
RELATIVITY & GRAVITATION

Lectured by Timothy Clifton

SECTION 1 - GEOMETRY AND SPACETIME

1.1 Manifolds

Our starting point for discussing GR is a 4D topological space known

as a manifold. There is a technical mathematical definition for a manifold,

but for our purposes we can think of it as a blank canvas. We will add

structure on top until it can be described as a spacetime.

1.2 Coordinates

Coordinates are labels that we use to denote the positions of points in

the manifold. In a 4D manifold we require the use of 4 coordinates to

specify a single point {x, y, z, t}.

It is important to understand that coordinates, in general, have no phys-

ical significance. In particular an observable quantity should be indepen-

dent of our choice of coordinates. We should be able to change coordinates,

or redo a derivation in different coordinates, and any physical observable

that results should be entirely unchanged.
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1.3 Curves and surfaces

A curve is a 1D object that exists within a manifold. It can be described

by

xµ = xµ(λ)

where µ = 0, 1, 2, 3. The xµ are the coordinates on the manifold and λ

is a parameter that labels positions along the curve. Now consider a 3D

subspace of the manifold, with coordinates {y1, y2, y3}. The position of

this space is then given by

xµ = xµ(y1, y2, y3)

This is 4 equations of three variables. We can therefore eliminate y1, y2

and y3 to leave us with a single equation

S(x0, x1, x2, x3) = 0

This one equation is sufficient to specify the position of the space, i.e.

given any values for 3 of the xµ, we can solve it to find the fourth.
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1.4 Tangent vectors

Consider a point P on a curve C in a manifold M

The tangent vector ~t at P is defined by

~t ≡ lim
δλ→0

δ~s

δλ
=
d~s

dλ

where δ~s is the infinitesimal separation vector between point P and some

nearby point on the curve with parameter value λ+ δλ

The tangent vector ~t only touches the manifold M at point P . Note

that ~t exists independent of any choice of coordinates.
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Example: in 2D Euclidean space consider the curve

x = λ , y = λ2

the tangent vector at λ = 0 is

~t0 =
dx

dλ

∣∣∣
λ=0

~̂x+
dy

dλ

∣∣∣
λ=0

~̂y = 1× ~̂x+ 0× ~̂y = ~̂x

At λ = 1

~t1 =
dx

dλ

∣∣∣
λ=1

~̂x+
dy

dλ

∣∣∣
λ=1

~̂y = ~̂x+ 2~̂y

This curve could just as well exist in a curved 2D space, as illustrated in

the figure below.
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1.5 Tangent spaces

At any point P in a curved space we can arrange a Euclidean plane

such that it tangential to the curved space, e.g. imagine a flat solid sheet

balanced on the surface of a ball. Any vector that lies in this plane is a

tangent vector. In general the dimension of the tangent space at a point

P which we call TP must have the same dimension as the manifold M.

The tangent vector to any curve that passes through P can be drawn as

an arrow in TP .

If the geometry ofM is sufficiently smooth (i.e. no sudden jumps) then

the neighbourhood of space around the point P can be approximated by

the Euclidean geometry of TP at that point. Note that in GR the tangent

spaces should be 4D Minkowski spaces, so that in the neighbourhood of P

where the geometry of space is close to the geometry of the tangent space

then we recover Special Relativity (approximately up to tidal effects).
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1.6 Vectors and vector fields

Now that we have tangent spaces, we can define vectors and vector fields

(two different but related concepts).

Let us give the definition of a vector. A vector ~v at point P is an object

that exists in the tangent space TP and that obeys the rules of vector

addition and multiplication with any other vector in that same space.

As well as vector let’s give the definition of a vector field. A vector field

~v(xµ) is the assignment of a vector to each point in the manifold such that

~v(xµ) evaluated at any point P is a vector that exists in the tangent space

TP .

Note that vectors at two different points in a curved space exist in two

different tangent spaces, this means that they cannot be directly compared

(unlike the corresponding case of flat space)
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1.7 Basis vectors

In order to do calculations, it is often useful to introduce a set of “basis

vectors” ~ea at each point P , if these basis vectors are linearly independent,

then we can use them to write any vector ~v in the following way

~v = va~ea

where a has the value of 0, 1, 2, 3. Different tangent spaces have different

basis vectors, whereas in the same space you can assign the same basis

vectors. Where va are the contravariant components of the vector ~v in the

basis ~ea. In a 4D manifold require 4 basis vectors to form a complete set,

one of which will have a timelike direction.

A particularly useful choice of basis vectors is the coordinate basis de-

fined by

~eµ ≡ lim
δxµ→0

δ~s

δxµ
=

∂~s

∂xµ

where ∂~s is the vector displacement between p and a nearby point q, whose

coordinate separation from p is δxµ. If we were to choose the curve that

connects p and q to vary in only one coordinate then we see that ~eµ is the

tangent vector to that curve. This isn’t the only choice of basis, however
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it does make certain calculations easier, but is not necessarily the easiest

for calculating observables.

From this definition, we can write the following

d~s =
∂~s

∂xµ
dxµ = ~eµdx

µ

If we want to use this to find the magnitude of the displacement of the

vector between points p and q, we take the inner product of d~s with itself,

which gives

ds2 = d~s · d~s = (~eµdx
µ) · (~eνdxν) = (~eµ · ~eν)dxµdxν

If we now promote these basis vectors to a set of basis vector fields then

we can define the metric. The metric, which is a function of coordinates

is defined as the inner product of basis vector fields at the point xσ

gµν(x
σ) = ~eµ(xσ) · ~eν(xσ)

Because the inner product is symmetric this means that gµν = gνµ. This

expression gives the magnitude squared along the hypothetical curve C

that we have been considering, which is the square of the magnitude of
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the infinitesimal separation between points p and q. Having said that

the distance cannot depend on our choice of coordinates. So the general

expression for displacement must be given by

ds2 = gµνdx
µdxν

for any choice of coordinates and for any curve C. Note that any arbitrary

basis vectors can always be written in terms of coordinate vectors in the

following way

~ea = ea
µ~eµ

where ea
µ are the contravariant components.

Similarly, we could choose to express the coordinate basis vectors in any

other system by writing

~eµ = eµ
a~ea

Note that substituting one of these expression into the other gives

eaµe
µ
b = δab

and

eµae
a
ν = δµν .
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1.8 The Metric

The metric gµν can be used to calculate the lengths of curves, as well as

the angles at which they meet. The first of these properties follows from

integrating |d~s| along the curve C

S =

∫
C

|d~s| =
∫
C

√
|gµνdxµdxν|

To go further, in order to write this in terms of the parameter λ along the

curve C, we will use the tangent vector expressed in a coordinate basis

~t ≡ ds

dλ
=
dxµ

dλ
~eµ = tµ~eµ

which gives dxµ = tµdλ and hence

S =

∫
C

√
|gµνtµtν|dλ

Note that it is possible to choose this parameter λ such that gµνt
µtν = ±1.

The plus or minus depends on whether C is a spacelike or timelike curve.

If I’ve chosen λ such that this is true then λ measures distance along the

curve directly as S =
∫
C dλ. If λ satisfies this requirement, then it is

known as an affine parameter.
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Example: what is the length of the curve with the following tangent

vector, between two points labelled by parameter choices λ = 0 and λ = 1,

~t = tν~eν = tx~x+ ty~y = sinλ~x+ cosλ~y ?

You may assume that the curve exists in flat Euclidean space.

Solution: the equation that we use to measure the length is

S =

∫
C

√
gµνtµtνdλ

recall that gµν = δµν in Euclidean space

⇒ gµνt
µtν = δxxt

xtx + δyyt
yty = (tx)2 + (ty)2 = sin2 λ+ cos2 λ = 1

so S =
∫ 1

0 dλ = 1, in this case.

In GR we take the length of a timelike curve to correspond to “proper

time” and the length of a spacelike curve to correspond to “proper dis-

tance”. These are the measures of time and distance that clocks and

measuring tapes would record if they were following C.

To use the metric to infer angles between vectors we note that it acts
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as the inner product between two vectors in the same tangent space

~v · ~w = (vµ~eµ) · (wν~eν) = vµwν(~eµ · ~eν) = vµwνgµν

As the tangent space has a flat geometry, the angle between the vector ~v

and the vector ~w is given by the usual expression

~v · ~w = |~v||~w| cos θ ⇒ cos θ =
~v · ~w
|~v||~w|

=
gµνv

µwν

√
gµνvµvν

√
gµνwµwν

If ~v and ~w are both unit vectors that satisfy such that |~v| = |~w| = 1 then

this expression is simply

cos θ = gµνv
νwµ

1.9 Dual basis

For any set of vectors ~ea, we can define a second set by the equation

~ea · ~eb = δab

As before, we can expand any arbitrary vector in terms of this new dual

basis

~v = va~e
a
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and if these new vectors are dual to a coordinate basis, ~eµ, then we can

use them to define a new metric

gµν = ~eµ · ~eν

Strictly speaking, the dual basis vectors live in what’s called a dual tan-

gent space, but this distinction is not important here. Let’s consider the

different ways we can express the inner product, in terms of ~eµ and ~eµ

~v · ~w = (vµ~eµ) · (wν~eν) = (~eµ · ~eν)vµwν = gµνv
µwν

= (vµ~e
µ) · (wν~eν) = (~eµ · ~eν)vµwν = δµνvµw

ν

= (vµ~eµ) · (wν~eν) = (~eµ · ~eν)vµwν = δµ
νvµwν

= (vµ~e
µ) · (wν~eν) = (~eµ · ~eν)vµwν = gµνvµwν

These equations show

gµνv
µwν = vνw

ν = vνwν = gµνvµwν

From which we can infer

wν = gµνw
ν, wµ = gµνwν
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as well as gµνg
νρ = δµ

ρ. The gµν and gµν are therefore inverses of each

other, and raise and lower coordinate indices. Finally, we can note that

that the gµν and gµν also relate ~eµ and ~eµ, as follows:

~v = vµ~e
µ = gµνv

ν~eµ = vν~eν

and

~v = vµ~eµ = gµνvν~eµ = vν~e
ν

⇒ ~eν = gµν~e
µ

and

~eν = gµν~eµ

The gµν and gµν and therefore also raise and lower indices on the basis

vectors themselves.

Example: by considering the different ways it is possible to expand the

inner product of ~eµ and ~eµ, we can prove the following

gµνg
µσ = δν

σ
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Solution: to show this, let’s start with

~v · ~w = (vµ~e
µ) · (wν~eν) = vµwν(~e

µ · ~eν) = vµwνg
µν

and

~v · ~w = (vµ~eµ) · (wν~eν) = vµwν(~eµ · ~eν) = δµ
νvµwν

⇒ gµνvµ = δµ
νvµ = vν

also

~v · ~w = (vµ~eµ) · (wv~eν) = (~eµ · ~eν)vµwν = gµνv
µwν

and

~v · ~w = (vµ~e
µ) · (wν~eν) = (~eµ · ~eν)vµwν = δµνvµw

ν

⇒ gµνv
ν = δµνvµ = vν

Now substitute these results into each other to get

vν = gµνvµ = gµνgµσv
σ = δνσv

σ

⇒ δνσ = gµνgµσ
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1.10 Coordinate transformations

Consider ~eµ under a change of coordinates from xµ to x′µ

~eµ ≡
∂~s

∂xµ
=
∂x′ν

∂xµ
∂~s

∂x′ν
=
∂x′ν

∂xµ
~e′ν

This is called a linear transformation. Now to maintain ~eµ · ~eν = δµν we

require

~eµ =
∂xµ

∂x′ν
~e′ν

⇒ ~eµ · ~eν =
(∂xµ
∂x′ρ

~e′ρ
)
·
(∂x′σ
∂xν

~e′σ

)
=
∂xµ

∂x′ρ
∂x′σ

∂xν
δρσ

=
∂xµ

∂x′ρ
∂x′ρ

∂xν
=
∂xµ

∂xν
= δµν

This immediately gives the transformation law for gµν and gµν:

gµν ≡ ~eµ · ~eν =
(∂x′ρ
∂xµ

~e′ρ

)
·
(∂x′σ
∂xν

~e′σ

)
=
∂x′ρ

∂xµ
∂x′σ

∂xν
g′ρσ

gµν ≡ ~eµ · ~eν =
(∂xµ
∂x′ρ

~e′ρ
)
·
( ∂xν
∂x′σ

~e′σ
)

=
∂xµ

∂x′ρ
∂xν

∂x′σ
g′ρσ

Finally, let’s derive the transformation laws for the coordinate components

of ~v:

~eµ · ~v = ~eµ · (vν~eν) = vν(~eµ · ~eν) = vνδµν = vµ
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=
∂xµ

∂x′ρ
~e′ρ · ~v =

∂xµ

∂x′ρ
~e′ρ · (v′σ~e′σ) =

∂xµ

∂x′ρ
v′σδρσ =

∂xµ

∂x′ρ
v′ρ

Similarly, ~eν · ~v ⇒ vν = ∂x′ν

∂xµ v
′
ν

General rule: a raised index transforms as

Xµ =
∂xµ

∂x′ν
X ′ν

and a lowered index transforms as

Xν =
∂x′µ

∂xµ
X ′ν

Example: explain how considering the inner product ~eµ · ~v leads to the

transformation law

vµ =
∂x′ν

∂xµ
v′ν

Solution: let’s start with

~eµ · ~v = ~eµ · (vν~eν) = vν(~eµ · ~eν) = vνδµ
ν = vµ

and

~e′µ · ~v = ~e′µ · (v′ν~e′ν) = v′νδµ
ν = v′µ
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now

~e′µ ≡
∂~s

∂x′µ
, ~eµ ≡

∂~s

∂xµ
=
∂x′ν

∂xµ
∂~s

∂x′ν
=
∂x′ν

∂xµ
~e′ν

so

~eµ · ~v =
(∂x′ν
∂xµ

~e′ν

)
· ~v =

∂x′ν

∂xµ
(~e′ν · ~v) =

∂x′ν

∂xµ
v′µ

which gives

⇒ ~eµ · ~v = vµ =
∂x′ν

∂xµ
v′ν

1.11 Outer product

We can choose to think of the inner product between two vectors as the

action of one of those vectors on the other:

~u(~v) ≡ ~u · ~v

Mathematically, ~u is a linear function that maps its argument (~v) to a real

number (~u · ~v). Is it possible to construct new objects that are functions

of not one but two vectors? The answer is yes, and that we can con-

struct these new objects using a new operation called the outer product

⊗, defined such that:

(~u⊗ ~v)(~p, ~q) ≡ ~u(~p)~v(~q) = (~u · ~p)(~v · ~q)
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Note that in general ~u ⊗ ~v 6= ~v ⊗ ~u, and that ⊗ should not be confused

with the vector product.

Example: show that the object ~h = ~u⊗ ~v satisfies

~h(α~p, ~q) = α~h(~p, ~q) = ~h(~p, α~q)

Solution: to see this let’s consider

~h(α, ~p, ~q) = (~u⊗ ~v)(α~p, ~q) = ~u(α~p)~v(~q)

where

~u(α~p) = ~u · (α~p) = (uµ~eµ) · (αpν~eν) = uµαpν(~eµ · ~eν)

= α(uµ~eµ) · (pν~eν) = α~u · ~p = α~u(~p)

so

⇒ ~h(α~p, ~q) = α~u(~p)~v(~q) = α(~u⊗ ~v)(~p, ~q) = α~h(~p, ~q)

as required; the proof that ~h(~p, α~q) = α~h′(~p, ~q) proceeds in the same way.
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1.12 Tensors

The object ~h = ~u⊗ ~v, that takes two vectors in its two arguments and

returns a real number, is an example of a rank-2 tensor. A rank n tensor is

an objects that is linear in each of its arguments, and that takes n vectors

to return a real number.

For example, if ~t is a rank-3 tensor and ~u, ~v and ~w are vectors, then

~t(~u,~v, ~w) is a real number and

~t(~u+ ~v,~v, ~w) = t(~u,~v, ~w) + t(~v,~v, ~w)

~t(α~u,~v, ~w) = α~t(~u,~v, ~w)

Tensors are of fundamental importance in GR. They are defined without

any reference to coordinates, so that if we use these objects to write equa-

tions for physical laws we know we will end up with a set of equations that

are valid in all coordinate systems. This is exactly what is required from

the principle of covariance.

Just as it was convenient to express vectors in terms of a set of basis

vectors, here it is useful to construct a tensor basis so that we can express

our tensors. For a rank n tensor the appropriate basis is made from the
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outer product of n basis vectors:

~ea ⊗ ~eb ⊗ . . .⊗ ~en

Example: for the rank 3 tensor ~t we can write

~t = tabc(~ea ⊗ ~eb ⊗ ~ec)

We could equally well have constructed our tensor basis from dual basis

vectors

~t = tabc(~e
a ⊗ ~eb ⊗ ~ec)

or a mixture of basis and dual basis vectors

~t = tabc(~ea ⊗ ~eb ⊗ ~ec)

An explicit example of a tensor is the metric tensor g constructed from

the metric gµν

~g = gµν(~e
µ ⊗ ~eν)

⇒ g(~u,~v) = gµν(~e
ν ⊗ ~eν)(~u,~v) = gµν(~e

µ · ~u)(~eν · ~v)

= gµνu
µvν = ~u · ~v
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1.13 Tensor operations

From the definitions in the previous sections we can show that a rank-2

tensor ~t acting on vectors ~u and ~v can be written:

~t(~u,~v) = tabu
avb = tabuavb = ta

buavb = tabuav
b

with similar expressions applying to higher rank tensors. This shows:

• raised and lowered pairs of dummy indices can be exchanged at will

• gµν and gµν lower and raise the indices of tensors, just as with vectors.

• rank-n tensors with two indices contracted are the components of rank-

(n− 2) tensors.

• components of rank-n tensors multiplying the components of rank-m

tensors are rank-(m+ n) tensors.

• coordinate transformations on raised and lowered indices of tensors trans-

form in the same way as raised and lowered vector indices.

Exercise: Prove the above statements

Example: prove that the metric gµν and gµν lower and raise the indices

of tensor components, just as they do vector components.
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solution: consider a tensor ~t. If this is of rank 2 then

~t(~u,~v) = tab(~e
a ⊗ ~eb)(~u,~v) = tab(~e

a · ~u)(~eb · ~v) = tabu
avb

= tab(~ea ⊗ ~eb)(~u,~v) = tab(~ea · ~u)(~eb · ~v) = tabuavb

= ta
b(~ea ⊗ ~eb)(~u,~v) = ta

b(~ea · ~u)(~eb · ~v) = ta
buavb

= tab(~ea ⊗ ~eb)(~u,~v) = tab(~ea · ~u)(~eb · ~v) = tabuav
b

Combining the second and third equation of the above

tabv
b = ta

bvb = ta
bgbcv

c

⇒ tab = ta
cgbc

second and fourth

tabvb = tabv
a = tabg

bcvc

⇒ tab = tacg
bc

first and fourth

tabua = tabu
a = tabg

acuc

⇒ tab = tcbg
ac
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second and third

ta
bua = tabua = tabgacv

c

⇒ ta
b = tcbgac

1.14 Connection

So far we have only considered objects defined at points in the manifold.

If we want to start considering fields (objects taking values at all points),

we will also be interested in how they change value from point to point.

This requires differentiation.

For scalars this is not a problem, as the rate of change can simply be

written as a partial derivative with respect to the coordinates:

∂φ

∂xµ
≡ ∂µφ

For vectors it is more difficult. Two vectors, at two different points, lie in

two different tangent spaces. To find the derivative of a vector we require

a connection between these two tangent spaces. Firstly, we need to know

how basis vectors in each space are related to each other. This is done by
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supposing they change as:

∇~ea~eb = Γcba~ec

The ∇ is known as “the connection”, and can be thought of as the change

of its argument ~eb in the direction indicated by the subscript (~ea). The

Γcba are known as the connection coefficients, and encode how the basis

vectors change between tangent spaces. In what follows, we will mostly be

interested in changes of coordinate basis, and for this we use the shorthand

∇µ ≡ ∇~eµ.

To be consistent with the derivatives of scalars above we require that

∇µφ =
∂φ

∂xµ

Using ∇~ea(~eb · ~ec) = ∇~ea(δbc) = 0, we can also deduce

∇~ea~eb = −Γbca~e
c,

which tells us how to connect dual basis vectors in different tangent spaces.
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Exercise: Prove the above relation by assuming the connection obeys

the Leibnitz rule

With a given connection, we can work out how to calculate the change

of vectors and tensors as we move around the manifold.

Finally, the connection is assumed to obey the following mathematical

relationships:

i) ∇ ~X1+ ~X2

~Y = ∇ ~X1

~Y +∇ ~X2

~Y

ii) ∇ ~X(~Y1 + ~Y2) = ∇ ~X
~Y1 +∇ ~X

~Y2

iii) ∇φ ~X
~Y = φ∇ ~X

~Y

iv) ∇ ~X(φ~Y ) = φ∇ ~X
~Y + (∇ ~Xφ)~Y

for any vectors ~X, ~Y and any scalar φ

Note: the connection ∇ can be used to connect any two vectors in

neighbouring tangent spaces, and does not apply solely to the basis vectors.
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1.15 The Levi-Civita Connection

We need to impose restrictions on the connection, in order to make it

useable. In GR, these restrictions are chosen to be:

Γµνρ = Γµρν

and

∇νg = 0

The first of these says that the connection is “torsionless”, the second says

it is “metric compatible”. Note that these conditions are imposed in a

coordinate basis. A connection that obeys these conditions is known as

the Levi-Civita connection and its connection components are called the

Christoffel symbols. The two equations above, the Leibnitz rule, and the

definition of the connection are sufficient to determine.

Γµνρ =
1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ)

Exercise: Prove the above
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1.16 Covariant derivative

We can use the Levi-Civita connection to define a covariant derivative

operator:

∇ν~v ≡ (Dµv
ν)~eν

Let’s calculate an explicit expression for Dµv
ν

∇µ~v = ∇µ(vν~eν) = (∇µv
ν)~eν+v

ν(∇µ~eν) = (∂µv
ν)~eν+v

νΓσνµ~eσ = (∂µv
ν+Γνρµv

ρ)~eν

⇒ Dµv
ν = ∂µv

ν + Γνρµv
ρ

Direct transformation of coordinates shows that this quantity transforms

as the components of a tensor. If we had chosen to write ~v = vν~e
ν we

would have found

Dµvν = ∂µvν − Γρµνvρ

Now let’s consider the covariant derivative of a tensor:

∇µ~t ≡ (Dµt
ν1...νp)~eν1 ⊗ . . .⊗ ~eνp ⊗ ~eρ1 ⊗ . . .⊗ ~eρr

Following a similar longer procedure one finds

Dµt
ν1...νp

ρ1...ρr = ∂µt
ν1...νp

ρ1...ρr + tσ...νpρ1...ρrΓ
ν1
µσ + . . .− tν1...νpσ...ρrΓσµρ1 − . . .
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where . . . denotes extra similar terms corresponding to each raised/lowered

index on tν1...νpρ1...ρr . Again, direct transformations of coordinates shows

that this quantity transforms as the components of a tensor.

In fact, using∇~v~t = vµ∇µ~t it can be seen immediately that Dµt
ν1...νp

ρ1...ρr

transforms as the components of a tensor. This is due to the fact that

∇~ν~t is coordinate independent and vµ, ~eµ and eµ all transform in the

known way, then each index of Dµt
ν1...νp

ρ1...ρr must transform like a tensor,

if they didn’t then ∇~ν~t would change under some change of coordinates,

something which cannot happen due to the covariance principle

1.17 Intrinsic derivative

The covariant derivatives discussed so far assume the vector or tensor

fields under consideration are fields over the whole manifold. However,

sometimes they are only defined along a single curve. In this case we may

be interested in the derivative along the curve (the intrinsic derivative).

For a vector:

d~v

dλ
≡ Dvµ

Dλ
~eµ

where λ is the parameter along a curve xµ(λ). If the tangent vector to the
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curve is ~u, then

d~v

dλ
= ∇~u~v = uµ∇µ~v =

dxµ

dλ
(∂µv

ν + Γνµρv
ρ)~eν =

(dvµ
dλ

+ Γµνρ
dxµ

dλ
vρ
)
~eµ

so

Dvµ

Dλ
=
dvµ

dλ
+ Γµνρ

dxν

dλ
vρ

Similarly, if we had written ~v = vµ~e
µ

Dvµ
Dλ

=
dvµ
dλ
− Γρµν

dxν

dλ
vρ

1.18 Parallel transport

As well as calculating how a pre-specified set of vectors changes along

a curve, we can use the intrinsic derivative to propagate a vector that

initially exists at one point on a curve to all points on the curve
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There are many ways that we could do this, but one particularly use-

ful one is known as parallel transport. We say that ~v has been parallel

transported along C if

d~v

dλ
= 0

along C. Re-writing this in components:

dvµ

dλ
= −Γµνρv

ν dx
ρ

dλ

If we specify vµ at any point on C, we can use this equation to work out its

value at any other. The result of this is a set of vectors that are “parallel”

at each point along C. This interpretation should be taken with some

care, however, as in general the vectors at different points exist in different

tangent spaces.

A case where the interpretation is clear is in flat space. In this case the

tangent spaces at different points overlap, and vectors can be compared

(and seem to be parallel) at any two points along C.

In a curved space it is not so easy. If we imagine our curved space as

existing in a higher-dimensional flat space then the result of parallel trans-

port corresponds to taking a parallel vector, shifting it to a new point on
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the curve so that it points in the same direction in the higher dimensional

space, and then taking the components that lie in the tangent space to the

curved space at the new point. This is the closest thing to parallel that

exists in a curved space, but is a path-dependent process:

If the tangent vector to a curve, ~u, obeys the parallel transport condition

then the curve us said to be “auto-parallel”:

d~u

dλ
≡ ∇~u~u = 0

This is closely related to the idea of a curve being “geodesic”, which is

true if

ẍµ + Γµνρẋ
νẋρ = 0

Exercise: Show that if the connection is the Levi-Civita connection,

then a curve that is “auto-parallel” is also a geodesic
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Example: Parallel transport in vector ~v along a curve with constant

θ = θ0 on a 2-sphere with ds2 = r2dθ2 − r2 sin2 dφ2

solution: take φ as the parameter along the curve so

dxν

dφ
+ vθΓ + vφΓ = 0

The only non-zero Christoffel symbols are

Γθφφ = − sin θ cos θ and Γφθφ = Γφφθ =
cos θ

sin θ

⇒ dvθ

dφ
= sin θ0 cos θ0v

φ

dvφ

dφ
= −cos θ0

sin θ0
vθ

Differentiate the first of the above equations and sub into the second

⇒ d2vθ

dφ2
= sin θ0 cos θ0

dvφ

dφ
= sin θ0 cos θ0

(
− cos θ0

sin θ0

)
vθ = − cos2 θ0v

θ

⇒ vθ = A cos(αφ) +B sin(αφ)

similarly

vφ = C cos(αφ) +D sin(αθ)
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1.19 Euler-Lagrange formulation of the geodesic equation

If we consider the following Lagrangian

L ≡ gµνẋ
µẋν = gµν

dxµ

dλ

dxν

dλ
=
(ds
dλ

)2

then the geodesic equations are equivalent to the Euler-Lagrange equations

∂L

∂xµ
− d

dλ

( ∂L
∂ẋµ

)
= 0

Here is the proof:

∂L

∂xσ
=
∂gµν
∂xσ

ẋµẋν and
∂L

∂ẋσ
= 2gσµẋ

µ

⇒ d

dλ

∂L

∂ẋσ
= 2

∂gσµ
∂xρ

ẋµẋρ + 2gµσẍ
µ =

∂gσµ
∂xµ

ẋµẋρ +
∂gσρ
∂xµ

ẋµẋρ + 2gµσẍ
µ

Combining these equations gives

2gσµẍ
µ = −(gσµ,ρ + gσρ,µ − gµρ,σ)ẋµẋρ

or

ẍν = −Γνµρẋ
µẋρ

which is the geodesic equation.
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Example: Find the geodesic equations for Schwarzschild geometry:

ds2 = −
(

1− 2Gm

r

)
dt2 +

(
1− 2Gm

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2)

Solution: choose a particle that lies in the plane θ = π
2

⇒ L = −
(

1− 2Gm

r

)
ṫ2 +

ṙ2

(1− 2Gm
r )

+ r2φ̇2

t-equation:

∂L

∂t
= 0 and

∂L

∂ṫ
= −2

(
1− 2Gm

r

)
ṫ

so

∂L

∂t
− d

dλ

∂L

∂ṫ
= 0 ⇒ d

dλ

[(
1− 2Gm

r

)
t

]
= 0 ⇒ t =

A(
1− 2Gm

r

)
φ-equation:

∂L

∂φ
= 0 and

∂L

∂φ̇
= 2r2φ̇

so

∂L

∂φ
− d

dλ

∂

∂φ̇
= 0 ⇒ d

dλ
[r2φ̇] = 0 ⇒ φ̇ =

B

r2

and similarly for the r equation.
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