UNIVERSITY OF LONDON (University College London) B.Sc. DEGREE 1999 PHYSICS B221: Mathematical Methods in Physics Credit will be given for all work done. [For guidance, a student should aim to answer the equivalent of FOUR complete questions in the time available.]

N.B. The Kronecker delta symbol for two integers m and n is defined by

$$\delta_{m\,n} = \begin{cases} 1 & \text{for } m = n \\ 0 & \text{for } m \neq n \end{cases}.$$

1. By writing both sides in terms of Cartesian coordinates, or otherwise, verify the identities $\vec{\pi} = (\vec{\pi} + \vec{r}) - \vec{\pi} = \vec{\pi} + (\vec{r} + \vec{r})$

$$\vec{\nabla} \cdot (\chi \vec{\nabla} \psi) = \vec{\nabla} \chi \cdot \vec{\nabla} \psi + \chi \nabla^2 \psi , \qquad [4 \text{ marks}]$$

$$\vec{\nabla} \times (\psi \vec{A}) = \vec{\nabla} \psi \times \vec{A} + \psi (\vec{\nabla} \times \vec{A}) , \qquad [4 \text{ marks}]$$

where χ and ψ are scalar functions and \vec{A} a vector function.

In spherical polar coordinates $(x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta)$, the line element is given by

$$d\vec{r} = dr\,\hat{r} + r\,d\theta\,\theta + r\sin\theta\,d\phi\,\phi\,,$$

where \hat{r} , $\hat{\theta}$, and $\hat{\phi}$ are basis vectors in the directions of increasing r, θ and ϕ respectively. Show that in these coordinates

If $\psi = z^2$, evaluate $\vec{\nabla}\psi$ in both Cartesian and spherical polar coordinates and show that they are equal. [5 marks]

For the field
$$\vec{A} = r^n \vec{r}$$
, evaluate $\vec{\nabla} \cdot \vec{A}$. [4 marks]

TURN OVER

PHYSB221/1998

2. The divergence theorem states that, for any vector field \vec{A} ,

$$\int_V \vec{\nabla} \cdot \vec{A} \, dV = \int_S \vec{A} \cdot \hat{n} \, dS \,,$$

where S is the closed surface surrounding the volume V and \hat{n} is a unit vector directed along the outward normal to S.

In Cartesian coordinates,

$$\vec{A} = xy\hat{\imath} + y\hat{\jmath} + z^3\hat{k} \,.$$

Find the divergence $\vec{\nabla} \cdot \vec{A}$ of this field.

If the volume V is that of a right cylinder defined by $x^2 + y^2 \leq 1$ and $-1 \leq z \leq +1$, derive the volume integral of the divergence of \vec{A} . [6 marks]

Show that the integral of $\vec{A} \cdot \hat{n}$ over the two end caps equals 2π , and that over [4 marks] the curved surface is also equal to 2π . [5 marks]

Hence verify the divergence theorem in this case.

You may assume that in cylindrical polar coordinates the volume element can be written as

$$dV = r \, dr \, d\theta \, dz \; .$$

3. Define a Hermitian matrix.

Show that the eigenvalues of a Hermitian matrix are real and that the eigenvalues of a Hermitian matrix are real and that the eigenvalues corresponding to different eigenvalues are orthogonal. [6 marks]

Show that the matrix

$$\mathbf{A} = \left(\begin{array}{rrrr} 5 & -5 & 1 \\ -5 & 11 & -5 \\ 1 & -5 & 5 \end{array}\right)$$

has eigenvalues 1, 4, and 16.

Find the eigenvectors corresponding to $\lambda = 1$ and $\lambda = 4$ and show that they are indeed orthogonal. [6]

Verify in this case that the trace of the matrix is equal to the sum of the eigenvalues.

PHYSB221/1998

[4 marks]

[4 marks]

[1 mark]

[2 marks]

[6 marks]

[2 marks]

CONTINUED

4. Laplace's equation in plane polar coordinates is

$$r^2 \frac{\partial^2 F}{\partial r^2} + r \frac{\partial F}{\partial r} + \frac{\partial^2 F}{\partial \theta^2} = 0.$$

Assuming that the function F can be separated as

$$F(r,\theta) = R(r) \times \Theta(\theta)$$
,

derive ordinary differential equations for R(r) and $\Theta(\theta)$.

Solve the radial equation by trying for a solution of the form $R(r) = r^{\alpha}$. Hence show that the most general single-valued solution may be written as

$$F(r,\theta) = \sum_{n=0}^{\infty} \left\{ A_n r^n + B_n r^{-n} \right\} \left(C_n \cos n\theta + D_n \sin n\theta \right).$$
 [10 marks]

Find the form of the solution for which $F(r, \theta) = F_1 \cos \theta$ when r = a, where F_1 is a constant. Is the solution unique? [5 marks]

5. Show that the second order differential equation

$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + b^2y = 0$$

has two solutions of the form

$$y = \sum_{\lambda=0}^{\infty} a_{\lambda} x^{\lambda+k}, \quad a_0 \neq 0$$

with k = 0 or k = 1.

Find the ratio $a_{\lambda+2}/a_{\lambda}$ in both series.

For the special case of b = m (m a positive integer) show that the series expansion for one of the solutions terminates at $\lambda = m - k$. [4 marks]

Verify up to m = 2 that the resulting polynomial may be written as $y = C_m \cos m\theta$, where $\cos \theta = x$ and C_m is a constant. [6 marks]

PHYSB221/1999

TURN OVER

[6 marks]

[5 marks]

[4 marks]

6. A function f(x), which is periodic with period 2π , is expanded in a Fourier series

$$f(x) = \frac{1}{2}A_0 + \sum_{m=1}^{\infty} A_m \cos mx + \sum_{m=1}^{\infty} B_m \sin mx$$

Show that the coefficients are given by

$$A_m = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cos mx \, dx \,, \qquad B_m = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \sin mx \, dx \,.$$
 [5 marks]

If, further,

$$\begin{aligned} f(x) &= x , & 0 \le x \le \pi , \\ &= -x , & -\pi \le x \le 0 , \end{aligned}$$

sketch the function in the range $-4\pi \le x \le 4\pi$.

Show that all the B_m coefficients in the Fourier expansion vanish and that

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{m \text{ odd}} \frac{1}{m^2} \cos mx \,.$$
 [8 marks]

Hence deduce that

$$\sum_{m \text{ odd}} \frac{1}{m^2} = \frac{\pi^2}{8} .$$
 [2 marks]

Show that the error made by only taking the first three terms in the sum is less than 7%. [2 marks]

You may use the integrals

$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \pi \, \delta_{mn} \,,$$
$$\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \pi \, \delta_{mn} \,,$$
$$\int x \cos mx \, dx = \frac{x}{m} \sin mx + \frac{1}{m^2} \cos mx + C \,.$$

CONTINUED

PHYSB221/1999

[2 marks]

7. The Legendre polynomials $P_{\ell}(x)$ may be defined by the Rodrigues formula

$$P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \left(\frac{d}{dx}\right)^{\ell} (x^2 - 1)^{\ell}.$$

Hence find explicit expressions for $P_0(x)$, $P_1(x)$, and $P_2(x)$.

Show that these <u>three</u> polynomials satisfy the orthonormality relation

$$\int_{-1}^{+1} P_{\ell}(x) P_{n}(x) dx = \frac{2}{2\ell + 1} \,\delta_{\ell n} \,, \qquad [5 \text{ marks}]$$

Use Leibniz's rule for differentiating a product,

$$\left(\frac{d}{dx}\right)^{\ell} \left[f(x)\,g(x)\right] = \sum_{n=0}^{\ell} \frac{\ell!}{(\ell-n)!\,n!} \left[\left(\frac{d}{dx}\right)^n f(x)\right] \left[\left(\frac{d}{dx}\right)^{\ell-n} g(x)\right] ,$$

to show that the Rodrigues formula implies that $P_{\ell}(1) = 1$ for all values of ℓ . [5 marks] Derive an integral expression for the $Q_{\ell}(z)$ in the expansion

$$\frac{1}{z-x} = \sum_{\ell=0}^{\infty} Q_{\ell}(z) P_{\ell}(x) ,$$

where z > 1.

Find explicit expressions for the $Q_{\ell}(x)$ when $\ell = 0$ and $\ell = 1$. [3 marks]

END OF PAPER

[4 marks]

[3 marks]