PHAS1245: Problem Sheet 6 - Solutions

1. The condition for the two lines to be parallel is that the vectors \overrightarrow{b}_1 and \overrightarrow{b}_2 are parallel, i.e. $\overrightarrow{b}_1 \times \overrightarrow{b}_2 = 0$.

To find the distance between them: if P and Q are the points where a line segment perpendicular to the two lines crosses them, such that $\overrightarrow{P}Q = \overrightarrow{d}$, where \overrightarrow{d} the distance we are after, we can find a value for each of λ_1 and λ_2 such that

$$\overrightarrow{a}_1 + \lambda_1 \overrightarrow{b}_1 + \overrightarrow{d} = \overrightarrow{a}_2 + \lambda_2 \overrightarrow{b}_2 \Rightarrow \overrightarrow{d} = \overrightarrow{a}_2 - \overrightarrow{a}_1 + \lambda_2 \overrightarrow{b}_2 - \lambda_1 \overrightarrow{b}_1.$$

Taking the cross product of the above expression with e.g. \overrightarrow{b}_1 (\overrightarrow{b}_1 and \overrightarrow{b}_2 are parallel, hence their cross product is 0), and then keeping only the magnitudes of the results, gives

$$|\overrightarrow{d}||\overrightarrow{b}_1| = |(\overrightarrow{a}_2 - \overrightarrow{a}_1) \times \overrightarrow{b}_1| \Rightarrow |\overrightarrow{d}| = |(\overrightarrow{a}_2 - \overrightarrow{a}_1) \times \hat{b}|,$$

where \hat{b} is the unit vector along the direction of the (parallel) lines.

2. The vector $\overrightarrow{q} = a\hat{i} + b\hat{j} + c\hat{k}$ is perpendicular to the plane, so the condition for the line to be parallel to the plane is $\overrightarrow{q} \cdot \overrightarrow{b} = 0$.

We need to find the position vector \overrightarrow{p} of a point P on the plane (any will do), a point on the line, e.g. A (with position vector \overrightarrow{a}) and then take the projection of the AP line segment onto the \overrightarrow{q} direction. That will give us the distance, \mathcal{L} , between the line and the plance.

One point on the plane is, for example, $(\frac{d}{a}, 0, 0)$, since it satisfies the equation of the plane (assuming of course that $a \neq 0$). Hence the distance is

$$\mathcal{L} = \left(\overrightarrow{p} - \overrightarrow{a}\right) \cdot \frac{\overrightarrow{q}}{|\overrightarrow{q}|}.$$

3. The plane we are looking for is perpendicular to $\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$ and contains the mid-point M of the line segment AB. We saw in the lectures that the point which divides AB in the ratio $\mu : \lambda$ has position vector

$$\frac{\mu}{\mu+\lambda}\overrightarrow{a} + \frac{\lambda}{\mu+\lambda}\overrightarrow{b},$$

so the position vector of M is: $\overrightarrow{OM} = (\overrightarrow{a} + \overrightarrow{b})/2$. Hence, the vector equation of the plane in question is

$$(\overrightarrow{r} - \overrightarrow{OM}) \cdot \overrightarrow{AB} = 0 \Rightarrow \overrightarrow{r} \cdot (\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{2} (\overrightarrow{b} + \overrightarrow{a}) (\overrightarrow{b} - \overrightarrow{a})$$
$$\Rightarrow \overrightarrow{r} \cdot (\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{2} (|\overrightarrow{b}|^2 - |\overrightarrow{a}|^2).$$

4. Since

$$\overrightarrow{v} = \frac{dr}{dt}\hat{r} + r\frac{d\theta}{dt}\hat{\theta}\,,$$

we need to express r and θ as a function of time and determine dr/dt and $d\theta/dt$. We have

$$r = \sqrt{x^2 + y^2} = \sqrt{u^2 t^2 + 4}$$

and

$$\theta = \arctan \frac{y}{x} = \arctan \frac{2}{ut} \Rightarrow \tan \theta = \frac{2}{ut} \Rightarrow t = \frac{2}{u \tan \theta}.$$

Hence

$$\frac{dr}{dt} = \frac{u^2 t}{\sqrt{u^2 t^2 + 4}}$$
$$\frac{d\theta}{dt} = \frac{1}{\frac{dt}{d\theta}} = \frac{1}{-\frac{2}{u}\frac{1}{\tan^2\theta}\frac{1}{\cos^2\theta}} = \dots = -\frac{2u}{u^2 t^2 + 4}$$

and substituting everything to the first expression for \overrightarrow{v} we get

$$\overrightarrow{v} = \frac{u}{\sqrt{u^2 t^2 + 4}} (ut\hat{r} - 2\hat{\theta}) \,.$$

5. (a) In polar coordinates

$$\overrightarrow{v} = \frac{dr}{dt}\hat{r} + r\frac{d\theta}{dt}\hat{\theta}\,,$$

and in this problem dr/dt = u, r = ut and $d\theta/dt = \omega$. Hence $\vec{v} = u\hat{r} + ut\omega\hat{\theta}$. (b) To express \vec{v} in cartesian coordinates we need to substitute \hat{r} and $\hat{\theta}$ with \hat{i} and \hat{j} . Using also $\theta = \omega t$, we have

$$\hat{r} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$$
 $\hat{\theta} = -\sin \omega t \hat{i} + \cos \omega t \hat{j}$.

Hence

$$\overrightarrow{v} = u(\cos\omega t\hat{i} + \sin\omega t\hat{j}) + u\omega t(-\sin\omega t\hat{i} + \cos\omega t\hat{j})$$

$$\Rightarrow \overrightarrow{v} = u(\cos\omega t - \omega t\sin\omega t)\hat{i} + u(\sin\omega t + \omega t\cos\omega t)\hat{j}.$$