
RELATIVITY & GRAVITATION

Lectured by Timothy Clifton

SECTION 2 - EINSTEIN’S THEORY AND BLACK HOLES

2.1 Observables

Coordinates are not observable. The components of vectors and tensors

in a coordinate basis are not (by themselves) observable, because they

depend on the choice of coordinates.

Things that are observable:

• proper time between two events on a timelike curve, i.e. a clock

• proper distances between spacelike separated events, i.e. a stick length

• scalar quantities at a point p, i.e. the Ricci scalar, R

• the frame components of vectors and tensors

The first three of these should be familiar. The fourth is new, and is of

fundamental importance in GR. Most things fall into the fourth category.

2.2 Observers and frames

In a general spacetime an observer will follow some timelike world line

xµ(τ) (we use proper time τ as the parameter). The tangent vector to this
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world line is

~u =
dxµ

dτ
~eµ

This is the 4-velocity of the observer, and obeys ~u · ~u = −1 as we have

chosen the parameter to measure proper time along the curve. In general

time-like curves have tangent vectors that obey ~u · ~u < 0.

We can use ~u as one of the basis vectors at each point along C. The

rest-space of the observer that follows C will then be spanned by three

vectors that are orthogonal to ~u: i.e. ~xi such that ~xi · ~u = 0, where index

i = 1, 2, 3. If we chose the parameter along each ~xi to be proper distance

then we have

~xi · ~xi = 1

In general space-like curves have tangent vectors that obey ~xi · ~xi > 0.

Note: no sum over i is implied in these equations!

If we choose the three spacelike vectors to be mutually orthogonal then

this becomes

~xi · ~xj = δij .

We now have three linearly independent unit vectors in the rest-space

of the observer with 4-velocity ~u following C. These are like the {x̂, ŷ, ẑ}
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vectors from Euclidean geometry, but in this case are unique to our specific

observer. If we collect ~u and the ~xi together then we can collectively label

them êa, such that

~̂e0 = ~u, ~̂e1 = ~x1, ~̂e2 = ~x2 ~̂e3 = x̂3

This set of 4 vectors obey the relation

~̂ea · ~̂eb = ηab ,

where ηab is the Minkowski metric, familiar from SR. Note that the above

are not written using coordinate indices because we are not working with

coordinates, ~̂ea vectors are “frame vectors” since they define a frame. In

GR, the 4 vectors that made up the basis ~̂ea are referred to as a frame, for

the observer following the world line C

Example: write down a set of frame vectors for an observer at constant

r, θ and φ in this geometry:

ds2 = −
(

1− 2Gm

r

)
dt2

dr2(
1− 2Gm

r

) + r2
(
dθ2 sin2 θdφ2

)
.
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Solution: Let’s write the frame vectors as ~u, ~x1, ~x2, ~x3. If the observer

stays at fixed (r, θ, φ) then only the t-component of ~u can be non-zero, so

uµuµ = (ut)2gtt = −
(

1− 2Gm

r

)
(ut)2 = −1

which means

⇒ ut =
1√

1− 2Gm
r

⇒ ~u =
1√

1− 2Gm
r

~et .

If we now take ~x1 to point in the r-direction then

xµ1x1µ = (xr1)
2grr =

(xr1)
2

1− 2Gm
R

= 1

which means

⇒ xr1 =

√
1− 2Gm

r
⇒ ~x1 =

√
1− 2Gm

r
~er .

The final two vectors can then be written as

~x2 =
1

r
~eθ and ~x3 =

1

r sin θ
~eφ

so ~x2·~x2 = 1 = ~x3·~x3 and ~x1·~x2 = ~x1·~x3 = ~x2·~x3 = ~u·~x1 = ~u·~x2 = ~u·~x3 = 0,

as required.
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2.3 Frame transformations

The frame we just introduced is required to satisfy ~̂ea · ~̂eb = ηab. This

equation by itself, however, is not sufficient to fix ~̂ea uniquely. There are

freedoms that remain. If we keep the observer fixed, so that ~u does not

change, then there is a group of transformations that we can perform on

~xi that leave ~xi · ~xj = δij unchanged. Consider

~xi = M j′
i~xj′, i, j = 1, 2, 3

⇒ ~xi · ~xj = Mk′
iM

l′
k~xk′ · ~xl′ = Mk′

iM
l′
jδk′l′

so if Mk′
iM

l′
jδk′l′ = δij then both ~xi and ~xi′, obey the required condition.

This makes M j′
i an “orthogonal” transformation, which can encode either

reflections or rotations of the spatial frame vectors

Example: rotation about ~x3

{M j′
i} =


M 1′

1 M 1′
2 M 1′

3

M 2′
1 M 2′

2 M 2′
3

M 3′
1 M 3′

2 M 3′
3

 =


cos θ cos θ 0

− sin θ cos θ 0

0 0 1


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⇒ ~x1 = cos θx1′ − sin θ~x2′

~x2 = sin θ~x1′ + cos θ~x2′

~x3 = ~x3′

Now consider what happens if we change frames between two differ-

ent observers who are in relative motion and both at the same point in

spacetime. Their frame vectors exist in the same tangent space, and must

obey

~̂e · ~̂eb = ηab and ~̂e′a · ~̂e′b = ηab

These two sets of vectors must be linearly related, so we can write

~̂ea = Lb
′
a~̂e
′
b, for some Lb

′
a

⇒ ~̂ea · ~̂eb = Lc
′
aL

d′
b~̂e
′
c · ~̂e′d = Lc

′
aL

d′
bηc′d′

⇒ Lc
′
aL

d′
bηc′d′ = ηab

The Lb
′
a that obeys this condition are the Lorentz transformations (which

encode boosts and rotations).
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Example: boost in the x-direction

{Lb′a} =



L0′
0 L0′

1 L0′
2 L0′

3

L1′
0 L1′

1 L1′
2 L1′

3

L2′
0 L2′

1 L2′
2 L2′

3

L3′
0 L3′

1 L3′
2 L3′

3


=


γ γβ 0 0

γβ γ 1 0

0 0 0 1



where β = v
c and γ = 1√

1−β2

⇒ ~u = 7γ~u′ + γβ~x′1 = γ(~u′ + β~x′1)

~x1 = γβ~u′ + γ~x′1 = γ(~x′1 + β~u′)

~x2 = ~x′2

~x3 = ~x′3

These are the familiar expressions for relating time and space directions of

two observes in relative motion. They show how time dilation and length

contraction from SR should be understood in GR.
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Finally, note that (as with any set of basis vectors) we can define a dual

according to

~̂ea · ~̂eb = δab

It is the frame components of vectors and tensors that are direct observ-

ables:

Examples:

~v = va~̂ea

~t = tab~̂ea ⊗ ~̂eb

These va and tab are coordinate independent, but do depend on the state

of motion of the observer for whom this frame is defined (i.e. they depend

on ~u). They are observables.

2.4 Lorentz transformations

Frame vectors transform under a Lorentz transformation as ~̂ea = Lb
′
a~̂eb′,

but how do frame components of vectors and tensors transform?

~v = va~̂ea = vaLb
′
a~̂eb′
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and

~v = vb
′
~̂eb′

⇒ vb
′
= Lb

′
av

a

Similarly,

~t = tab~̂ea ⊗ ~̂eb = tab(Lc
′
a~̂ec′)⊗ (Ld

′
b~̂ed′) = tabLc

′
aL

d′
b~̂e
′ ⊗ ~̂e′d

and

~t = tc
′d′~̂e′c ⊗ ~̂e′d

⇒ ta
′b′ = La

′
cL

b′
dt
cd

General rule: each raised index on a frame component requires on a frame

component requires one La
′
b to Lorentz transform

2.5 Light rays

The invariance of the speed of light is fundamental to both SR and GR.

In GR, this means that any given frame we must measure c = 1. For a

photon moving in the +~x1 direction, this means we should be able to write
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the tangent vector to its path through spacetime as:

~k = α(~u+ ~x1)

where α is a constant, i.e. the photon increases its location in time along

~u at the same rate it increases its position in space (along ~x1).

⇒ ~k · ~k = α2(~u+ ~x1) · (~u+ ~x1)

= α2(~u · ~u+ ~x1 · ~u+ ~u · ~x1 + ~x1 · ~x1)

= α2(−1 + 0 + 0 + 1)

= 0

This property means that ~k is called a “null vector”. In general, null

vectors have ~k · ~k = 0 (c.f. timelike and spacelike vectors).

Excercise: Prove that the distance along any curve with null tangent

vector is zero.
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Solution: the distance along a curve is

S =

∫
C

√
|gµνtµtν|dλ

where tµ are the components of a tangent vector to the curve. For a null

geodesic

~t · ~t = 0

⇒ (tµ~eµ) · (tν~eν) = tµtν~eµ · ~eν = tµtνgµν = 0

Substituting this into the expression above shows that the integrand van-

ishes if the curve is null. The distance along null geodesics is therefore

zero.

Now let’s differentiate ~k · ~k = 0 to get

d~k

dλ
· ~k + ~k · d

~k

dλ
= 2~k · d

~k

dλ
= 0

⇒ d~k

dλ
= β~k,

for some β = f(λ). Recall that ~k = d~s
dλ . This means that we can choose λ

such that

d~k

dλ
≡ ∇~k~k = 0 ⇔ kµDµk

ν = 0
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For null curves, such a choice is called “affine parameter” (c.f. the affine

parameter along timelike or spacelike curves, which was defined such that

~t · ~t = ±1, and was called “proper time/distance”).

Note that the 4-momentum of a photon can be simply taken as ~k (nor-

mally its ~p = m~u for particles with mass, but photons have no mass)

Example: prove that it is possible to choose λ such that d~k/dλ = 0.

Solution: recall that ~k = d~x
dλ and transform λ so that λ→ f(λ)

⇒ ~k =
df

dλ

d~x

df
=
df

dλ
~k′

where ~k′ ≡ d~x
df . Now substitute into the expression

d~k

dλ
= ∇~k~k = β~k

⇒ d~k

dλ
=
df

dλ
∇~k′
( df
dλ
~k′
)

=
df

dλ

(
∇~k′

df

dλ

)
~k′ +

( df
dλ

)2

∇~k′~k
′ = β

df

dλ
~k′

or

d2f

dλ2
~k′ +

( df
dλ

)2

∇~k′~k
′ = β

df

dλ
~k′
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If we now choose f(λ) such that

d2f

dλ2
= β

df

dλ

then ∇~k′~k
′ = 0, as required.

2.6 Frequency of light

We’ve shown that light follows null geodesics. But how can we extract

the frequency of a given photon? This must depend on the observer, be-

cause of the Doppler effect. Firstly, recall that in a given frame a photon’s

4-momentum can be written

~k = ka~̂ea =



E

px

py

pz


~̂ea

⇒ ~u · ~k = ka~u · ~̂ea = kaη0a = −E

and

~x1 · ~k = ka~x1 · ~̂ea = kaη1a = px

~x2 · ~k = py and ~x3 · ~k = pz
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These are the frame components of ~k, for an observer following ~u. We can

use the Lorentz transformation rules to transform to a different frame, for

a different observer. This gives the relativistic Doppler effect, between two

observers in relative motion at a given point in spacetime. Explicitly for

a boost in the x-direction,

E ′ = −ka′η0′a′ = −La′bkbη0′a′ = L0′
bk
b = L0′

0k
0 + L0′

1k
1 + L0′

2k
2 + L0′

3k
3

= γk0 + γβk′ = γE + γβpx

Recall that for a photon E = hν and p = h
λ = hν

⇒ hν ′ = γhν + γβhν = (1 + β)γhν =
(1 + β)√

1− β2
hν

⇒ ν ′ =
(1 + β)√

1− β2
ν =

(1 + β)√
(1 + β)(1− β)

ν =

√
1 + β

1− β
ν

This is the relativistic Doppler effect, and is identical to the expansion

from SR. Note that this result is independent of coordinates. However, it

is usually useful to use coordinates to find the quantities involved, once a

geometry has been specified.
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Example: Consider the Schwarzschild geometry

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2dΩ2

and a photon trajectory with coordinate components

kν = A

(
1(

1− 2GM
r

) , 1, 0, 0)

What frequency would an observer at fixed r measure for this photon?

Solution: first find uµ:

~u · ~u = gµνu
µuν = −

(
1− 2GM

r

)
(u0)2 = −1

⇒ uµ =

 1√
1− 2GM

r

, 0, 0, 0


Now find E:

E = −~u·~k = −gνµuµkν =
(

1−2GM

r

) 1√
1− 2GM

r

A(
1− 2GM

r

) =
A√

1− 2GM
r

If two observers, at two fixed values of r, measure the same photon then

the change in frequency is

ν2

ν1
=
E2

E1
=

√√√√1− 2GM
r1

1− 2GM
r2
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2.7 Stress-energy tensor

As well as light, we need a relativistic way to describe matter (i.e. energy

density). It’s clear that the density of matter cannot be a scalar because

mass measured by two observers in relative motion is given by

m′ = γm0

Likewise length contraction reduces the length of the edge of a box by

L′ = L/γ. These two factors together give, for the density ρ,

ρ′ = γ2ρ0

This suggest that ρ is the frame component of a rank-2 tensor. A simple

version of such a tensor can be written

T = ρ~u⊗ ~u

This is the simplest possible version of a stress-energy tensor. In the frame

determined by ~u:

T (~u, ~u) = ρ(~u · ~u)(~u · ~u = ρ(−1)(−1)) = ρ
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while all other frame components of T vanish:

T (~u, ~xi) = 0 = T (~xi, ~xj)

Now consider what happens in a boosted frame ~e′a = Lba′~eb

⇒ ~u′ = γ~u+ γvi~xi and ~x′i = γvi~u+ γ~xi

so

T (~u′, ~u′) = ρ(~u′~u)(~u′ · ~u) = ργ2(~u · ~u)2 = ργ2 = ρ′

T (~u′, ~x′i) = ρ(~u′~u)(~x′i · ~u) = ργ2vi(~u · ~u)2vi = ργ2 = ρ′vi

T (~x′i, ~x
′
i) = ρ(~x′i~u)(~x′i · ~u) = ργ2vivi(~u · ~u)2vivi = ργ2 = ρ′vivi

In this new frame we therefore have

T (~u′, ~u′)⇔ energy density

T (~u′, ~x′i)⇔ energy flux density

T (~x′i, ~x
′
i)⇔ pressure, or stress
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This suggests a more general form for the stress-energy tensor:

T = T ab~̂ea ⊗ ~̂eb =

T 00 T 0i

T i0 T ij

 ~̂ea ⊗ ~̂eb =

ei qi

qi πij

 ~̂ea ⊗ ~̂eb

where

qi ≡ −T (~u, ~xi)

πij ≡ T (~xi, ~xj)

ρ ≡ T (~u, ~u)

If qi = 0 and πij = pδij then we say that T represents a “perfect fluid”.

In this case only ρ and p are non-zero. A relationship between p and ρ is

known as an “equation of state”

Examples:

p = 0 is dust

p =
1

3
ρ is radiation

p = ρ is a stiff fluid

For non relativistic fluids we usually have qi � ρ and πij � ρ.
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Example: show that for a general matter distribution we can write

T µν = ρuµuν + qµuν + qνuµ + πµν ,

where qµuµ = 0 = πµνuµ.

Solution: using this expression, and the mutually orthogonal nature of

the basis vectors, we find

~T (~u, ~u) = T µνuµuν

= ρuµuνuµuν + qµuνuµuν + qνuµuµuν + πµνuµuν

= ρ(−1)2 = ρ

~T (~u, ~xi) = T µνuµxiν

= ρuµuνuµxiν + qµuνuµxiν + qνuµuµxiν + πµνuµxiν

= −qi

~T (~xi, ~xj) = T µνxiµxjν

= ρuµuνxiµxjν + qµuνxiµxjν + qνuµxiµxjν + πµνxiµxjν

= πij

The proposed T µν therefore gives all the correct frame components for the

stress-energy tensor.
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2.8 Stress-energy conservation

An important concept in Newtonian physics is energy conservation. This

is encoded in the Newtonian equation of continuity:

∂ρ

∂t
+ ~∇ · (ρ~u) = 0

The relativistic (covariant) way of writing this equation is

Dµ(ρuµ) = 0

Now consider taking the divergence of T µν = ρuµuν

DµT
µν = Dµ(ρuµ)uν + ρuµDµu

ν

We therefore find that if stress-energy is conserved, then the particles in

the fluid must be following geodesics:

DµT
µν = 0 ⇔ uµDµu

ν = 0

Note that this correspondence is only true for perfect fluids when p = 0.

In general we expect DµT
µν = 0 when there are no external forces on the

matter being described by T µν.
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2.9 Inertial frames

So far, we have only considered frame vectors at a single point in space-

time. If we want to determine what an observer would measure at different

points along their world line, however, we need to know something about

to relate frame vectors at different points (i.e. we need to know how the

frame is moving).

In general, a frame can be rotating (if it corresponds to a lab on the

surface of the Earth, for example). It is often useful to use non-rotating

frames though, to avoid coriolis and centrifugal forces.

A frame may also be accelerating if it’s acted on by an external force

(again, the surface of the Earth is a good example of this). In this case

the matter making up the lab obeys

DµT
µν 6= 0 ⇔ aµ ≡ uνDνu

µ 6= 0

If a frame is non-rotating and accelerating at the rate aµ then it is said to

be “Fermi-propagated”.
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A Fermi propagated frame obeys the following equation

d~̂ea
dτ

= (~u · ~̂ea)~a− (~a · ~̂ea)~u

where the intrinsic derivative is along the observers worldline, and where

τ is the observer’s proper time.

If the frame is both non-rotating and non-accelerating then we say it is

an “inertial frame”. In this case ~a = 0, so

d~u

dτ
= 0 and

d~xi
dτ

= 0

This means that inertial frames are parallel transported along the worldines

of observers. They are often used in GR to calculate observables.

Note: non-inertial, accelerating frames contain fictitious forces (Coriolis,

centrifugal etc.). In GR, the acceleration we feel on the surface of the Earth

should be considered equally fictitious, as it is the result of an external

force from the solid Earth that pushes off what be otherwise be a free fall

trajectory.
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2.10 Riemann curvature tensor

The curvature of spacetime is of fundamental importance in GR and can

be quantified precisely by the Riemann curvature tensor. In a coordinate

basis, the components of this tensor are

Rρ
µνσ = ∂µΓρµσ − ∂σΓρµν + Γτ µσΓρτν − Γτ µνΓ

ρ
τσ

To find Rρ
µνσ we can take gµν, and use it to calculate Γρµν, which is

then substituted into the equation above. We can verify Rρ
µνσ are the

components of a tensor by checking how it transforms under a change or

coordinates.

The Riemann tensor obeys a number of important identities; for which

it is sometimes useful to write Rµνσρ = gµτR
τ
µσρ. These are:

Ricci identities: for any vector with components vµ

DµDνvσ −DνDµvσ = R′τ σνµvτ

First Bianchi identities:

Rµνσρ +Rµσρν +Rµρνσ = 0
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Second Bianchi identities:

DτRµνσρ +DσRµνρτ +DρRµντσ = 0

Skew symmetries:

Rµνσρ = −Rνµσρ = −Rµνρσ

Interchange symmetry:

Rµνσρ = Rσρµν

These properties restrict the number of independent components of Rµ
νρσ

to 20.

Note that spacetime is flat, and SR is recovered, if and only if all com-

ponents of the Riemann tensor vanish at every point. Any non-zero com-

ponents of the Riemann tensor mean that spacetime is not flat
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2.11 Ricci and Weyl tensors

The Riemann tensor contains a lot of information. It is useful to break

it up into smaller parts: The Ricci tensor Rµν and the Weyl tensor Cτµσρ.

The Ricci tensor is given in a coordinate basis by the following compo-

nents:

Rµν ≡ Rσ
µσν

This tensor has 10 independent components, and can be thought of (in

some sense) as the trace of the Riemann tensor.

The Weyl tensor has components, in a coordinate basis, as follows:

Cµνρσ ≡ Rµνρσ−
1

2
gµρRνσ+

1

2
gµσRνρ+

1

2
gnuρRσµ−

1

2
gνσRρµ+

1

6
Rgµρgσν−

1

6
Rgµσgρν

where R ≡ Rµ
µ is the Ricci scalar. The Weyl tensor has 10 independent

components and can be thought of as the trace-free part of the Riemann

tensor (the contraction over any two indices yields zero, Cµ
νµρ = 0).

Together, Rµν and Cµνρσ contains all the information in Rµ
νρσ.
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2.12 Einstein’s equations

Einstein proposed the following set of equations to describe how matter

matter curves space-times:

Rµν −
1

2
gµνR =

8πG

c4
Tµν − gµνΛ

or equivalently,

Rµν =
8πG

c4
(Tµν −

1

2
gµνT ) + gµνΛ

These equations show that if we know the value of the stress-energy at

any point in space-times then we automatically know the Ricci curvature

at that point.

Note: Einstein’s equations only provide enough information to specify

half of the Riemann tensor - the Weyl tensor remains completely unspeci-

fied, even if we know everything about the distribution of the matter (and

hence Rµν). In practise, the Weyl tensor components are determined by

boundary conditions, or by imposing specific properties on the spacetime.

The value of the constant Λ, in these equations, is not specified by the

theory either. It must be determined observationally, and can only take

26



one value for the entire universe.

2.13 Empty space I: Minkowski

If the space is empty (Tµν = 0) and the cosmological constant vanishes

(Λ = 0) then Einstein’s equations imply

Rµν = 0

This means that any metric that has zero Ricci curvature is an empty

space solution. There are very many such metrics.

The simplest example is Minkowski space, which can be written as

ds2 = −dt2 + dx2 + dy2 + dz2

This solution has Cµνρσ = 0 and Rµ
νρσ = 0. All coordinates run from −∞

to +∞, so we can say the spacetime is infinitely extended. Nevertheless,

there is a simple finite diagram that we can draw in order to understand

this space.
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First consider the space spanned by the t and x coordinates:

Rays of light, in this diagram, would be represented by diagonal lines

(assuming they only propagate in the x-direction). Now, consider shrink-

ing this diagram in every direction, so that light rays stay diagonal, If we

shrink the diagram sufficiently, we can “compactify” it to a finite size. It

then looks like this:

In this diagram:

• Blues lines are surfaces of constant t.

• Red lines are lines of constant x.
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• All timelike particles end up at i+

• All timelike particles started at i−

• All light rays of light end up at =+

• All light rays started at =−

• All spacelike curves end up at i0

This is an example of a “Penrose diagram”

2.14 Empty space II: Milne

In GR it’s not always clear if two different line elements represent two

different space times, or if they are just the same spacetime written in

different coordinates. to illustrate this consider again Minkowski (this

time using spherical polar coordinates):

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2

Now introduce new coordinates

r = RT and t2 = T 2(1 +R2)

dr = RdT + TdR
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therefore

dr2 = R2dT 2 + T 2dR2 + 2TRdTdR

and

2tdt = 2T (1 +R2)dT = 2T 2RdR

so

dt2 = T 2(1 +R2)dT 2 + T 4R2dR2 + 2T 3(1 +R2)dRdT

= (1 +R2)dT 2 +
T 2R2

(1 +R2)
dR2 + 2TRdTdR

which implies

−dt2+dr2 = −(1+R2)dT 2− T 2R2

(1 +R2)
dR2−2TRdTdR+R2dT 2+T 2dR2+2TRdTdR

so

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2)

⇒ ds2 = −dT 2 = a2(T )
( dR2

1− kR2
+R2(dθ2 + sin2 θdφ2)

)
where a(T ) = T and k = −1, and where T and R run from 0 to ∞. This

looks like an expanding universe!
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On a Penrose diagram:

Note: the new coordinates only cover a quarter of the spacetime! Note

also that we still have Rµν = 0 = Cµνρσ, which should have been enough

to inform us that Minkowski space and Milne space are identical (up to a

change of coordinates).

2.15 Empty space III: Plane waves

Not all vacuum spacetimes are related to Minkowski space by coordinate

transformations. For example, consider

ds2 = −dt2 + dx2 + p2(u)dy2 + q2(u)dz2

where u ≡ t− x. The functions p(u) and q(u) obey wave equations:

∂2p

∂t2
− ∂2p

∂x2
= 0
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This geometry is a solution to Einstein’s equations if

p̈

p
+
q̈

q
= 0⇔ Rµν = 0

However, they have non-zero Weyl curvature if

p̈ 6= 0 6= q̈ ⇔ Cµνρσ 6= 0

If a region of spacetime has Cµνρσ 6= 0 then it can never be transformed to

Minkowski space. This is a (very special) example of a gravitational wave.

We will return to GWs later on in this course.

2.16 Empty space IV: de Sitter space

So far we’ve only considered Λ = 0. If we allow Λ 6= 0 then we have even

more geometries that satisfy Einstein’s equations. The most symmetric of

these is the de Sitter space

ds2 = −dt2 +
3

Λ
cosh2

(√Λ

3
t
)

(dr2 + r2dθ2 + r2 sin2 θdφ2)

This can be seen to reduce to Minkowski space (in spherical coords) when

Λ → 0. The properties of de Sitter space are, however, very different to

Minkowski.
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Consider the Penrose diagram:

All null and timelike infinities are now spacelike surfaces! This geometry

can now be transformed using

T ≡
√

3

Λ
tanh−1

(
tanh

(√
Λ
t t
)

cos r

)
, R ≡

√
3

Λ
cosh

(√Λ

3
t
)

sin r

which gives

⇒ ds2 = −(1− Λ

3
R2)dT 2 +

dR2

(1− Λ
3R

2)
+R2(dθ2 + sin2 θdφ2)

This looks a bit like Schwarzchild!
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These coordinates don’t cover the whole Penrose diagram:

Note: the Penrose diagram itself (the black lines in the figure) is a conse-

quence of the causal structure of the spacetime, and is therefore unaffected

by the change in coordinates.

Going even further, we can define new coordinates ρ and τ via

τ ≡ T +

√
3

Λ
ln

√
3

Λ
−R2, ρ ≡ Re−

√
Λ
3 τ

The same spacetime now looks like an exponentially expanding universe:

⇒ ds2 = −dτ 2 + e2
√

Λ
3 τ(dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2)
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Again, these new coordinates do not cover the entire spacetime:

Note: all of the descriptions of de Sitter above are Ricci curved (Rµν 6= 0)

and Weyl flat Cµνρσ = 0. Coordinate transformations cannot change these

properties.

2.17 One-body solution I: Schwarzschild

In spacetime and gravity you have already come across Schwarzschild’s

solution

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2dθ2 + r2dθ2 + r2 sin2 θdφ2

Birkhoff’s theorem: When Λ = 0, the unique vacuum spherically symmet-

ric solution is given by Schwarzchild.
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This means:

• no spacetime can be dynamical if it is empty and spherically symmetric

• there can be no spherically symmetric gravitational waves.

• the exterior geometry of spacetime around every spherically symmetric

body (e.g. stars) must be identical, and is given by Schwarzschild

The Penrose diagram for Schwarzchild:

Note:

• the r and t coordinates can not be used to label points on the horizon

• the black hole singularity is in the future

• there is another singularity in the past (a “white hole”)
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• the black hole has two exterior regions which are causally disconnected

• the black dashed time contains a wormhole at r = 2Gm:

Note that Schwarzschild has Rµν = 0 and Cµνρσ 6= 0.

2.18 One-body solution II: Kerr

If we consider non-spherical geometries, then there are many other pos-

sible solutions. One of the most interesting is Kerr:

ds2 = −∆

ρ2
(dt− a sin2 θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

(
adt− (r2 + a2)dφ

)

where

ρ2 ≡ r2 + a2 cos2 θ

∆ ≡ r2 − 2GMr + a2

and where m and a are constants. The Kerr solution is:

• axially symmetric (gµν is not a function of φ)

• stationary (gµν is not a function of t)
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• vacuum (Rµν = 0)

• asymptotically flat gµν → ηµν as r →∞

• contains horizons (i.e. is a black hole)

A result from Carter states that the Kerr geometry is the only solution of

Einstein’s equations that obeys these five conditions.

The Kerr geometry represents a rotating black hole (but not a rotating

star!). Kerr contains singularities and horizons but they are very different

from Schwarzchild. To find the location of the singularities we can evaluate

the following scalar:

RµνρσR
µνρσ =

48m2

(r2 + a2 cos2 θ)
(r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ− a6 cos6 θ)

This diverges at r = 0 and θ = π
2 , which corresponds to a ring:

The points labelled r = 0 are actually a disc (viewed edge on, above).
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If r = 0 and θ 6= π
2 then there is no singularity at that point, and we

can continue the spacetime to a region with r < 0 - this corresponds to a

region with negative mass! It is also a region that contains closed timelike

curves, meaning that observers who follow them can travel into their own

past!

Thankfully, all this strangeness is hidden behind the horizons. The

horizons of the Kerr geometry are located at the coordinate singularities:

∆ = r2 − 2GMr + a2 = 0

⇒ r = r±horizon ≡ GM ±
√
G2M 2 − a2

The two branches correspond to two distinct horizons - an inner one and

an outer one.

Note: the rotation parameter can only take values such that a2 < G2m2,

otherwise there are no horizons.
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Now consider Kerr’s Penrose diagram:
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Kerr contains a region of space, outside the outer horizon, within which

massive particles cannot stay at fixed position with respect to distant stars:

they are forced to rotate with the black hole, as the black hole pulls space

around with it. This region is called the “ergoregion”.

Exercise: show that the ergoregion of Kerr is bounded by

r ≡ GM +
√
G2M 2 − a2 cos2 θ

Solution: if the observer stays at fixed (r, θ, φ)

~u = ut~et

⇒ ~u · ~u = gtt(u
t)2 = −(∆− a2 sin2 θ)

ρ2
(ut)2 = −1

⇒ ut =
ρ√

∆− a2 sin2 θ

The timelike condition ~u · ~u < 0 is only satisfied if ut is real. This requires

∆ > a2 sin2 θ ⇔ r2 − 2GMr + a2 cos2 θ > 0

This last inequality is satisfied if r > re where re = GM+
√
G2M 2 − a2 cos2 θ,

which must be the boundary of the ergoregion.
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note: if θ = 0 or π then re = r+, so the ergosphere and horizon touch.

If 0 < θ < π then cos2 < 1, so G2M 2 − a2 cos2 > G2M 2 − a2. This means

re > r+, so the ergosphere is outside the horizon. This is shown in the

diagram below:

2.19 One-body solution III: General case

The exterior region of Kerr (r > r+) is thought to be the generic end

state of gravitational collapse to a black hole. This is supported by com-

puter simulations, but has yet to be proven (rigorously) in mathematics.

Astrophysical black holes are expected to be close to the limit a2 ≈

G2M 2, because conservation of angular momentum suggests rotation in-

creases as collapse occurs (note: it is impossible to spin a black hole up

beyond a2 = G2M 2, if it starts below this value initially).

Kerr, while very interesting, can only ever be an approximation to real

black holes. In astrophysics, black holes always have accretion discs (i.e.
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are not perfect vacuum). They also do not exist in isolation (i.e. there

are other objects in the universe). It is known that the interior of Kerr

(r < r+) is unstable to perturbations.

2.20 Multi-body solutions

Unlike in Newtonian physics, the two body problem has not yet been

solved in GR. However, in the last 15 years we have reached the stage

where we can simulate this problem on a computer - an area known as

“Numerical relativity”. This is an exciting field of research, and has been

used to shed light on the many different ways that two BHs can orbit each

other and merge.

Aside from advanced computer simulations, we can use perturbative

techniques to try and understand the physics at work in multi-body sys-

tems in GR. The most advanced of these is the “effective one-body formal-

ism”, which is capable of calculating the gravitational wave signal from two

merging black holes. This builds on the “post-Newtonian” formalism that

describes weak gravitational fields, and the “Regge-Wheeler equations”

that describe small pertubations to exact BH solutions. Multi-body solu-

tions are essential for understanding gravitational waves signals.

43


