
RELATIVITY & GRAVITATION

Lectured by Timothy Clifton

SECTION 3 - GRAVITATIONAL WAVES

AND PERTURBATION THEORY

3.1 Perturbation theory

Perturbation theory is a widely used tool for considering physical scenar-

ios that are more complicated than a single body. The idea is to determine

which parts of the geometry can be neglected, when gravity is weak, and

then systematically ignoring them. Our starting point is

gµν = ηµν + hµν

where |hµν| � 1, which means we will be considering spacetimes that are

close to Minkowski. This approximation is sufficient to describe everything

in the Solar System, and even the gravitational field of black holes (as long

as we stay far away from their horizons).
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Exercise: show that the condition gµνgνσ = δµσ means that

gµν = ηµν − hµν +O(h2)

where hµν ≡ ηµρηνσhρσ, and where O(h2) indicates (small) terms that are

of size h2 (or smaller)

solution: if gµν = ηµν + hµν + O(h2), then we should be able to write

gµν = ηµν + fµν +O(h2), where fµν ∼ h.

⇒ δµσ = gµνgνσ = (ηµν + fµν)(ηνσ + hνσ) +O(h2)

= ηµνηνσ + ηµνhµν + fµνηνσ +O(h2)

= δµσ + ηµνhνσ + fµνηνσ +O(h2)

⇒ fµνηνσ = −ηµνhνσ

Now multiply through by ησρ:

⇒ fµνηνση
σρ = fµνδν

ρ = fµρ = −ηµνησρhνσ

⇒ gµν = ηµν − hµν

where hµν = ηµσηνρhσρ.
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Substituting these expressions into the definition of the Christoffel sym-

bols gives

Γσµν = Γ(1)σ
µν + Γ(2)σ

µν +O(h3)

where numbers in brackets indicate order-of-smallness in h. It is straight-

forward to find

Γ(1)σ
µν =

1

2
ησρ(∂nuhρµ + ∂µhρν − ∂ρhµν)

and

Γ(2)σ
µν = −1

2
hστ(∂νhτµ + ∂µhτν − ∂τhµν)

Similarly, these can be substituted into the definition of Rµν to find

Rµν = R(1)
µν +R(2)

µν +O(h3)

where

R(1)
µν =

1

2
(∂µ∂ρh

ρ
µ + ∂ρ∂µh

ρ
ν − ∂µ∂νhρρ −�hµν)
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and

R(2)
µν =

1

2
hρσ(∂µ∂νhρσ + ∂ρ∂σhµν − ∂µ∂σhνρ − ∂ν∂σhνρ)

+
1

2
(∂σh

ρσ − 1

2
∂ρhσσ)(∂ρhµν − ∂µhνρ − ∂νhµρ)

+
1

4
∂µh

ρσ∂νhρσ +
1

2
∂σhρν(∂σhρµ − ∂ρhσµ)

The indices in these last equations have been raised using ηµν (e.g. hρµ ≡

ηρνhνµ). We have also used � ≡ ∂µ∂µ.

We can now use these expressions to get perturbative approximations

to the field equations. For example, to leading order

R(1) = ηµνR(1)
µν = ∂µ∂νh

µν −�hµµ

⇒ G(1)
µν = R(1)

µν −
1

2
ηµνR

(1) = 8πGTµν +O(h2)

⇒ ∂ν∂νh
ρ
µ + ∂ρ∂µh

ρ
ν − ∂µ∂νhρρ −�hµν + ηµν(�h

ρ
ρ − ∂ρ∂σhρσ) = 16πGTµν +O(h2)

This equation is the one we will now try and solve. It can be simplified by

defining

h̄µν ≡ hµν −
1

2
ηµνh

ρ
ρ

⇒ �h̄µν + ηµν∂ρ∂σh̄
ρσ − ∂ν∂ρh̄ρν = −16πGTµν +O(h2)
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Example: show that h̄µν is the trace-reverse of hµν, so that

h̄ρρ = −hρρ and hµν = h̄µν −
1

2
ηµνh̄

ρ
ρ .

Solution: if h̄µν = hµν − 1
2ηµνh

ρ
ρ then

h̄ ρ
ρ = h̄µνη

µν

= hµνη
µν − 1

2
ηµνη

µνhρρ

= h ρ
ρ −

1

2
δ µ
µ h ρ

ρ

= h ρ
ρ −

1

2
× 4× h ρ

ρ

= h ρ
ρ − 2h ρ

ρ

= −h ρ
ρ

and

h̄µν −
1

2
ηµνh̄

ρ
ρ = hµν −

1

2
ηµνh

ρ
ρ −

1

2
ηµν(−h ρ

ρ )

= hµν

So the proposed equations are true.
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3.2 Gauge transformations

The general covariance of Einstein’s equations is broken when we start

approximating them using perturbation theory. What is left is covariance

under “small” coordinate transformations:

x′µ = xµ + ξµ

where |ξµ| ∼ |hµν| (where ∼ means they are approximately the same size

and ξµ is a quantity known as a gauge generator). These are called “gauge

transformations”, and the coordinate freedom that existed in the full the-

ory is replaced by the “gauge freedom” to choose ξµ

Differentiating this gives the gauge transformation matrix

∂x′µ

∂xν
= δµν + ∂νξ

µ

Requiring ∂x′µ

∂xν
∂xν

∂x′ρ = δµρ then gives the inverse:

∂xµ

∂x′ν
= δµν − ∂νξµ +O(h2)

These correspond to infinitesimal coordinate transformations.

Let us now perform a gauge transformation on the metric, using the
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infinitesimal coordinate transformation above:

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ = (δρµ − ∂µξρ)(δσν − ∂νξσ)(ηρσ + hρσ)

= ηµν + hµν − ∂µξν − ∂νξµ +O(h2)

where we have written ξµ = ηµνξ
ν. This can be compared to the pertur-

bative expression for g′µν, in the new coordinate system:

g′µν = ηµν + h′µν

⇒ h′µν = hµν − ∂µξν − ∂νξµ +O(h2)

This equation gives the effect that a gauge transformation has on metric

perturbations. It is extremely useful for simplifying calculations in pertur-

bation theory.
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3.3 The Lorenz gauge

The trace-reversed metric perturbation gauge transforms as follows:

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂ρξ
ρ

This means that

∂νh̄
′µν = ∂µνh̄

µν −�ξµ

If we now choose �ξµ = ∂νh̄
µν then

∂νh̄
′µν = 0

This choice of ξµ results in the “Lorenz gauge”. It’s extremely useful

because it simplifies the leading-order perturbed field equations to

�h̄′µν = −16πGTµν

Note: the Lorentz gauge is preserved by any addition gauge transforma-

tion, provided that ξµ satisfies �ξµ = 0.
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Exercise: prove that h̄µν transforms as

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂ρξ
ρ

Solution: under the transformation x′µ = xµ + ξµ we have

h′µν = hµν − ∂µξν − ∂νξµ +O(h2)

now

h̄′µν = h′µν −
1

2
ηµνh

′
ρ
ρ = hµν − ∂µξν − ∂νξµ −

1

2
ηµν(hρ

ρ − 2∂ρξ
ρ)

= h̄µν − ∂µξν − ∂νξµ + ηµν∂ρξ
ρ

Raising indices with ηµσ and ηνρ then gives the required result.

9



Example: we can linearize the Schwarzschild solution:

ds2 = −
(

1− 2Gm

r

)
dt2 +

dr2(
1− 2Gm

r

) + r2(dθ2 + sin2 θdφ2) .

If we assume 2Gm
r � 1 then

ds2 ' −
(

1− 2Gm

r

)
dt2 +

(
1 +

2Gm

r

)
dr2 + r2(dθ2 + sin2 θdφ2) +O

(
h2
)

= −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) +
2Gm

r
(dt2 + dr2) +O

(
h2
)

= ηµνdx
µdxν + hµνdx

µdxν +O(h2) ,

so that

⇒ hµνdx
µdxν =

2Gm

r
(dt2 + dr2) .

This perturbation is traceless (ηµνhµν = 0), so hµν = h̄µν.

Note: this perturbation is not in Lorenz gauge, as

∂th̄
tt = ∂t

(
2Gm

r

)
= 0

but

∂rh̄
rr = ∂r

(
2Gm

r

)
= −2Gm

r2
6= 0 .
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3.4 Linearised solutions in vacuum

In vacuum Tµν = 0, and the field equations in the Lorenz gauge reduce

to

�h̄µν = 0

with

∂µh̄
µν = 0

A solution to these equations can be written as

h̄µν = Aµν exp(ikρx
ρ)

where Aµν is a symmetric matrix of complex, constant values, and where

kµ are the constant, real components of a vector. We must take the real

part of h̄µν if we want a real spacetime, of course.

Exercise: show that the expression for h̄µν is a solution to �h̄µν = 0 if

kµkµ = 0

and that it satisfies the gauge condition if

Aµνkν = 0
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Solution: if h̄µν = Aµν exp(ikρx
ρ) then

�h̄µν = ηαβ
∂

∂xα
∂

∂xβ
Aµν exp(ikρx

ρ)

= ηαβikαkβAµν exp(ikρx
ρ)

= −kαkαh̄µν

= 0 if kµkµ = 0

and

∂µh̄
µν = ∂µ (Aµν exp(ikρx

ρ))

= ikµA
µν exp(ikρx

ρ)

= 0 if kµA
µν = 0 .

The linearised Einstein equations and Lorenz gauge condition are therefore

satisfied if kµkµ = 0 and kµA
µν = 0.
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3.5 Transverse-traceless gauge

To investigate gravitational waves it is often useful to specialise to the

“transverse-traceless” gauge. Recall that in Lorenz gauge there existed

the residual gauge freedom

x′µ = xµ + ξµ

where �ξµ = 0. This freedom can be used to enforce the additional con-

ditions

h̄TT
0i = 0 and h̄TTµ

µ = 0

as well as the usual Lorenz condition ∂µh̄
µν = 0, which now becomes

∂th̄
00
TT = 0 and ∂ih̄

ij
TT = 0

because of the first of the conditions above. This uses up all of our gauge

freedoms. If we now consider the linearised solution in vacuum, h̄µν =

Aµν exp(ikρx
ρ), then these four equations imply

A0i
TT = ATT

µ
µ = A00

TT = Aij
TTkj = 0 .

If these conditions are satisfied then we are in TT gauge.
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As an example, let’s take kµ to point in the z-direction

kµ = (ω, 0, 0, k)

The conditions kµkµ = 0 and Aµνk
ν = 0 then imply ω = −k and Aµ3 =

Aµ0. This gives

Aµν =



A00 A01 A02 A03

A01 A11 A12 A10

A02 A12 A22 A02

A00 A01 A02 A00


A gauge generator that satisfies �ξµ = 0 is then given by

ξµ = εµ exp(ikρx
ρ)

where εµ is a constant vector, and kµ is the same vector as above. The

components of this transformation are

A′00 = A00 − ik(ε0 + ε3), A′12 = A12

A′11 = A11 − ik(ε0 − ε3), A′01 = A01 − ikε1

A′22 = A22 − ik(ε0 − ε3), A′02 = A02 − ikε2
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If we therefore make the choices

ε0 = − i

4k
(2A00 + A11 + A22), ε1 = − i

k
A01

ε2 −
i

k
A02, ε3 = − i

4k
(2A00 − A11 − A22)

then we have A′00 = A′01 = A′02 = 0, and

A′11 = −A′22 =
1

2
A11 −

1

2
A22

This gives

⇒ A′µν =



0 0 0 0

0 A′11 A′12 0

0 A′12 −A′11 0

0 0 0 0


and the perturbation to the metric is then

h̄TTµν = hTTµν =



0 0 0 0

0 h+ hx 0

0 hx h+ 0

0 0 0 0


where h+ ≡ A11 exp(ikρx

ρ) and h× ≡ A12 exp(ikρx
ρ).
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Another (often simpler) way to put Aµν into the TT gauge is to introduce

the “projection tensor”

Pij = δij − ninj

where ni obeys nini = 1 and points in the direction of propagation of the

gravitational wave. We will use this result in Section 3.12 to calculate the

energy that gravitational waves remove from binary systems.

Example: show that the following corresponds to a perturbation in TT

gauge:

Aij
TT =

(
P i
kP

j
l −

1

2
P ijPkl

)
Akl

where Pij = δij − ninj is the projection tensor, and ni is a space-like unit

vector that points in the direction of propagation of the gravitational wave.

Solution: we still want h̄µν = Aµν
TTe

ikρx
ρ

to satisfy Einstein’s equations

and the Lorenz gauge condition, so require kµA
µν
TT = 0.

⇒ A0µ
TTkµ = 0 where kµ = (ω, ωni)

⇒ −A00
TTk0 + A0i

TTωni = 0

⇒ A00
TT = A0i

TTni (1)
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and

Aiµ
TTkµ = 0

⇒ −Ai0
TTω + Aij

TTωnj = 0

⇒ Ai0
TT = Aij

TTnj (2)

Equations (1) and (2) together give

A00
TT = Aij

TTninj .

Now calculate P i
jni = (δij − ninj)ni = nj − nj = 0, which gives

⇒ Aij
TTnj = 0 and Aij

TTninj = 0

so Ai0
TT = 0 and A00

TT = 0 .

Next we need to evaluate A µ
TT µ and Aij

TTkj.

If

A00
TT = 0 then A µ

TT µ = A i
TT i,

but

A i
TT i = (P i

kPil −
1

2
P i
iPkl)A

kl,
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where

P i
kPil = (δik − nink)(δil − ninl)

= δlk − nknl − nlnk + nknl

= δlk − nknl

= Plk

and

−1

2
P i
iPkl = −1

2
(δii − nini)Pkl

= −1

2
(3− 1)Pkl

= −Pkl

so A i
TT i = 0, which implies A µ

TT µ = 0. Finally,

Aij
TTkj = (P i

kP
j
l −

1

2
P ijPkl)A

klkj

= ω(P i
kP

j
l −

1

2
P ijPkl)A

klnj

⇒ Aij
TTkj = 0 as P ijnj = 0 .

The four boxed equations are the conditions to be in TT gauge, so the

proposition is true.
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3.6 The effect of gravitational waves

Let’s keep working in TT gauge, and consider the effect of our plane

gravitational wave on a test particle with 4-velocity uµ = (1, 0, 0, 0). The

geodesic equation then gives

duµ

dτ
= −Γµρσu

ρuσ = −1

2
ηµν(∂thµt + ∂thtµ − ∂νhtt) +O(h2)

Recall that in TT gauge hTT
νt = 0 for all time. This means

duµ

dτ
= 0

i.e. the particle stays at fixed spatial coordinates as the gravitational wave

passes though. This is an important result, but it does not mean that the

gravitational wave has no effect (as we will now see).

Consider two test particles, separated by coordinate distance ∆x in the

x-direction. The proper distance between them is therefore

Lx ≡
∆x∫
0

√
gxxdxdx =

∆x∫
0

√
ηxx + hxxdx =

∆x∫
0

(
1 +

1

2
hxx

)
dx+O(h2)

=

∆x∫
0

(
1 +

A11

2
cos(kz − ωt)

)
=

(
1 +

A11

2
cos(kz − ωt)

)
∆x
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Likewise, two particles separated by coordinate distance ∆y in the y-

direction have a proper distance between them of

Ly =

(
1− A22

2
cos(kz − ωt)

)
∆y

And a proper distance in the z-direction of

Lz =

∆z∫
0

(
1 +

1

2
hzz

)
dz = ∆z

The effect of the h+ polarisation is therefore to increase/decrease the sepa-

ration between test particles in an oscillatory way, in the directions trans-

verse to propagation direction of the wave.

If you imagine a gravitational wave coming upwards, out of the page, the

consequences of the h+ polarisation on a ring of test particles is therefore

There is stretching and squashing in the x and y-directions, so that the

ring turns into an ellipsoid and back again. The stretching and squashing

continues until the wave has passed.

What about the hx polarisation? A gravitational wave can either be h+

or hx polarized, or a mixture of both
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Exercise: By rotating hTT
µν using the rotation matrix below

∂xµ

∂x′ν
=



1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


and with θ = π

4 , show that the effect of the h× polarisation on a ring of

particles is given by the image in the figure below.
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The effect of the h+ and h× polarisations on a ring of test particles is

therefore given in the following figure:

22



3.7 Linearised solutions with sources

Let us now return to the general equation

�h̄µν = −16πGTµν

where Tµν represents an arbitrary distribution of matter. The solution to

this equation can be written as

h̄µν(t, x̄) = +4G

∫
Tµν(t− |x̄− ȳ|, ȳ)

|x̄− ȳ|
d3y

where x̄ is the spatial position where h̄µν is being evaluated, ȳ is a point

within the source of the gravitational field, and |x̄ − ȳ| is the distance

between them.

It can be seen that the gravitational perturbation h̄µν is only sourced

by matter that intersects the light cone at the field point (t, x̄). This is a

very important point: in GR gravitational interactions and disturbances

propagate only at the speed of light.
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3.8 The quadrupole formula

The quadrupole formula is a very useful result for gravitational wave

physics. to derive it we start by making the compact wave source approx-

imation:

|ȳ| � |x̄| ⇒ |x̄− ȳ| ≈ |x̄|

Our general linearised solution is then

h̄µν(t, x̄) ≈ +
4G

r

∫
Tµν(t− r, ȳ)d3y

where r ≡ |x̄| is the distance between the source and the observer. If we

further assume that the source of the gravitational field is moving much

slower than light, |v̄| � c, then the integral above corresponds to

∫
T00d

3y ≈
∫
T̄ (ū, ū)d3y ≡M

∫
T0id

3y ≈
∫
T̄ (ū, x̄i)d

3y ≡ −Qi∫
Tijd

3y ≈
∫
T̄ (x̄i, x̄j)d

3y ≡ Πij

If we now choose our frame of reference to be the centre-of-momentum
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frame, where Qi = 0, then we are left with

h̄00 = +
4GM

r

h̄ij = +
4GΠij

r

h̄0i = h̄i0 = 0

To go further requires manipulating the stress-energy tensor. Taking the

leading-order parts of the conservation equations gives

∂tT
00 + ∂iT

0i = 0 (3)

∂tT
i0 + ∂jT

ij = 0 (4)

Let us now consider the integral

∫
∂k(T

ikyj)d3y =

∫
(∂kT

ik)yjd3y +

∫
T ijd3y

Using Gauss’ divergence result, the integral on the LHS can be trans-

formed to a surface integral over the boundary of the original domain of

integration. If the domain of integration is larger than our compact source

(which it is) then it must vanish, as Tµν is only non-zero inside the source.
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This means ∫
T ijd3y = −

∫
(∂kT

ikyjd3y)

then using equation (2)

∫
T ijd3y =

∫
(∂tT

i0)yjd3y =
d

dt

∫
T i0yjd3y

Similarly, exchanging i and j indices, gives

∫
T jid3y =

d

dt

∫
T j0yid3y

so

∫
T ijd3y =

1

2

d

dt

∫
(T i0yj + T j0yi)d3y (5)

Now, consider a new integral

∫
∂k(T

0kyiyj)d3y =

∫
(∂kT

0k)yiyjd3y +

∫
(T 0iyj + T 0jyi)d3y

= −
∫

(∂tT
00)yiyjd3y +

∫
(T 0iyj + T 0jyi)d3y

= − d
dt

∫
T 00yiyjd3y +

∫
(T 0iyj + T 0jyi)d3y
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Once again, the LHS of this equation can be set to zero using Gauss’ result.

This gives

∫
(T 0iyj + T 0jyi)d3y =

d

dt

∫
T 00yiyjd3y (6)

Now, substituting equation (4) into equation (3) gives

∫
T ijd3y =

1

2

d2

dt2

∫
T 00yiyjd3y

The LHS of this equation is identical to our integral pressure term Πij

(after lowering indices with ηij). We can therefore write h̄ij as

h̄ij = +
2G

r

d2Iij
dt2

where Iij =
∫
ρyiyjd3y is the quadrupole moment tensor. The above equa-

tion is the “quadrupole formula”. It forms the basis of much of gravita-

tional wave physics.
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3.9 Static sources and Newtonian limit

In the centre of momentum frame, if the source of the gravitational field

is static (not moving) then

d2Iij
dt2

= 0

The only non-vanishing part of h̄µν is then

h̄00 = +
4GM

r

This means h̄µµ = −4GM
r , and therefore

h00 = h̄00 −
1

2
η00h̄

µ
µ = +

2GM

r

hij = h̄ij −
1

2
ηijh̄

µ
µ = +

2GM

r
δij

⇒ ds2 = −
(

1− 2GM

r

)
dt2 +

(
1 +

2GM

r

)
(dx2 + dy2 + dz2)

This line-element captures enough to describe Newtonian gravity, and the

leading-order part of the bending of light. It can also be derived by as-

suming that the gravitational field’s source is dominated by its rest mass,

i.e.

|T00| � |T0i| and |T00| � |Tij|
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3.10 Waves from binary systems

Consider two massive bodies, in a circular orbit around each other of

radius R:

By rotating spatial coordinates we can arrange for these bodies to orbit

in the plane x = 0 (as above). The leading order part of the gravitational

field is Newtonian, so this orbit obeys

Mv2

R
=
GM 2

(2R)2

If we now write v = ΩR, then we get angular speed

Ω =

√
GM

4R3
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The positions of the two bodies can also be written

xiA =
(
0, R cos(Ωt), R sin(Ωt)

)

and

xiB =
(
0,−R cos(Ωt),−R sin(Ωt)

)
The density of this system can therefore be written as

ρ−Mδ(x)[δ(y −R cos Ωt)δ(z −R sin Ωt) + δ(y +R cos Ωt)δ(z +R sin Ωt)]

Exercise: substitute this expression for ρ into I ij =
∫
ρyiyjd3y to find

I ij = MR2


0 0 0

0 1 + cos 2Ωt sin 2Ωt

0 sin 2Ωt 1− cos 2Ωt


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Solution: we immediately have

Ixx =

∫
ρx2dxdydz = 0

Ixy = Iyx =

∫
ρxydxdydz = 0

Ixz = Izx =

∫
ρxzdxdydz = 0

Iyy =

∫
ρy2dxdydz = M

∫ [
y2δ(y −R cos Ωt) + y2δ(y +R cos Ωt)

]
dy

= M(R2 cos2 Ωt+R2 cos2 Ωt) = MR2(1 + cos 2Ωt)

Izz =

∫
ρz2dxdydz = M

∫ [
z2δ(z −R sin Ωt) + z2δ(z +R sin Ωt)

]
dz

= M(R2 sin2 Ωt+R2 sin2 Ωt) = MR2(1− cos 2Ωt)

Iyz = Izy =

∫
ρyzdxdydz

= M

∫
yzδ(y −R cos Ωt)δ(z −R sin Ωt)dydz

+M

∫
yzδ(y +R cos Ωt)δ(z +R sin Ωt)dydz

= M(R cos Ωt ·R sin Ωt) +M
(
(−R cos Ωt) · (−R sin Ωt)

)
= 2MR2 cos Ωt sin Ωt = MR2 sin 2Ωt

31



This all can be written as follows:

⇒ I ij = MR2


0 0 0

0 1 + cos 2Ωt sin 2Ωt

0 sin 2Ωt 1− cos 2Ωt


Substituting into the quadrupole formula gives

h̄ij = −8GMR2Ω2

r


0 0 0

0 cos 2Ω(t− r) sin 2Ω(t− r)

0 sin 2Ω(t− r) − cos 2Ω(t− r)



3.11 Gravity of gravitational waves

Gravitational waves do not have any local energy or momentum (i.e.

they do not contribute to Tµν). However, they do have their own gravita-

tional field. This requires some careful thought to be properly understood.

Recall that in section 3.1 we wrote down (but did not yet use) Rµν to

order h2. If we do the same with the Einstein tensor then we can write

Gµν = G(1)
µν +G(2)

µν + . . . = 8πGTµν
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If we move G
(2)
µν to the RHS we have

G(1)
µν = 8πG(Tµν + tµν) +O(h3)

where tµν ≡ − 1
8πGG

(2)
µν . When written in this form we see that tµν acts as

a source term for the leading order part of the gravitational field (albeit a

small one). The second-order part of the Einstein tensor is given explicitly

by

G(2)
µν = R(2)

µν −
1

2
(ηµνη

ρσR(2)
ρσ + hµνη

ρσR(1)
ρσ − ηµνhρσR(1)

ρσ )

where R
(1)
µν and R

(2)
µν are given in section 3.1. This quantity is not by itself a

tensor, as can be verified by trying to perform a coordinate transformation.

However, it can be made into a tensor by integrating (or smoothing) it over

a small region of spacetime. This gives

〈tµν〉 =
1

32πG

〈
(∂µh̄ρσ)∂νh̄

ρσ − (∂σh̄
ρσ)∂µh̄νρ

−(∂σh̄
ρσ)∂νh̄µρ −

1

2
(∂µh̄)(∂νh̄)

〉
−1

4

〈
2h̄ρνT

ρ
ν + 2h̄ρνT

ρ
ν + ηµνh

ρσTρσ
〉

where 〈. . .〉 denotes the smoother quantity, and where use has been made

of the result 〈∂ν=〉 = 0 for any function = = =(xµ).
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3.12 Energy radiated from a binary

We can now use 〈tµν〉 to work out the rate at which binary systems lose

energy through the emission of gravitational waves. In vacuum, and in TT

gauge, we get

〈tµν〉 =
1

32πG
〈(∂µhTTρσ )(∂νh

TTρσ)〉

The energy flux in gravitational waves is therefore

qGW
i = −〈t0i〉

and the rate of energy loss from the system emitting them is

dE

dt
= −

∮
r2qGWi r̂idΩ

where the integration is over a sphere that contains the system at the

centre, and where r̂i are the spatial components of an outward pointing

radial unit vector (such that r̂ir̂i = 1).

We will now use the TT part of the quadrupole formula

hijTT = h̄ijTT = (P i
jP

j
l −

1

2
P ijPkl)

2G

r

d2Ikl

dt2
=

2G

r

d2I ijTT

dt2

where I ijTT ≡ (P i
kP

j
l − 1

2P
ijPkl)I

kl. This gives
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∂th
ij
TT =

2G

r

...
I
ij
TT

and

∂rh
ij
TT = −2G

r2
Ï ijTT −

2G

r

...
I
ij
T ≈ −

2G

r

...
I
ij
TT

Substituting this all back into the equations above gives

dE

dt
= −

∮
G

8π
〈
...
I
TT
ij

...
I
ij
TT 〉dΩ

Finally, the term in brackets can be expanded as

...
I

TT
ij

...
I
ij
TT =

...
I ij

...
I
ij − 2

...
I i

j ...
I
ik
r̂j r̂k +

1

2

...
I
ij ...
I
kl
r̂ir̂j r̂kr̂l

Using the known results

∮
dΩ = 4π,

∮
r̂ir̂jdΩ =

4π

3
δij

∮
r̂ir̂j r̂kr̂idΩ =

4π

15
(δijδkl + δikδjl + δilδjk)

then gives

dE

dt
= −G

5
〈
...
I ij

...
I
ij〉
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Example: consider the binary system from section 3.10, for which

...
I
ij

= 8MR2Ω3


0 0 0

0 sin 2Ωt − cos 2Ωt

0 − cos 2Ωt − sin 2Ωt


This gives

⇒
...
I ij

...
I
ij

= 128M 2R4Ω6

⇒ dE

dt
= −128

5
GM 2R4Ω6

This result is very important for binary pulsar observations, and the recent

gravitational wave detection by LIGO.

3.13 The Hulse-Taylor binary

In 1993 Russell Hulse and Joseph Taylor were awarded the Nobel Prize

in Physics, for their work on the binary system PSR B1913+16. This

was a system of two neutron stars, one of which was a pulsar, that allowed

evidence for the existence of gravitational waves to be inferred. To consider

why and how, let’s return to our two bodies of mass M in circular orbit.
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The total energy of the system is

E = K + U = 2×
(

1

2
Mv2

)
− GM 2

2R
= −GM

2

4R

as we know v2 = GM
4R from before. Using v = ΩR and differentiating

⇒ dE

dt
= −2Ω̇

3

(G2M 5

16Ω

)1/3

From the previous section we now know that the emission of gravitational

waves from such a system causes

dE

dt
= −128

5
GM 2Ω6

(GM
4Ω2

)4/3

Equating these two expressions gives the change in angular velocity due

to GW emission:

Ω̇ =
48

5
× 22/3 × (GM)5/3Ω11/3

which can be integrated to give

⇒ Ω−8/3 =
128

5
× 22/3 × (GM)5/3(t0 − t)

where t0 is an integration constant (the time when Ω→∞, when the two

bodies eventually coalesce).
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Now the period of the orbit is

τ =
2π

Ω
=

231/8

53/8
π(GM)5/8(t− t0)3/8

This result gives the rate at which our systems period decreases due to

energy lost through gravitational radiation, τ ∝ (t0 − t)3/8. This is a

very good match to the observations made by Hulse and Taylor for PSR

B1913+16, and is widely considered to be the first indirect evidence for

the existence for gravitational waves.
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3.14 The LIGO detections

The first direct detection of GWs was made by the LIGO experiment,

on the 14th of September 2015. This experiment consists of two interfer-

ometers at two different locations in the USA

The idea is this: when a gravitational wave passes, the two arms of the

detectors change length by a small amount. This causes a change in the

interference pattern at the detector. This sounds simple, but gravitational

waves tend to have very low amplitude (the 2015 detection caused the

arms to change length by about 10−18m). To make a positive detection

therefore a very careful experimentation, and some knowledge of the signal

that is expected.
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Let’s return to our two bodies in a circular orbit. At the end of section

3.10 we found an explicit expression for h̄ij, for the emitted gravitational

waves. Now, because we have an explicit expression for Ω = Ω(t) in section

3.13, we can work out what an observer at some position r on the z-axis

should be expected to see with his/her gravitational wave detector.

Example: use the results from Section 3.5 of the notes to show that

waves travelling in the z-direction from this system can be writte in TT

gauge as

h̄TT
µν =

(GM)
5
3

r
(2Ω)

2
3



0 0 0 0

0 cos 2Ω(t− r) 0 0

0 0 − cos 2Ω(t− r) 0

0 0 0 0


and hence correspond to a wave with + polarization and

h+ =
(GM)

5
3

r
(2Ω)

2
3 cos 2Ω(t− r).
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Solution: for the system in question we have

h̄ij = −8GMR2Ω2

r


0 0 0

0 cos 2Ω(t− r) sin 2Ω(t− r)

0 sin 2Ω(t− r) − cos 2Ω(t− r)


To put this in TT gauge recall h̄TT

ij = (P k
i P

l
j − 1

2PijP
kl)h̄kl, where P j

i =

δ ji − ẑiẑj and ẑi = (0, 0, 1).

⇒ P k
i P

l
j h̄kl = −8GMR2Ω2

r


0 0 0

0 cos 2Ω(t− r) 0

0 0 0


and P klh̄kl = −8GMR2Ω2

r cos 2Ω(t− r)

⇒ −1

2
PijP

klh̄kl =
8GMR2Ω2

r


1
2 cos 2Ω(t− r) 0 0

0 1
2 cos 2Ω(t− r) 0

0 0 0



⇒ h̄TT
ij =

4GMR2Ω2

r


cos 2Ω(t− r) 0 0

0 − cos 2Ω(t− r) 0

0 0 0


This gives the desired result when we use Ω2 = GM

4R2 , or R2 =
(
GM
4Ω2

) 2
3 .
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Now, because we have an explicit expression for Ω = Ω(t) in Section

3.13, we can work out what an observer at some position r on the z-axis

should be expected to see with his/her gravitational wave detector.

Exercise: produce some plots of h+ = h+(t) to see what a gravitational

wave signal looks like.

You should get something that looks a bit like this:

The frequrency and amplitude of the wave increases as the bodies come

together, at t = t0. This is exactly what was seen by LIGO: two merging

black holes, each with about thirty times the mass of the Sun, as at a

distance of about 1.4 billion light years. The actual signal from the first

LIGO detection is shown on the next page, for the two detectors at Hanford

and Livingston.
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