RELATIVITY & GRAVITATION

Lectured by Timothy Clifton

SECTION 3 - GRAVITATIONAL WAVES

AND PERTURBATION THEORY

3.1 Perturbation theory

Perturbation theory is a widely used tool for considering physical scenar-
ios that are more complicated than a single body. The idea is to determine
which parts of the geometry can be neglected, when gravity is weak, and

then systematically ignoring them. Our starting point is

9uv = Nuv + h,uy

where |h,, | < 1, which means we will be considering spacetimes that are
close to Minkowski. This approximation is sufficient to describe everything
in the Solar System, and even the gravitational field of black holes (as long

as we stay far away from their horizons).



Exercise: show that the condition ¢"”¢g,, = 0", means that

g =i — W+ O(?)

where h* = n*n*?h,,, and where O(h?) indicates (small) terms that are

of size h? (or smaller)

solution: if g, = M + by + O(h?), then we should be able to write

g =n" + f 4+ O(h?), where f* ~ h.

= 05 = g™ Gue = 1" + ") (o + huo) + O(h?)

= 0" + 1" Iy + [ 106 + O(R7)

= "5 + 1" hyo + [ 16 + O(R7)

= f/u/nya - _nuthf

Now multiply through by 1?”:

= f;wnyanap _ f;w(syp _ fup _ _nuunaphyg

= g = — B

where A" = nhn"Ph,,.



Substituting these expressions into the definition of the Christoffel sym-

bols gives

FO'

= F(l)auu + F(2)J,LW + O(h?))

where numbers in brackets indicate order-of-smallness in h. It is straight-

fOI'W&I'd to ﬁnd
1% 9 nulbpp wlbpy plluy

and

o 1 oT
P, = =T Oohey + Ouhry = Orchy)

Similarly, these can be substituted into the definition of R, to find

R,, = RY,, + R® , +0(h%

where

1
RY = 50,00+ 0,0,1", = 8,0,h, — Ol



and

1 g
R®,, = 5hﬂ (8,01 ps + 0,051y — 0uOyhyy — 0,05h,)

1 1
+§((‘3ghp" — éﬁphag)(ﬁphw — Ophwp — Ovhyy)

1 1
—I—Zauhpaauhpa + éagth(aohP/i - aﬂh"“)

The indices in these last equations have been raised using n” (e.g. h’, =

0" hy,). We have also used O = o0"0,,.

We can now use these expressions to get perturbative approximations

to the field equations. For example, to leading order

RM — 77WR(1)W = 0,0,h" — O,

1
=G0, =RV, — 577WR<1) — 87GT,,, + O(h?)

=10,0,h" . + 0,0,h", — 0,0,h" , — Ohyy, + 0, (O, — 0,0,h"°) = 167GT,,, + O(h?)

This equation is the one we will now try and solve. It can be simplified by

defining

- 1
by = Iy — Enwjhpp

= |Ohyy + Muw0,0.h" — 8,0,h", = —167GT,, + O(h?) \




Example: show that l_z,ﬂ, is the trace-reverse of h,,, so that

_ 1
hpp = —hpp and Py = hyw — 577Whpp.

Solution: if l_lw =, — %nﬂyhpp then

hy = hun"

1% 1 14
— h,uzﬂ?u — 57711“/77“ h‘pp

1
= b= 30,

1
= hp”—§><4><hpp

= hS —2h)

and

h/w _ _nwjlpp — huv — _mwhpﬂ _ _

So the proposed equations are true.



3.2 Gauge transformations

The general covariance of Einstein’s equations is broken when we start
approximating them using perturbation theory. What is left is covariance

under “small” coordinate transformations:

gt = gt 4 EF

where [ ~ |h,,| (where ~ means they are approximately the same size
and & is a quantity known as a gauge generator). These are called “gauge
transformations”, and the coordinate freedom that existed in the full the-

ory is replaced by the “gauge freedom” to choose &*

Differentiating this gives the gauge transformation matrix

It
833 — 5#1/ + a}/f“
dx?

.« . / v . .
Requiring %gﬁp = o, then gives the inverse:

ox#

ax/y

= 5", — 9,&" + O(h2)

These correspond to infinitesimal coordinate transformations.

Let us now perform a gauge transformation on the metric, using the



infinitesimal coordinate transformation above:

/ 6xp 6x” o o
G = @ngo = (5'0u - u€p>(5 v = 08 )<77p0 T hp”)

= Ny + h,uu - augu - augu + O(h2)

where we have written §, = 7,,§”. This can be compared to the pertur-

bative expression for g;w, in the new coordinate system:

g//u/ = N + h;u/

= hly, = hyw — 046 — 0,6 + O(h?)

This equation gives the effect that a gauge transformation has on metric
perturbations. It is extremely useful for simplifying calculations in pertur-

bation theory.



3.3 The Lorenz gauge

The trace-reversed metric perturbation gauge transforms as follows:

Bl,uu _ E;w . 8”5” . aug,u + nuyapgp

This means that

DR = 8, — gt

If we now choose JE* = 9,h* then

™" =0

This choice of &" results in the “Lorenz gauge”. It’s extremely useful

because it simplifies the leading-order perturbed field equations to

Ok, = —167GT,,

Note: the Lorentz gauge is preserved by any addition gauge transforma-

tion, provided that & satisfies [I* = 0.



Exercise: prove that h*¥ transforms as
}_l/,uy — }_l,uy . apgu . ayg,u T nuyapgp
Solution: under the transformation z'# = z# + £* we have
= by — 0u&y — 0,6, + O(R?)
Nnow
7/ / 1 /p P
huv - huu - 277Wh =y — Ou&y — 00y — WV( — 20,¢ )

= Oy — €y + M 0,8”

Raising indices with n*? and n*” then gives the required result.



Example: we can linearize the Schwarzschild solution:

2Gm dr? .
d32 = — <1 — , ) dtQ + @ + 7"2(d92 + Sln2 9d¢2) .

r

If we assume 2GTm < 1 then

2 2
ds® ~ — <1 - Gm) dt* + (1 + Gm) dr? + r*(d6” + sin® 0d¢*) + O (h?)
r r
2
= —dt* + dr* + r*(d6* + sin® 0d¢?) + @(d# +dr?) + O (1)
T
= nudr"dz” + hy,detdz” + O(h?),
so that
2
= hydatda” = @(dtQ + dr?).
r

This perturbation is traceless (n*"h,, = 0), so h, = l_LW.

Note: this perturbation is not in Lorenz gauge, as

- 2
(‘3thtt - 6% < Gm> - 0

r

but

arﬁrr — ar (26177”) _ _2Gm 7& 0.

r2
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3.4 Linearised solutions in vacuum

In vacuum 7}, = 0, and the field equations in the Lorenz gauge reduce
to

DRy, =0

with

O, =0

A solution to these equations can be written as

h = A, exp(ik,a”)

where A, is a symmetric matrix of complex, constant values, and where
k, are the constant, real components of a vector. We must take the real
part of i_lW if we want a real spacetime, of course.

Exercise: show that the expression for l_z,w is a solution to DBW =0if

Kk, = 0

and that it satisfies the gauge condition if

A"k, =0

11



Solution: if h,, = A, exp(ik,z”) then

) 90
T = 1 s g A

(tkpz”)
= PikaksA,, exp(ik,2’)
= —k%kqhy,

— 0 if  K'k,=0

and

O h" = 0, (A" exp(ik,z’))
= ik, A" exp(ik,z")

=0 if kA" =0.

The linearised Einstein equations and Lorenz gauge condition are therefore

satisfied if k"%, = 0 and k, A" = 0.

12



3.5 Transverse-traceless gauge

To investigate gravitational waves it is often useful to specialise to the
“transverse-traceless” gauge. Recall that in Lorenz gauge there existed

the residual gauge freedom

gt = gt 4 EF

where [J¢# = 0. This freedom can be used to enforce the additional con-

ditions

hyt =0 and e, =0

as well as the usual Lorenz condition 8,]1“” = 0, which now becomes

Oh =0  and  9hi.=0

because of the first of the conditions above. This uses up all of our gauge

freedoms. If we now consider the linearised solution in vacuum, h,, =

A, exp(ik,z”), then these four equations imply

Afr = Arrty = Apr = AiTkaj =0.

If these conditions are satisfied then we are in TT" gauge.

13



As an example, let’s take k* to point in the z-direction

k' = (w,0,0, k)

The conditions k*k, = 0 and A, k" = 0 then imply w = —k and A3 =

Ayo. This gives

pr =

\Aoo Ao A Ago /

A gauge generator that satisfies [1£# = 0 is then given by
£ = el exp(ik,x”)

where ¢ is a constant vector, and k" is the same vector as above. The

components of this transformation are
A60 = AOO — ik(go + 53), A/12 = A12

Alll = All — ik)(éo - 83), A61 = A()l - iké‘l

A/22 = AQQ — ik(éo — 53), A62 = AOQ — ik‘EQ

14



If we therefore make the choices

7

)
g0 = 4]{(21400 + A1 + As), €1 = —%A(n
7 7
€9 — EAOQ’ €3 = —E@Aoo — A — Ag)

then we have Af, = A = Ay, =0, and
1 1
Al =—A)=-A; — A
11 22 = 511 T 5 A

This gives

0 0 0 0\

0 Ay Ay

)

pw =

\O 0 0 0)

and the perturbation to the metric is then

7TT _ 7T _
by =h, =

\0 0 0 O)

where hy = Ay exp(ik,2”) and hy = Ao exp(ik,z”).
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Another (often simpler) way to put A,, into the T'T" gauge is to introduce
the “projection tensor”

Pij = 0ij — ninj

where n; obeys n‘n; = 1 and points in the direction of propagation of the
gravitational wave. We will use this result in Section 3.12 to calculate the

energy that gravitational waves remove from binary systems.

Example: show that the following corresponds to a perturbation in TT

gauge:

) 1
A%T:<P2kp‘]z—§P”sz> AM

where Pj; = 0;; — nyn; is the projection tensor, and n; is a space-like unit

vector that points in the direction of propagation of the gravitational wave.

Solution: we still want h*” = Af.e® to satisfy Einstein’s equations

and the Lorenz gauge condition, so require k, A7} = 0.
= A¥k,=0  where k= (w,wn)

= —A%()Tk() + AOTiTwm =0

= Ay = Appn; (1)

16



and

AiTMTku =0
= —Afw+ A%Twnj =0
= Afr = Ay (2)
Equations (1) and (2) together give
AOTQF = A%Tnmj .

Now calculate P’]nl = (62 —n'n;)n; = n; —n; = 0, which gives

=  Afm; =0 and Adfning =0

SO A = and A% =

Next we need to evaluate A", and A k;.
It

but

. . 1 .
ATTZZ' - (Plk;Pil - §Plipkl)14kla
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where

PPy = (8 —n'ng) (05 — niny)

= O — NNy — g + NNy

= O — N
= Py
and
1 . 1 .
_éplzpkl = —5(5Zi—nlni)P/€l
1
— ——(3-1)Py
= — Py

so App'; = 0, which implies | A/ .| = 0. Finally,

ij i pi L
ALk = (PkP]l—QP]PM)AMkj

1

= AiTkaj =0 as Pijnj =0.

The four boxed equations are the conditions to be in T'T gauge, so the

proposition is true.

18



3.6 The effect of gravitational waves

Let’s keep working in T'T gauge, and consider the effect of our plane
gravitational wave on a test particle with 4-velocity v* = (1,0,0,0). The

geodesic equation then gives

dut

1
dar —I" pufu’ = _577W(3thut + Oy — Oyhi) + O(0)

Recall that in TT gauge hll = 0 for all time. This means

dut

habad—
dr

i.e. the particle stays at fixed spatial coordinates as the gravitational wave
passes though. This is an important result, but it does not mean that the
gravitational wave has no effect (as we will now see).

Consider two test particles, separated by coordinate distance Ax in the

x-direction. The proper distance between them is therefore

Az

Ax Az
1
L, = / V Gezdrdr = / V Nea + hppde = / (1 + éhx:c) dx + O(h2)
0 0

0

Ax

= / (1 + % cos(kz — wt)) = (1 + % cos(kz — wt)) Ax

0
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Likewise, two particles separated by coordinate distance Ay in the y-

direction have a proper distance between them of

A
L,= <1 — %COS(Z@Z - wt)) Ay

And a proper distance in the z-direction of

Az

1
L., = / (1 +§hzz) dz = Az
0

The effect of the h, polarisation is therefore to increase/decrease the sepa-
ration between test particles in an oscillatory way, in the directions trans-

verse to propagation direction of the wave.

If you imagine a gravitational wave coming upwards, out of the page, the
consequences of the h, polarisation on a ring of test particles is therefore
There is stretching and squashing in the z and y-directions, so that the
ring turns into an ellipsoid and back again. The stretching and squashing

continues until the wave has passed.

What about the h, polarisation? A gravitational wave can either be h

or h, polarized, or a mixture of both

20



Exercise: By rotating hEVT using the rotation matrix below

(1 0 0 0\

Ot 0 cosf —sinf O

axlu

0 sind cos 0

KO 0 0 1)

and with 0 = 7, show that the effect of the h, polarisation on a ring of

particles is given by the image in the figure below.

21



The effect of the h, and h, polarisations on a ring of test particles is

therefore given in the following figure:

Qo000
OOOQO

fime ———=
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3.7 Linearised solutions with sources

Let us now return to the general equation

Oh,, = —167GT,,

where T, represents an arbitrary distribution of matter. The solution to

this equation can be written as

- T, (t—17—3l.7
huu(t,f):+4G/ o “x |y| D g
z—y

where ¥ is the spatial position where BW is being evaluated, 7 is a point
within the source of the gravitational field, and |z — g| is the distance

between them.

It can be seen that the gravitational perturbation 7LW is only sourced
by matter that intersects the light cone at the field point (¢,z). This is a
very important point: in GR gravitational interactions and disturbances

propagate only at the speed of light.

23



3.8 The quadrupole formula

The quadrupole formula is a very useful result for gravitational wave
physics. to derive it we start by making the compact wave source approx-
imation:

gz = |z-yl=|z|
Our general linearised solution is then

_ 4G
hu(t,T) =~ +T T(t —, y_)d?’y

where r = |Z| is the distance between the source and the observer. If we
further assume that the source of the gravitational field is moving much

slower than light, |0| < ¢, then the integral above corresponds to
/T00d3y = /T(U, ﬂ)d3y =M

/Tm‘dgy ~ /T(ﬂyfz‘)dgy = —Q;
/T%jd?)y ~ /T(Q_TZ, f’j)dSy = Hij

If we now choose our frame of reference to be the centre-of-momentum

24



frame, where ; = 0, then we are left with

- 4GM

hop = +——
"

- 4GTl;;

hij = ]
.

ho; = hip =0

To go further requires manipulating the stress-energy tensor. Taking the

leading-order parts of the conservation equations gives

oT" 4+ 9,1 =0 (3)

o1 +0;T" =0 (4)
Let us now consider the integral
/ (T y)d>y = / (O T ™)y d*y + / Ty

Using Gauss’ divergence result, the integral on the LHS can be trans-
formed to a surface integral over the boundary of the original domain of
integration. If the domain of integration is larger than our compact source

(which it is) then it must vanish, as 7}, is only non-zero inside the source.

25



This means
[ridy=- [Tty

then using equation (2)

3 o d o

/ TVdYy = / (T )y d’y = — / T d%y
Similarly, exchanging ¢+ and j indices, gives
ji 713 d j0, i 13
T"d’y = 7 Ty dy
SO
ij 13 ld i0, j 40, i\ 73
Idy = 5 (T + 17"y )d’y (5)

Now, consider a new integral

/ O (T 'y )dy = / (T )y'y' dPy + / (T + Ty )d%

= — / (B T")y'y &Py + / (T + Ty d*y

d . . o
- /Tooyly]d?’y + /(T(”yj +Ty)dy

26



Once again, the LHS of this equation can be set to zero using Gauss’ result.

This gives

/1: " " Y/ d 7/ "
/U”W+T%ny=a/%mway (6)

Now, substituting equation (4) into equation (3) gives

T B _ld_Q 7700, i3 g3
Y=5om y'y'dy

The LHS of this equation is identical to our integral pressure term II;;

(after lowering indices with 7;;). We can therefore write i_zy;j as

_ 2G d?1;;
Ry = +— 1
=T r dt?

where I;; = [ py'y?d*y is the quadrupole moment tensor. The above equa-
tion is the “quadrupole formula”. It forms the basis of much of gravita-

tional wave physics.
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3.9 Static sources and Newtonian limit

In the centre of momentum frame, if the source of the gravitational field

is static (not moving) then

gz Y

The only non-vanishing part of l_zw, is then

hoo = +——
”

This means B“u = —4GTM, and therefore

- 1 - 2G M
hoo = hoo — 57700h”u =+
”
_ 1 - 2GM
hij = hij — émjh% = +T5ij

2GM
r

= ds? = —(1 - )dt2 + (1 + QGTM)(de +dy? + d2?)

This line-element captures enough to describe Newtonian gravity, and the
leading-order part of the bending of light. It can also be derived by as-
suming that the gravitational field’s source is dominated by its rest mass,
l.e.

Too| > |To))  and [Tyl > |T3)
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3.10 Waves from binary systems

Consider two massive bodies, in a circular orbit around each other of

radius R:
z S
A .
P .
/| e 15
s IIIIIrl
; ; o B ) ;)C
. A
“‘»_._,_/. @ _ - i
- 7 Fig. 1

By rotating spatial coordinates we can arrange for these bodies to orbit
in the plane x = 0 (as above). The leading order part of the gravitational

field is Newtonian, so this orbit obeys

M2 B G M?

R~ 2Ry

If we now write v = QR, then we get angular speed

GM
=\ 1@
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The positions of the two bodies can also be written
2’y = (0, Rcos(Q), Rsin(Qt))

and

2z = (0, —Rcos(Qt), —Rsin(Qt))

The density of this system can therefore be written as

p—M(z)[6(y — RcosQt)d(z — Rsin Q) + d(y + Rcos Qt)d(z + Rsin Q)]

Exercise: substitute this expression for p into IV = [ py'y/d’y to find

/0 0 0 \

[ = MR 0 1+ cos20t sin 20t

\0 sin 2€2¢ 1 — cos 2Qt)
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Solution: we immediately have

I = /p:chxdydz =0
I =19 = /pxyda:dydz =0
I =17 = /pxzda:dydz =0

TV — /py2d:1:dydz = M/ [chS(y — RcosQt) + y*6(y + R cos Qt)} dy

(R? cos® Ot + R? cos® Q) = M R?*(1 + cos 20)t)

M
/ Pdrdydz = M/ [2%6(2 — Rsin Qt) + 2°5(z + Rsin Q)| dz
M

(R?sin® Qt + R*sin® Qt) = M R*(1 — cos 2Qt)
1" =17 = /pyzda:dydz
=M / yz6(y — RcosQt)d(z — Rsin Qt)dydz
+ M / yz0(y + Rcos Qt)d(z + Rsin Qt)dydz
= M(RcosQt - RsinQt) + M ((—RcosQt) - (—Rsin Q1))

= 2M R? cos Qt sin Qt = M R? sin 2t

31



This all can be written as follows:

(0 0 0\

=17 =MR* |0 1+ cos20t sin 20t

KO sin 20t 1 — cos 20 )

Substituting into the quadrupole formula gives

(o 0 0 )
 8GMRQ?

hij = — |0 cos2Q —r) sin 2Q(t — r)

\O sin2Q(t —r)  —cos2Q(t — 7‘))

3.11 Gravity of gravitational waves

Gravitational waves do not have any local energy or momentum (i.e.
they do not contribute to 7),). However, they do have their own gravita-
tional field. This requires some careful thought to be properly understood.

Recall that in section 3.1 we wrote down (but did not yet use) R, to

order h2. If we do the same with the Einstein tensor then we can write

G =G\) + G+ ... =81GT,

X
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If we move G,@ to the RHS we have
G = 8rG(Ty + tuw) + O(h?)

where t,, = —ﬁG,@. When written in this form we see that ¢, acts as
a source term for the leading order part of the gravitational field (albeit a
small one). The second-order part of the Einstein tensor is given explicitly
by

1 o2 o g
G,EJ?V) - R/(E) - 5(%#7” R%—) + h/wnp RS@—) - nuuhp Rgla))

v

where R,(},,) and Rfy) are given in section 3.1. This quantity is not by itself a
tensor, as can be verified by trying to perform a coordinate transformation.
However, it can be made into a tensor by integrating (or smoothing) it over

a small region of spacetime. This gives

1
() = 327G

((Ouhpe )00 — (Oxh") Dy
- ~ 1 -
—~(0,17)0,hup = 5(O1)(O,))

1 1 1, o
~ (2R Ty + 28 TP+ 1 T

where (...) denotes the smoother quantity, and where use has been made

of the result (0,3) = 0 for any function ¥ = &(a*).
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3.12 Energy radiated from a binary

We can now use (t,,) to work out the rate at which binary systems lose
energy through the emission of gravitational waves. In vacuum, and in T'T
gauge, we get

() = 55 QAT DHTT)

The energy flux in gravitational waves is therefore
g = —(to)

and the rate of energy loss from the system emitting them is

dFE :
o= —%7‘2qude9

where the integration is over a sphere that contains the system at the
centre, and where 7' are the spatial components of an outward pointing

radial unit vector (such that 7#'7; = 1).

We will now use the T'T part of the quadrupole formula

o1 G dPIM 2G BPTY
thT:hTJT:(PjPJl_§P]Pkl> rod2 7 dth

where I/ = (P'yP7;, — LPUPy)I". This gives
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athleT - T ITT

and

G 2Ga 2.  2G..
a’“hTyT:_ﬁITJT—TIT]%—TITJT

Substituting this all back into the equations above gives

dE G
R Sl 0
dt j{87r<]” ] >d

Finally, the term in brackets can be expanded as

et e e e R A
T =TT =21 I““rjrw 77T b

Using the known results

4
%dQZZLﬂ', %fﬂgjdgzgdm

41
%f@f’jf’kf’id@ = (5235kl + 51135]1 + (M(Sﬂ)

then gives
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Example: consider the binary system from section 3.10, for which

(O 0 0 \

Y =8MR*Q° 0 sin 20t — cos 20t

\O —cos2Qt  —sin QQt)

This gives

dE 128
= |— = ——GM?R*QS
dt 5

This result is very important for binary pulsar observations, and the recent

gravitational wave detection by LIGO.

3.13 The Hulse-Taylor binary

In 1993 Russell Hulse and Joseph Taylor were awarded the Nobel Prize
in Physics, for their work on the binary system PSR B1913+16. This
was a system of two neutron stars, one of which was a pulsar, that allowed
evidence for the existence of gravitational waves to be inferred. To consider

why and how, let’s return to our two bodies of mass M in circular orbit.

36



The total energy of the system is

1
E=K+U=2x <§M02>—

GM?  GM?

2R 4R

2:

as we know v % from before. Using v = Q2R and differentiating

_ 4B _ _@<G2M5>1/3
dt 3\ 169

From the previous section we now know that the emission of gravitational

waves from such a system causes

dE 128 GM\4/3
e (G
dt 5 ¢ 402

Equating these two expressions gives the change in angular velocity due

to GW emission:

= 2 5 928 (GMYBOIS
5

which can be integrated to give

12
S ?8 X 225 5 (GMYB(ty — 1)

where % is an integration constant (the time when {2 — oo, when the two

bodies eventually coalesce).
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Now the period of the orbit is

or  931/8
T=—=

O 53/8

m(GM)®/3(t — t0)*®

This result gives the rate at which our systems period decreases due to
energy lost through gravitational radiation, 7 o (to — ¢)*®. This is a
very good match to the observations made by Hulse and Taylor for PSR
B1913+16, and is widely considered to be the first indirect evidence for

the existence for gravitational waves.

Decay of the orbital period of PSR B1913+16
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3.14 The LIGO detections

The first direct detection of GWs was made by the LIGO experiment,
on the 14th of September 2015. This experiment consists of two interfer-

ometers at two different locations in the USA

Sl sl Fig. 2

The idea is this: when a gravitational wave passes, the two arms of the
detectors change length by a small amount. This causes a change in the
interference pattern at the detector. This sounds simple, but gravitational
waves tend to have very low amplitude (the 2015 detection caused the
arms to change length by about 107'®m). To make a positive detection
therefore a very careful experimentation, and some knowledge of the signal

that is expected.
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Let’s return to our two bodies in a circular orbit. At the end of section
3.10 we found an explicit expression for Bij, for the emitted gravitational
waves. Now, because we have an explicit expression for 2 = €(¢) in section
3.13, we can work out what an observer at some position r on the z-axis

should be expected to see with his/her gravitational wave detector.

Example: use the results from Section 3.5 of the notes to show that

waves travelling in the z-direction from this system can be writte in TT

gauge as
(O 0 0 O\
- (GM)3 , |0 cos2Q(t —r) 0 0
hhy = —(2);
0 0 —cos2Q(t—7r) 0

\O 0 0 0)

and hence correspond to a wave with + polarization and

wlut

A CELUPYY

r

Wit

cos 2Q(t — ).

40



Solution: for the system in question we have

CRE o)
_8GMRQQ2

hij = — |0 cos2Q( —r) sin 2Q(t — )

KO sin2Q(t —r)  —cos2Q(t — fr’)/

To put this in TT gauge recall BZ-TJ-T = (PZ’“PJZ — %PZ-J-PM)BH, where Pij =

/O 0 0\

67 — %47 and 2 = (0,0, 1).

_ 8G M R*Q)?
= Pikpjlhkl = |0 cos2Q(t—7) O
r
\O 0 0)
and P*hy, = —SGMrﬂ cos 2Q(t — 1)
(% cos 2Q(t — r) 0 0\
1 - 8G M R*()?
= _§Pijpklhkl - 0 scos2Q(t—r) 0

\ 0 0 0)

(COS 2Q(t —r) 0 O\
v AGMRQ?

. 0 —cos2Q(t—r) 0

\ 0 0 0/

f—}]g, or R? = (GM)%.

This gives the desired result when we use % =

41



Now, because we have an explicit expression for Q = €(¢) in Section
3.13, we can work out what an observer at some position r on the z-axis
should be expected to see with his/her gravitational wave detector.

Exercise: produce some plots of A, = h,(t) to see what a gravitational

wave signal looks like.

You should get something that looks a bit like this:
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The frequrency and amplitude of the wave increases as the bodies come
together, at t = ty. This is exactly what was seen by LIGO: two merging
black holes, each with about thirty times the mass of the Sun, as at a
distance of about 1.4 billion light years. The actual signal from the first
LIGO detection is shown on the next page, for the two detectors at Hanford

and Livingston.
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