
3 Differentiation

3.1 Definitions

Definition of limit

Consider the function f(x). If we can make f(x) as near as we want to a given number l by choos-
ing x sufficiently near to a number a, then l is said to be the limit of f(x) as x → a and it is written
as

lim
x→a

f(x) = l .

The Derivative

The derivative of f(x) is the slope of, or the gradient of the tangent to, the function f(x) at x and is given
by

f ′(x) ≡ df

dx
= lim

δx→0

f(x+ δx)− f(x)

δx

Similarly, the second derivative is

f ′′(x) ≡ d2f

dx2
= lim

δx→0

f ′(x+ δx)− f ′(x)

δx

and generally

f (n)(x) ≡ dnf

dxn
= lim

δx→0

f (n−1)(x+ δx)− f (n−1)(x)

δx

where f ′(x) ≡ f (1)(x), etc and f (0)(x) = f(x).

3.2 Examples of derivations of derivatives

The Derivative of xn

From the above definition

d xn

dx
= lim

δx→0

(x+ δx)n − xn

δx
= lim

h→0

(x+ h)n − xn

h

Now recall that
an − bn = (a− b)(a(n−1) + a(n−2)b+ a(n−3)b2......a b(n−2) + b(n−1))

Applying this last result with a = x+ h and b = x we get

d xn

dx
= lim

h→0
h
((x+ h)(n−1) + (x+ h)n−2 x+ (x+ h)n−3x2........(x+ h)x(n−2) + x(n−1))

h
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Thus
d xn

dx
= nx(n−1)

Note that this derivation can be extended to negative and fractional values of n - we shall assume without
proof that the above result is valid for all values of n.

The derivative of y = ex

Consider first the more general function f(x) = ax. The definition of the derivative gives

d ax

dx
= lim

δx→0

(a(x+δx) − ax)

δx
= lim

δx→0
ax

(a(δx) − 1)

δx

In words this result states that the derivative of ax equals ax times the slope of ax at x = 0 (this slope is

the (a(δx)−1)
δx

ie the (a(0+δx)−a0)
δx

term. That is:

f ′(x) = axf ′(0) (1)

Note also that although we recognise this term as the slope, we do not get an analytic expression for this
slope. So its natural to ask the question whether a value of a exists such that at x = 0 the slope is 1. The
number for which f ′(0) = 1 is given the name ”e”, after the mathematician Euler. Thus the function ex

is defined such that its slope at x = 0 equals unity and hence from the expression for the derivative of ax

we have for f(x) = ex

y =
dy

dx
= ex

ie ex is a function which equals its slope.

Derivative of sin θ and cos θ

If f = sin θ then from the fundamental definition of the derivative

df

dθ
= lim

δθ→0

sin(θ + δθ)− sin θ

δθ

= lim
δθ→0

sin θ cos δθ + cos θ sin δθ − sin θ

δθ

= cos θ .(
cos δθ → 1,

sin δθ

δθ
→ 1 as δθ → 0

)
If f = cos θ then

df

dθ
= lim

δθ→0

cos(θ + δθ)− cos θ

δθ

= lim
δθ→0

cos θ cos δθ − sin θ sin δθ − cos θ

δθ
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= − sin θ .

3.3 Derivatives of basic functions

Differentiation from first principles is time-consuming. What we usually do is use a list of derivatives of
basic functions as a basis for more complicated functions. A set of useful derivatives is the following:

dxn

dx
= nxn−1 (2)

deax

dx
= aeax (3)

d ln(x)

dx
=

1

x
(4)

d sin(ax)

dx
= a cos ax (5)

d cos(ax)

dx
= −a sin(ax) (6)

d sec(ax)

dx
= a sec(ax) tan(ax) [reminder : secx ≡ 1

cos x
] (7)

d tan(ax)

dx
= a sec2(ax) (8)

dcosec(ax)

dx
= −acosec(ax) cot ax [reminder : cosecx ≡ 1

sin x
] (9)

d cot(ax)

dx
= −acosec2ax [reminder : cotx ≡ cosx

sinx
] (10)

d sin−1(x/a)

dx
=

1√
a2 − x2

(11)

d cos−1(x/a)

dx
=

−1√
a2 − x2

(12)

d tan−1(x/a)

dx
=

a

a2 + x2
(13)

3.4 The product rule and derivative of quotients

The product rule

For
f(x) = u(x)v(x)

what is f ′(x)? We start from the definition

df

dx
= lim

δx→0

f(x+ δx)− f(x)

δx
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Now

f(x+ δx)− f(x) = u(x+ δx)v(x+ δx)− u(x)v(x) (14)

= u(x+ δx) [v(x+ δx)− v(x)] + [u(x+ δx)− u(x)] v(x) (15)

and we have

df

dx
= lim

δx→0
{u(x+ δx)

[
v(x+ δx)− v(x)

δx

]
+

[
u(x+ δx)− u(x)

δx

]
v(x)}

In the limit δx → 0 the factors in the square brackets become v′(x) and u′(x) and u(x+ δx) become u(x).
Thus we have

df

dx
= u

dv

dx
+ v

du

dx
. (16)

or more compactly using a different notation

(uv)′ = uv′ + u′v (17)

This rule can be extended to the product of three or more functions:

(uvw)′ = u′vw + uv′w + uvw′ (18)

An example

d

dx

(
x3 sin x

)
= x3 d

dx
(sinx) +

d

dx

(
x3
)
sinx

= x3 cosx+ 3x2 sin x .

The derivative of a quotient
Applying the product rule to a quotient of two factors

f(x) =
u(x)

v(x)
or f(x) = u(x)

1

v(x)
.

So

f ′(x) = (uv−1)′ = u′v−1 + u(v−1)′ = (19)

=
u

v
+ u

(
−v

v2

)
= (20)

=
u′v − uv′

v2
(21)

Examples

For f = tan θ use f = sin θ
cos θ

.
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Then
df

dθ
=

cos θ cos θ + sin θ sin θ

cos2 θ

=
sin2 θ

cos2 θ
+ 1 = 1 + tan2 θ = sec2 θ .

If f = cosecθ = 1
sin θ

then
df

dθ
=

(−1) cos θ

(sin θ)2
= − csc θ cot θ

Similarly if f = sec θ, then
df

dθ
= sec θ tan θ.

3.5 The chain rule

We may have a situation where we need to differentiate a function of a function, i.e. we have a situation
where f(x) can be expressed as f = f(u(x)). For example

f(x) = (3 + x2)3 = u(x)3 (22)

where
u(x) = 3 + x2

To differentiate such functions we use the chain rule

df

dx
=

df

du

du

dx
.

For our example

f(x) =
(
3 + x2

)3
= f(u) , u =

(
3 + x2

)
df

dx
=

df

du

du

dx
= 3u2 · 2x = 3

(
3 + x2

)2 × 2x

= 6x
(
3 + x2

)2
.

Three more examples:

• f(x) = eax [one of our standard functions from few pages ago]

f(u) = eu and u = ax

df

du
= eu and

du

dx
= a thus

df

dx
= aeax
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• f(x) = (sin x)3

We have

f(u) = u3 and u = sin x

df

du
= 3u2 and

du

dx
= cos x thus

df

dx
= 3 sin2 x cosx

• f(x) = sin(x3)

We have

f(u) = sin(u) and u = x3

d

du
= cos u and

du

dx
= 3x2 thus

df

dx
= 3x2 cos x3

3.6 Implicit differentiation

So far we have only considered functions where y = f(x), i.e. only one variable on the right-hand side.
We may have a situation where it is not so easy to express y in terms of x, e.g.:

x3 − 3xy + y3 = 2 .

We therefore differentiate term by term with respect to x which is called implicit differentiation.

d

dx
(x3)− d

dx
(3xy) +

d

dx
(y3) =

d

dx
(2)

(3x2)−
[
3x

dy

dx
+ 3y

]
+ 3y2

dy

dx
= 0

dy

dx
=

y − x2

y2 − x

3.7 Parametric differentiation and inverse differentiation

Inverse differentiation

If y = f(x) and x = f−1(y) are inverse functions, then

dy

dx
=

1
dx
dy

(23)

Example: inverse trigonometric functions

Differentiate y = sin−1 x. We see that x = sin y.
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dy

dx
=

1
dx
dy

=
1

cos y
(24)

Now, we know sin2 y + cos2 y = 1, thus

cos y =

√
1− sin2 y (25)

so

dy

dx
=

1√
1− sin2 y

(26)

but x = sin y thus

d sin−1 x

dx
=

1√
1− x2

(27)

Example: inverse hyperbolic functions
Hyperbolic functions are defined as:

sinhx =
1

2
(ex − e−x) =

1

cosech x
(28)

coshx =
1

2
(ex + e−x) =

1

sech x
(29)

whence

tanh x =
ex − e−x

ex + e−x
=

1

coth x
.

We readily find that cosh z + sinh z = ez and cosh2z − sinh2z = 1.

The derivatives of hyperbolic functions are easily calculated:

If y = sinh x = ex−e−x

2
, then

d sinhx

dx
=

ex + e−x

2
= cosh x .

Similarly if y = cosh x, dy
dx

= sinh x and also if y = tanh x, dy
dx

= sech2x .

For inverse hyperbolic functions we take y = sinh−1 x
a
as an example. If y = sinh−1 x

a
then x = a sinh y

and
dy

dx
=

1

a cosh y
=

1

a
√
1 + sinh2 y

=
1√

x2 + a2
.

Thus

d

dx

(
sinh−1 x

a

)
=

1√
x2 + a2

.
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If we have

y = tanh−1 x

a
, ie x = a tanh y,

dx

dy
= a sech2y and

dy

dx
=

1

a

1(
1− tanh2 y

) =
a

a2 − x2
.

Parametric differentiation

Often we have variables which are functions of a parameter, e.g. the time t: x = x(t) and y = y(t), but
we need dy

dx
. We make use of the chain rule and the derivative of an inverse function:

dy

dx
=

dy

dt

dt

dx
=

dy
dt
dx
dt

(30)

Example: The coordinate of a moving vehicle are given by x = −t2, y = (1/3)t3, where t is time. Find
dy/dx when t = 2.

The direction at the point when t = 2 is given by the tangent to the trajectory at this point. Hence
we need:

dy

dx

∣∣∣∣
t=2

(31)

dy

dx
=

dy

dt

dt

dx
=

dy
dt
dx
dt

=
t2

−2t
=

−t

2
(32)

which for t = 2 is
dy

dx

∣∣∣∣
t=2

= −1 . (33)

3.8 Stationary points

Derivatives give the rate of change of a function. An important application is finding the maximum and
minimum of functions. If at some point, x0 we have

f ′(x0) = 0

then this is a stationary point. For maxima and minima, f ′(x) changes sign around x0. In summary, at a
stationary point, where f ′(x0) = 0, we have three possibilities

1. Minimum: f ′(x0) = 0 and f ′′(x0) > 0.

2. Maximum: f ′(x0) = 0 and f ′′(x0) < 0.

3. Point of inflection: f ′(x0) = 0 and f ′′(x0) = 0 and f ′′ changes sign through the point.

Example

Find the stationary point(s) of

f(x) = x lnx
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and determine its (their) nature.

f ′(x) = ln x+ x
1

x
= ln x+ 1

we need to find x for which f ′(x) = 0, i.e. ln x = −1

x = e−1 =
1

e
.

To determine the nature of the stationary point we have to calculate the second derivative at x0 = e−1.

f ′′(x) =
1

x
therefore f ′′(x0) = e > 0

Thus the stationary point is a minimum.

Example

Find the stationary points of f(x) = x4.
we start by calculating the derivative:

f ′(x) = 4x3

thus x = 0 is a stationary point. To determine its nature, we calculate the second-order derivative

f ′′(x) = 12x2 thus f ′′(0) = 0

However f ′′ does not change sign around x = 0. So I cannot conclude that x = 0 is a point of inflection.
It is actually a minimum (prove it as an exercise).

3.9 Differentiation of a vector [see Riley, section 10.1]

The derivative of a vector function a(t) with respect to t is defined as

da

dt
= lim

h→0

a(t+ h)− a(t)

h
. (34)

In cartesian coordinates:
a = axi+ ayj + azk

where ax, ay, az are functions of t. Then

da

dt
=

dax
dt

i+
day
dt

j +
daz
dt

k .

Some properties:

dca

dt
= c

da

dt
(c is a constant)

d(a+ b)

dt
=

da

dt
+

db

dt
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d(a · b)
dt

= a · db
dt

+
da

dt
· b

d(a× b)

dt
= a× db

dt
+

da

dt
× b

For example, if
r = xi+ yj + zk

is the position vector of a particle as a function of time, then the velocity and acceleration vectors are
given by:

v =
d(r)

dt
=

dx

dt
i+

dy

dt
j +

dz

dt
k

a =
d(v)

dt
=

d2r

dt2
=

d2x

dt2
i+

d2y

dt2
j +

d2z

dt2
k

Example

Consider the motion of a particle in a circle at constant speed. Show that the velocity vector, v, is
perpendicular to the position vector r of the particle; that the acceleration vector is perpendicular to v;
and that

|a| = |v|2

|r|
.

We notice that r and v are not constants, but their magnitudes are. So

|r|2 = r · r = constant

|v|2 = v · v = constant

This implies
d

dt
(r · r) = 0 ⇒ dr

dt
· r + r · dr

dt
= 0

or
r · v = 0 ⇒ r, v perpendicular

In the same way:

d

dt
(v · v) = 0 ⇒ dv

dt
· v + v · dv

dt
= 0

or
v · a = 0 ⇒ v, a perpendicular

Now we do

d

dt
(r · v) = dr

dt
· v + r · dv

dt
= v · v + r · a = 0

This implies that r and a are anti-parallel (they could only be parallel or anti-parallel from what demon-
strated earlier), i.e. r · a = −|r||a|. Therefore

0 = v · v + r · a = |v|2 − |r||a| ⇒ |a| = |v|2

|r|
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