3 Differentiation

3.1 Definitions

Definition of limit

Consider the function f(x). If we can make f(z) as near as we want to a given number [ by choos-
ing z sufficiently near to a number a, then [ is said to be the limit of f(x) as * — a and it is written

as
lim f(z) =1.

T—a

The Derivative

The derivative of f(x) is the slope of, or the gradient of the tangent to, the function f(z) at z and is given
by

oy A flatda) — f(x)

)= dr 52210 ox
Similarly, the second derivative is

" _ d2f . f/<SC + 5‘7:) B f,<x)

Jilw) = dz? 51;%0 ox
and generally
n (n—1) _ f£(n-1)
£ () = af _ lim S @+ 6x) — [ ()

where f'(z) = fW(z), etc and fO(z) = f(z).

3.2 Examples of derivations of derivatives

The Derivative of 2"

From the above definition
(x +h)" — 2"

dz" . (z+ )" —a™
= lim = lim
dx 52—0 ox h—0
Now recall that

a" —b" = (a—b)(a" Y +a" Db+ a2 a b"D 4 pnD)
Applying this last result with a = x + h and b = x we get

daz" (z+h)" D4 (z+h)" 22+ (x+h)" 322 (z + h)z("2 4 (1)
=lim h
dx h—0 h




Thus

— nx(n—l)

dx
Note that this derivation can be extended to negative and fractional values of n - we shall assume without
proof that the above result is valid for all values of n.

The derivative of y = e”

Consider first the more general function f(z) = a®. The definition of the derivative gives
d a® ' (a(x-‘,-&v) _ aaz)

) (a(&t) - 1)
—lfm = "/ limag* — 7
dx 692%0 ox 5;§0a ox

In words this result states that the derivative of a” equals a” times the slope of a* at x = 0 (this slope is

the % ie the W term. That is:

f'(@) =a”f'(0) (1)

Note also that although we recognise this term as the slope, we do not get an analytic expression for this

slope. So its natural to ask the question whether a value of a exists such that at x = 0 the slope is 1. The

number for which f’(0) = 1 is given the name ”e”, after the mathematician Euler. Thus the function e®

is defined such that its slope at x = 0 equals unity and hence from the expression for the derivative of a”
we have for f(z) = e”

dy _ .

Yy = Ir =€

ie €” is a function which equals its slope.

Derivative of sinf and cosf

If f =sinf then from the fundamental definition of the derivative

df I sin(f + d6) — sin

a6 500 56
sin 8 cos 60 + cos @ sin 66 — sin 6
= lim
500 00
= cosf .
(c0859—> 1, % — 1 as 60 — 0)

If f=cosf then
df y cos(0 + 06) — cos b

A6 050 50
cos 0 cos 60 — sin 0 sin 66 — cos @
= lim
50—0 00



= —sinf .

3.3 Derivatives of basic functions

Differentiation from first principles is time-consuming. What we usually do is use a list of derivatives of
basic functions as a basis for more complicated functions. A set of useful derivatives is the following:

dx™

w = .
= .
dln(z) 1
1 4
n ! (4)
dsi
% = acosazr 5)
d
%@m) = —asin(ax) ©)
dsec(azx) ; - !
— = asec(ax) tan(ax) [reminder :secx = cosx] (7)
dt
% = asec?(ax) ®)
1
chc(ax) = —acosec(az) cot ax [reminder : cosecx = — (9)
= sin
deot(az) = —acosec’ar  [reminder : cot x = cn T (10)
. sin
dsin(z/a) 1
_ 11
dx a? — x? Y
dcos™(z/a) —1
_ 12
dx a? — x? Y
dtan™!(z/a) a
_ 1
dx a? + 2 "

3.4 The product rule and derivative of quotients

The product rule

For




Now

flx+dz) — f(z) = u(z+dx)v(x +dz) —u(z)v(z) (14)
= u(x +o0x) [v(z + dz) — v(x)] + [u(x + dz) — u(x)] v(x) (15)
and we have
df . v(x 4 dx) — v(z) u(z + dz) — u(z)
dr = mtule +0w) 52 } + [ o o(x))

In the limit dx — 0 the factors in the square brackets become v'(x) and «'(x) and u(x + dx) become u(z).
Thus we have

df dv du
Rk - 16
dx ud:t: vd:v (16)
or more compactly using a different notation
(uv) = w' +u'v (17)
This rule can be extended to the product of three or more functions:
(wvw)" = v'vw + w'w + vow’ (18)
An example
— (2°sinz) = x3i(sin z) + — (2%) sinz
dx dx dx
= 2% cosx + 3z’ sinx .
The derivative of a quotient
Applying the product rule to a quotient of two factors
u(x) B 1
f(l') - U(I’) or f(l’) - U(x)’l}(l')
So
fl(2)=(uw™) = dot+u@™?) = (19)
u —v
u'v — ur
= 2 (21)
Examples

For f =tanf use f =




Then
ﬁ B cos@cosf + sinfsin b

do cos? 6
sin’ @ 9 9
= +1=1+4tan“f = sec” 6 .
cos? 6
If f = cosec = = then
df  (—1)cosf
20 = W = —cscOcotl
Similarly if f = sec, then
d
d_é = secfHtanb.

3.5 The chain rule

We may have a situation where we need to differentiate a function of a function, i.e. we have a situation
where f(x) can be expressed as f = f(u(z)). For example

f@) =B +2%)" =u(x)’ (22)

where
u(z) =3+ 2°

To differentiate such functions we use the chain rule

T
de  dudzr

For our example
f(z) = (3—|—x2)3 = f(u), u= (3+2?

df dfdu B o 2
15 = dude = 3u 2I—3(3+:C) X 2x
= 6x (3 + x2)2 .

Three more examples:

e f(z) = e Jone of our standard functions from few pages ago|

f(u)=¢€" and u=ar
% =e" and Z—Z = qa thus % = qe™”



e f(z) = (sinx)?

We have
f(u)=v* and u=sinx
ﬁ = 3u? and d_u = cosx thus ﬁ = 3sin’xcosx
du dx dx
o f(z)=sin(z?)
We have
f(u) =sin(u)  and u=z°
i = Ccosu and d_u = 322 thus - = 322%cosz®
U dx T

3.6 Implicit differentiation

So far we have only considered functions where y = f(x), i.e. only one variable on the right-hand side.
We may have a situation where it is not so easy to express y in terms of z, e.g.:

2 —3xy+yP=2.
We therefore differentiate term by term with respect to  which is called implicit differentiation.

L)~ L (309 + (1) = (2

dy dy
32%) — |32=> + 3 322 =0
(3z%) {xdxjty]Jr Vo

dy_y—x2

de  y?—zx

3.7 Parametric differentiation and inverse differentiation

Inverse differentiation

If y = f(x) and x = f~(y) are inverse functions, then

dy 1
o & (23)
dy

Example: inverse trigonometric functions
Differentiate y = sin™! 2. We see that = = siny.




dy _ 1 _ (24)

Now, we know sin%y + cos?y = 1, thus

SO
d 1
1 (26)
dr /1 —sin? Y
but z = siny thus
dsin™' z B 1 (27)
dx V1 — 22
Example: inverse hyperbolic functions
Hyperbolic functions are defined as:
1 1
inhr = —(e"—€e %)= —— 28
i 2 (" =) cosech x (28)
1 1
h —  (pT T\ _ 2
cosh 2(6 +e ) p—— (29)
whence
e’ —e ® 1

tanh x = = .
er e coth x

We readily find that cosh z + sinh z = ¢* and cosh?z — sinh?*z = 1.

The derivatives of hyperbolic functions are easily calculated:

If y = sinhz = €=, then

dsinhx e*+e™® n
= = coshz .
dx 2

Similarly if y = cosh z, j—g = sinh z and also if y = tanh z,

dy

. sech’z .
i

For inverse hyperbolic functions we take y = sinh ™ 2 as an example. If y = sinh™! 2 then o = asinhy

and
dy 1 1

1
dr  acoshy ay/1+ sinh?y Va2t a®

Thus



If we have

dy 1 1 a
= h? d —==- = :
Gy e T o (1 —tanh®y) a? —a?

x
y=tanh '~ ie z =atanhy, —
a dy

Parametric differentiation

Often we have variables which are functions of a parameter, e.g. the time t: x = 2z(t) and y = y(¢), but
we need g—g. We make use of the chain rule and the derivative of an inverse function:

dy dydt %
@ _wa _ e (30)
dv dtdr &

Example: The coordinate of a moving vehicle are given by z = —t?, y = (1/3)t?, where ¢ is time. Find

dy/dz when t = 2.

The direction at the point when ¢ = 2 is given by the tangent to the trajectory at this point. Hence
we need:

dy
— (31)
dr|,_,
dy dydt % 2 ¢
_y:_y_:%:_:_ (32)
dx dt dx d—f —2t 2
which for ¢t = 2 is J
LA (33)
dx e

3.8 Stationary points

Derivatives give the rate of change of a function. An important application is finding the maximum and
minimum of functions. If at some point, xy we have

f'(x0) =0

then this is a stationary point. For maxima and minima, f’(z) changes sign around zy. In summary, at a
stationary point, where f’(xg) = 0, we have three possibilities

1. Minimum: f'(x¢) =0 and f”(zq) > 0.

2. Maximum: f’(z) = 0 and f"(xy) < 0.

3. Point of inflection: f'(xo) = 0 and f”(x¢) = 0 and f” changes sign through the point.
Example

Find the stationary point(s) of

f(x)=zlnzx



and determine its (their) nature.
, 1
fllx)y=Inz+z—=Inz+1
x
we need to find = for which f'(x) =0, i.e. Inx = —1

1
r=e¢ =",
e

To determine the nature of the stationary point we have to calculate the second derivative at zog =e™".

1
f(z) = - therefore f"(xg) =e>0

Thus the stationary point is a minimum.

Example

Find the stationary points of f(x) = x%.

we start by calculating the derivative:

f(z) = 42°

thus x = 0 is a stationary point. To determine its nature, we calculate the second-order derivative

" (z) = 122° thus  f7(0) =

1

However f” does not change sign around z = 0. So I cannot conclude that x = 0 is a point of inflection.

It is actually a minimum (prove it as an exercise).

3.9 Differentiation of a vector [see Riley, section 10.1]

The derivative of a vector function a(t) with respect to t is defined as

In cartesian coordinates:
a=a,i+ayj +a.k

where a,, a,, a, are functions of t. Then

@_daxi+%,+daz
b Tl e

Some properties:

@_ @ ( 3 t t)
7 7Cd ¢ 1s a constan
dla+b) _da db
dt  dt  d

(34)



dlaxb) _db da
el i Rl

For example, if

r=ai+yj+zk
is the position vector of a particle as a function of time, then the velocity and acceleration vectors are
given by:

Example

Consider the motion of a particle in a circle at constant speed. Show that the velocity vector, v, is
perpendicular to the position vector r of the particle; that the acceleration vector is perpendicular to v;

and that
[

|al

We notice that r and v are not constants, but their magnitudes are. So

]

lr|> =r-r = constant
|v]* = v - v = constant
This implies
d dr

=0

Sl

L )=0 = —r.rdr
or
r-v=0 = r, v perpendicular

In the same way:

d dv dv
E(_ _)—0 = %'Q—i‘y'—t—o
or
v-a=0 = v, a perpendicular
Now we do
d( )_df n dv n _0
dtig_dtytdt_yg r-a=

This implies that r and a are anti-parallel (they could only be parallel or anti-parallel from what demon-
strated earlier), i.e. r - a = —|r||a|. Therefore

O=v-vtr-a=pf~|rlla = |of="F
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