PHAS1245: Problem Sheet 7 - Solutions

1. Easier, but not necessary, to take the log of the given relation first:
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Then we do implicit differentiation to obtain the tree partial derivatives. First
wrt V with constant 7"
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then wrt 7" with constant p:
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and finally wrt p with V' constant:
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Muitlplying the three derivatives we readily find that their product is —1.

2. For the LHS, we have
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In polar coordinates f(p, ¢) = p*sin? ¢ cos? ¢ = (p*sin? 2¢)/4. Hence
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and the RHS becomes
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which becomes 2p?, equal to the LHS result.

3. We have
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This quadratic equation has two, one or zero real solutions depending on whether

= (24/b)* — 64 = 64(9/b* — 1) is positive, 0 or negative. So, (a) two solutions
1f |b| < 3, (b) one solution if |b| = 3 and (c) no real solutions if |b| > 3.

1



When |b| < 3, the two solutions for z are

1244902 d, 12-4/9-8  d

e b T b Yy

and correspondingly

6z, 6d, 6z 6d
T TR BT T e

To determine the nature of these points we need
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For the point (21,4 ), fexfyy = 12d; . The smallest value of d; is when |b] — 3
and then d; — 12, but it is always greater than 12. Therefore f;,f,, > 144(=

wzy), fzz = 624 = 6d,/band f,, = 2b. So, if =3 < b < 0 this poit is a maximum
and if 0 < b < 3 the point is a minimum.

For the point (z_,y_), fzzfyy = 12d_. The largest value of d_ is when |b] — 3
and then d_ — 12, but it is always smaller than 12. Therefore f,,f,, < 144(=

zzy) and this point is a saddle point.

. The problem here is to maximise the volume of the rectangular parallelipiped
f = 8xyz subject to the ellipsoidal constraint equation ¢. We have
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The three partial derivatives of F' are now set to zero. We find
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a b? c?

From these we readily find
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Putting this back into the partial derivative equations which were set to zero

we find

1 1 1 8ab
x2:§a2 , y2:§b2 , 222502 and 8xyz:£.
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