PHAS1245: Problem Sheet 7 - Solutions

1. Easier, but not necessary, to take the log of the given relation first:

$$\ln p + \ln V = \ln R + \ln T - \frac{a}{VRT}.$$

Then we do implicit differentiation to obtain the tree partial derivatives. First wrt V with constant T:

$$\frac{1}{p} \left(\frac{\partial p}{\partial V} \right)_T + \frac{1}{V} = \frac{a}{V^2 RT} \Rightarrow \left(\frac{\partial p}{\partial V} \right)_T = \frac{p(a - VRT)}{V^2 RT},$$

then wrt T with constant p:

$$\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{1}{T} - \frac{a}{R} \left(-\frac{1}{V^2} - \frac{1}{VT^2} \right) \Rightarrow \left(\frac{\partial V}{\partial T} \right)_p = -\frac{V(a + VRT)}{T(a - VRT)},$$

and finally wrt p with V constant:

$$\frac{1}{p} = \frac{1}{T} \left(\frac{\partial T}{\partial p} \right)_V + \frac{a}{VRT^2} \left(\frac{\partial T}{\partial p} \right)_V \Rightarrow \left(\frac{\partial T}{\partial p} \right)_V = \frac{VRT^2}{p(a + VRT)}.$$

Muitlplying the three derivatives we readily find that their product is -1.

2. For the LHS, we have

$$\frac{\partial^2 f}{\partial x^2} = 2y^2, \qquad \frac{\partial^2 f}{\partial y^2} = 2x^2 \qquad \Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 2(x^2 + y^2) = 2\rho^2.$$

In polar coordinates $f(\rho, \phi) = \rho^4 \sin^2 \phi \cos^2 \phi = (\rho^4 \sin^2 2\phi)/4$. Hence

$$\frac{\partial f}{\partial \rho} = \rho^3 \sin^2 2\phi$$
 $\frac{\partial^2 f}{\partial \rho^2} = 3\rho^2 \sin^2 2\phi$

$$\frac{\partial^2 f}{\partial \phi^2} = \frac{\partial}{\partial \phi} (\rho^4 \sin 2\phi \cos 2\phi) = \rho^4 (2\cos^2 2\phi - 2\sin^2 2\phi),$$

and the RHS becomes

$$3\rho^2 + \frac{1}{\rho}\rho^3 \sin^2 2\phi + \frac{1}{\rho^2}\rho^4 (2\cos^2 2\phi - 2\sin^2 2\phi) = \rho^2 (2\cos^2 2\phi + 2\sin^2 2\phi),$$

which becomes $2\rho^2$, equal to the LHS result.

3. We have

$$\frac{\partial f}{\partial y} = -12x + 2by = 0 \Rightarrow y = \frac{6x}{b}$$
$$\frac{\partial f}{\partial x} = 3x^2 - 12y + 48 = 0 \Rightarrow x^2 - \frac{24}{b}x + 16 = 0.$$

This quadratic equation has two, one or zero real solutions depending on whether $\Delta = (24/b)^2 - 64 = 64(9/b^2 - 1)$ is positive, 0 or negative. So, (a) two solutions if |b| < 3, (b) one solution if |b| = 3 and (c) no real solutions if |b| > 3.

When |b| < 3, the two solutions for x are

$$x_{+} = \frac{12 + 4\sqrt{9 - b^{2}}}{b} = \frac{d_{+}}{b}$$
 $x_{-} = \frac{12 - 4\sqrt{9 - b^{2}}}{b} = \frac{d_{-}}{b}$

and correspondingly

$$y_{+} = \frac{6x_{+}}{b} = \frac{6d_{+}}{b^{2}}$$
 $y_{+} = \frac{6x_{-}}{b} = \frac{6d_{-}}{b^{2}}$.

To determine the nature of these points we need

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = 6x$$
, $f_{yy} = \frac{\partial^2 f}{\partial y^2} = 2b$, $f_{xx}f_{yy} = 12bx$, $\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 = (-12)^2 = 144$.

For the point (x_+, y_+) , $f_{xx}f_{yy} = 12d_+$. The smallest value of d_+ is when $|b| \to 3$ and then $d_+ \to 12$, but it is always greater than 12. Therefore $f_{xx}f_{yy} > 144 (= f_{xy}^2)$, $f_{xx} = 6x_+ = 6d_+/b$ and $f_{yy} = 2b$. So, if -3 < b < 0 this poit is a maximum and if 0 < b < 3 the point is a minimum.

For the point (x_-, y_-) , $f_{xx}f_{yy} = 12d_-$. The largest value of d_- is when $|b| \to 3$ and then $d_- \to 12$, but it is always smaller than 12. Therefore $f_{xx}f_{yy} < 144 (= f_{xy}^2)$ and this point is a saddle point.

4. The problem here is to maximise the volume of the rectangular parallelipiped f = 8xyz subject to the ellipsoidal constraint equation ϕ . We have

$$F(x, y, z) = f + \lambda \phi = 8xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right).$$

The three partial derivatives of F are now set to zero. We find

$$8yz + \lambda \frac{2x}{a^2} = 0$$
, $8xz + \lambda \frac{2y}{b^2} = 0$, and $8xy + \lambda \frac{2z}{c^2} = 0$.

From these we readily find

$$3 \times 8xyz + 2\lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) = 0 \Rightarrow 24xyz + 2\lambda = 0 \Rightarrow \lambda = -12xy.$$

Putting this back into the partial derivative equations which were set to zero we find

$$x^2 = \frac{1}{3}a^2$$
, $y^2 = \frac{1}{3}b^2$, $z^2 = \frac{1}{3}c^2$ and $8xyz = \frac{8abc}{3\sqrt{3}}$.