PHAS1245 - Problem Class 1 - Solutions

1. If x_1 and x_2 are roots then

$$(x-x_1)(x-x_2) = x^2 - (x_1+x_2)x + x_1x_2 = 0$$
.

Comparing this with $ax^2 + bx + c = x^2 + \frac{b}{a}x + \frac{c}{a} = 0$, we find

$$x_1 + x_2 = -\frac{b}{a}$$
 and $x_1 x_2 = \frac{c}{a}$.

2. (a) Let

$$\frac{x^2+3}{x(x^2+2)} = \frac{A}{x} + \frac{Bx+C}{(x^2+2)} ,$$

thus $x^2 + 3 = A(x^2 + 2) + (Bx + C)x$.

Choosing x=0 we find $A=\frac{3}{2}$ and $x^2+3=\frac{3}{2}x^2+3+Bx^2+Cx$.

Comparing the coefficients of x^2 , we find $B = -\frac{1}{2}$.

Now choose x = 0 again to find that C = 0.

Hence
$$\frac{x^2+3}{x(x^2+2)} = \frac{3}{2x} - \frac{x}{2(x^2+1)}$$

(b) Let

$$\frac{3}{x(3x-1)^2} = \frac{A}{x} + \frac{B}{(3x-1)} + \frac{C}{(3x-1)^2}$$

or
$$3 = A(3x - 1)^2 + Bx(3x - 1) + Cx$$
.

Choosing x = 0 we find A = 3.

Choosing $x = \frac{1}{3}$ we find C = 9.

Then setting x = 1 we fine B = -9.

Hence
$$\frac{3}{x(3x-1)^2} = \frac{3}{x} - \frac{9}{(3x-1)} + \frac{9}{(3x-1)^2}$$

3. (a) Since $\cos(A+B) = \cos A \cos B - \sin A \sin B$

$$\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A$$

(since $\cos^2 A = 1 - \sin^2 A$).

Since sin(A + B) = sin A cos B + cos A sin B,

$$\sin 2A = 2\sin A\cos A$$
 and $\sin A = 2\sin \frac{A}{2}\cos \frac{A}{2}$

$$= 2 \tan \frac{A}{2} \cos^2 \frac{A}{2} = \frac{2 \tan \frac{A}{2}}{\sec^2 \frac{A}{2}} = \frac{2 \tan \frac{A}{2}}{1 + \tan^2 \frac{A}{2}}.$$

Since
$$\cos A = \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2} = \cos^2 \frac{A}{2} (1 - \tan^2 \frac{A}{2}) = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}}$$

(b) For $\cos 2\theta + 3\sin \theta = 2$ use $\cos 2\theta = 1 - 2\sin^2 \theta$ to obtain $1 - 2\sin^2 \theta + 3\sin \theta$.

i.e.
$$2\sin^2\theta - 3\sin\theta + 1 = (2\sin\theta - 1)(\sin\theta - 1) = 0$$

and
$$\sin \theta = \frac{1}{2}$$
 or 1 i.e. $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ or $\frac{\pi}{2}$.

For $\sin \theta + 2\cos \theta = 1$ use the expression for $\sin \theta$ and $\cos \theta$ in terms of $\tan \frac{\theta}{2}$. Let $\tan \frac{\theta}{2} = t$. Then

$$\frac{2t}{1+t^2} + \frac{2(1-t^2)}{(1+t^2)} = 1$$

which yields $3t^2 - 2t - 1 = (3t + 1)(t - 1) = 0$.

So
$$\tan \frac{\theta}{2} = -\frac{1}{3}$$
 or 1 and $\frac{\theta}{2} = 161.57^{\circ}$ or $\frac{\theta}{2} = 45^{\circ}$,

i.e.
$$\theta = 323.14^{\circ} \text{ or } 90^{\circ}$$
.

(Note - substituting for *sine* in the above would involve a square root and a loss of sign information on squaring.)

(c)
$$\sin \theta + \sin 4\theta = 2\sin \frac{\theta + 4\theta}{2}\cos \frac{\theta - 4\theta}{2} = 2\sin \frac{5\theta}{2}\cos \frac{3\theta}{2}$$

and

$$\sin 2\theta + \sin 3\theta = 2\sin \frac{2\theta + 3\theta}{2}\cos \frac{2\theta - 3\theta}{2} = 2\sin \frac{5\theta}{2}\cos \frac{\theta}{2}.$$

Hence we get

$$\sin\frac{5\theta}{2}\left(\cos\frac{3\theta}{2} - \cos\theta^2\right) = 0 \Rightarrow \sin\frac{5\theta}{2}\left(-2\sin\theta\sin\frac{\theta}{2}\right) = 0$$

So, $\theta = 0$ is a triple solution and the others are:

$$\frac{5\theta}{2} = n\pi \Rightarrow \theta = 5n\pi/2$$

there are no values of n other than 0 that are within the $(-\pi, \pi]$.

$$\theta = n\pi \Rightarrow n = 0, 1$$

and $\theta = pi$ is another solution, and finally

$$\theta/2 = n\pi$$

which again is only satisfied for n = 0 in the required range.

4. We have

$$\epsilon_1 = 1 - \frac{T_{C1}}{T_H}$$
 and $\epsilon_2 = 1 - \frac{T_{C2}}{T_H}$

$$\Delta \epsilon = \epsilon_2 - \epsilon_1 = \frac{T_{C1} - T_{C2}}{T_H}$$

which is negative if $T_{C2} > T_{C1}$

$$\frac{\Delta \epsilon}{\epsilon_1} = \frac{T_{C1} - T_{C2}}{T_H} \frac{T_H}{T_H - T_{C1}} = \frac{T_{C1} - T_{C2}}{T_H - T_{C1}}$$

For a gas power plant $\frac{\Delta\epsilon}{\epsilon_1} = \frac{-15}{385} = 0.038$ i.e. 3.8%.

For a PWR nuclear plant $\frac{\Delta\epsilon}{\epsilon_1} = \frac{-15}{235} = 0.064$ i.e. 6.4%.

5. The formula for the binomial coefficients, which the students should look up in their notes, is

$${}^{n}C_{k} = \frac{n!}{k!(n-k)!}.$$

Hence

$${}^{6}C_{0} = \frac{6!}{0!6!} = 1$$

$${}^{6}C_{1} = \frac{6!}{1!(5)!} = 6 = {}^{6}C_{5}$$

$${}^{6}C_{2} = \frac{6!}{2!(4)!} = \frac{5 \cdot 6}{2} = 15 = {}^{6}C_{4}$$

$${}^{6}C_{3} = \frac{6!}{3!(3)!} = \frac{4 \cdot 5 \cdot 6}{2 \cdot 3} = 20$$

Hence

$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6.$$

6. Sound takes time to travel from the car to the observer, Thus if the observer receives the pulse at time t, then the (retarded) time this signal is emitted is t minus the time the sound takes to cover the distance between the retarded position of the car to the observer.

Thus
$$[t] = t - \frac{[|\overrightarrow{r}|]}{c_s}$$
 where $[|\overrightarrow{r}|] = \sqrt{(z - v[t])^2 + x^2 + y^2}$

(where z - v[t] is the retarded z position of car)

i.e.
$$c[t] - ct = [\overrightarrow{r}]$$

and squaring

$$c^{2}[t] - 2ct[t] + c^{2}t^{2} = z^{2} + v[t]^{2} - 2zv[t] + x^{2} + y^{2}$$

or

$$(c^{2} - v^{2})[t]^{2} + 2(zv - c^{2}t)[t] - (x^{2} + y^{2}) - z^{2} + c^{2}t^{2} = 0$$

and

$$[t]^{2} + \frac{2(zv - c^{2}t)}{(c^{2} - v^{2})}[t] - \frac{(x^{2} + y^{2}) + z^{2} - c^{2}t^{2}}{(c^{2} - v^{2})} = 0$$

The above is a quadratic in [t], which we now solve by completing the square. We find

$$\left[[t] + \frac{(vz - c^2t)}{c^2 - v^2} \right]^2 = \frac{(vz - c^2t)^2 + (c^2 - v^2)(z^2 + (x^2 + y^2) - c^2t^2)}{(c^2 - v^2)^2}$$

The above, taking the negative square to ensure retardation and a very steady nerve yields

$$[t] = \frac{t - \frac{vz}{c^2} - \frac{1}{c}\sqrt{(z - vt)^2 + (1 - \frac{v^2}{c^2})(x^2 + y^2)}}{(1 - \frac{v^2}{c^2})}$$