(x2 − x1)
A

A
A

AK

A
A

A
AK

? ?
mg mg

x1 x2

The equations of motion of the system are

m
d2x1

dt2
= −mg

`
x1 + k(x2 − x1) ,

m
d2x2

dt2
= −mg

`
x2 + k(x1 − x2) .

These may be recast into matrix form
d2X

dt2
= A X ,

where

A =
(

α β
β α

)
=

(
−g/`− k/m k/m

k/m −g/`− k/m

)
.

These equations are coupled, in that ẍ1 depends also upon the value of x2. We now have to find linear
combinations of the xi such that the equations become uncoupled. For this, let

X = R Y ,

where R is an orthogonal matrix which does not depend upon time. Hence

R
d2Y

dt2
= A R Y .
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Now multiply on the left by RT and use the fact that RT R = I to obtain

d2Y

dt2
= RT A R Y .

In order that the equations be uncoupled, we need the right-hand side to be a diagonal matrix which, just
as for the quadratic form problem, is that of the eigenvalues, Λ:

RT A R = Λ ,

where R is the matrix of normalised eigenvectors. The new variables yi satisfy the uncoupled equations

ÿ = −λi y .

The first part of the problem consists of determining the eigenvalues, which are fixed by∣∣∣∣ −g/`− k/m− λ k/m
k/m −g/`− k/m− λ

∣∣∣∣ = 0 .

This has the two solutions λ1 = −g/` and λ2 = −g/`− 2k/m. The equations of motion are therefore

ÿ1 = −ω2
1 y1 = −g

`
y1 ,

ÿ2 = −ω2
2 y2 = −

(
g

`
+ 2

k

m

)
y2 .

The general solution of these equations is

y1 = α1 sinω1t + β1 cos ω1t ,

y2 = α2 sinω2t + β2 cos ω2t

To find the relation between the xi and yi, we must find the rotation matrix R, i.e. the eigenvectors of A.
For λ1 = −g/`, (

−k/m k/m
k/m −k/m

) (
r11

r21

)
=

(
0
0

)
.

which gives r11 = r21 and a normalised eigenvector of
(

1/
√

2
1/
√

2

)
.

For λ2 = −g/`− 2k/m, (
k/m k/m
k/m k/m

) (
r12

r22

)
=

(
0
0

)
,

which gives r12 = r22, a normalised eigenvector of
(

1/
√

2
−1/

√
2

)
. The rotation matrix is then

R =
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
.

The old and new coordinates are therefore related by

x1 =
1√
2

(y1 + y2) : y1 =
1√
2

(x1 + x2) ,

x2 =
1√
2

(y1 − y2) : y2 =
1√
2

(x1 − x2) .

We call one of the uncoupled modes of oscillation a normal mode. Depending upon the boundary conditions,
it is possible to excite one of the normal modes independently of the other. It is therefore of interest to look
what the two normal modes look like in terms of the xi.

In normal mode 1, we have y2 = 0, and so x1 = x2 = y1/
√

2.
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A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A~ ~#######################

x1 x1

The two pendulums swing together in phase and of course, since the two pendulums are identical, the spring
is neither stretched nor compressed. Effectively the spring doesn’t influence this mode at all. It is therefore not
surprising that the frequency ω1 =

√
g/` is just the same as that for a free pendulum of the same length.

In normal mode 1, we have y1 = 0, and so x1 = −x2 = y2/
√

2.

�
�

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A
A
A~ ~####################################

x1 −x1

The two pendulums oscillate out of phase, with the spring being alternately stretched and compressed.
Compared to the first normal mode, the restoring forces are here increased because the spring is contributing
something. Hence the frequency is higher:

ω2 =

√
g

`
+

2k

m
.

In the real world, we have to impose boundary conditions. Suppose at time t = 0 we take pendulum 1 to be
at rest at the equilibrium position and pendulum 2 to be at rest at displacement x2 = a. What is the subsequent
motion? In terms of the yi variables, at t = 0,

y1 =
a√
2

: y2 = − a√
2

,

ẏ1 = 0 : ẏ2 = 0 .

Hence, at later times, the solutions are

y1 =
a√
2

cos ω1t ,

y2 = − a√
2

cos ω2t .

In terms of the physical variables,

x1 =
a

2
(cos ω1t− cos ω2t) ,

x2 =
a

2
(cos ω2t + cos ω2t) .
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