PHAS1245: Mathematical Methods I - Problem Class 6 Week starting Monday 10th December

1. Use the standard expression for Maclaurin series to find the first few terms of the $1/(1 + x^2)$ expansion. Then use the Maclaurin series

$$\frac{1}{1+x} = \sum_{0}^{\infty} (-x)^n$$

obtained in the lectures, to find the series for $1/(1 + x^2)$ by replacing x above with x^2 . and convince yourself that the two approaches are equivalent. Finally, use the above results to calculate the Maclaurin expansion for $f(x) = \arctan x$

2. Evaluate the following limits

$$\lim_{x \to 0} \frac{x e^{-x}}{1 - e^{-x}} \qquad \qquad \lim_{x \to 0} \frac{\tan x - x}{\cos x - 1} \,.$$

3. Extend the technique used in the lectures for deriving the Taylor expansion of a single variable function, to a function of two variables f(x, y) and show that the first and second order terms of the Taylor expansion around (x_0, y_0) are

$$f(x,y) \approx f(x_0,y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2!} \left[f_{xx} (\Delta x)^2 + 2f_{xy} \Delta x \Delta y + f_{yy} (\Delta y)^2 \right] ,$$

where

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}$$
 $f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$ $f_{yy} = \frac{\partial^2 f}{\partial y^2}$

,

 $\Delta x = x - x_0$, $\Delta y = y - y_0$ and all the derivatives are calculated at (x_0, y_0) . Then show that the terms in the square brackets can be rearranged to

$$\left[f_{xx}\left(\Delta x + \frac{f_{xy}\Delta y}{f_{xx}}\right)^2 + (\Delta y)^2 \left(f_{yy} - \frac{(f_{xy})^2}{f_{xx}}\right)\right]$$

and determine the conditions for (x_0, y_0) to be a minimum.

4. A Fabry-Pérot interferometer consists of two parallel heavily silvered glass plates; light enters normally to the plates, and undergoes repeated reflections between them, with a small transmitted fraction emerging at each reflection. Find the intensity $|B|^2$ of the emerging wave, where

$$B = A(1-R) \sum_{n=0}^{\infty} R^n \mathrm{e}^{i n \phi} ,$$

with A, R (the reflection coefficient, 0 < R < 1) and ϕ real constants. [Answer: $|B|^2 = A^2(1-R)^2/(1+R^2-2R\cos\phi)$] 5. The mean energy \overline{E} of a quantum oscillator in thermal equilibrium is given by

$$\overline{E} = \frac{\sum_{n=0}^{\infty} kT \ nx \ e^{-nx}}{\sum_{n=0}^{\infty} e^{-nx}}$$

where x = (hf)/(kT). Show that

$$\overline{E} = kT \frac{x e^{-x}}{1 - e^{-x}}.$$

What is the limiting value of \overline{E} at small values of x? What is the limiting value of \overline{E} at large values of x?