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1 Simple Oscillations and their Description

1.1 Motion in a circle, projection on a line, phasors

� harmonic motion and motion in a circle: rotating vector —phasor

� Simple harmonic motion is the projection of circular motion onto

one axis

� 2-D motion — complex plane — complex number representation
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2 Complex Notation

� A single-frequency wave has a wave-like pattern both in space

and time

� In time it is characterised by a frequencyf , angular frequency

! = 2�f
� In space it is characterised by a wavelength�, wavevector

k = 2�=�
� Thephasevaries in space and time,

phase = !t�kx
� We represent the wave as a complex exponential, amplitudeA,

Aei(!t�kx)



� Somethingobservable(a displacement, , an electric or magnetic

field....) must bereal.

� De Moivre’s theorem tells us

< hei(!t�kx)i = cos(!t� kx)
� What if we want a sine wave rather than a cosine?

< hei(!t�kx��=2)i = < h�iei(!t�kx)i
= < ��i(cos(!t� kx) + i sin(!t� kx))�
= < ��i cos(!t� kx) + sin(!t� kx)�
= sin(!t� kx)
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2.2 Energy in Waves

� Energy density is proportional to thesquareof the amplitudeA2
� The amplitude (in complex exponential notation) may be

complex — then the energy density is proportional tojAj2
� In terms of impedanceZ

hEi = 1
2
Z!2jAj2

c
� Intensity = energy per area per time

hIi = 1
2Z!2jAj2
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3 Combinations of Waves

3.1 Superposition of two waves

3.1.1 same frequency – same amplitude

� phasor representation

� two vectors, both rotating with the same angular velocity

� resultant also rotates with that angular velocity.

� altered phase and amplitude
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3.1.2 different frequencies - beats

� The sum of two oscillations with different frequencies

� product of two functions, with half-sum and half-difference

frequencies and wavevectors

� higher-frequency term is called thecarrierwave

� lower-frequency wave whichmodulatesthe amplitude of the

carrier is theenvelope

� phenomenon ofbeats

� what the ear, for example, detects as the beat frequency is the

variation ofintensity, which is double the envelope frequency

� beat frequency is the difference between the two original

frequencies
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4 The Wave Equation – Basic Properties

4.1 The one-dimensional wave equation

General form of wave equation

@2 
@t2 =c2@2 @x2 ;

with c being the wave speed.
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General form of solution

 (x; t)= h(ct� x)+g(ct+ x);
representing waves travelling to the right(ct� x) and to the left

(ct+ x) — note that what determines the direction of travel is the

relativesign of thet term and thex term





We can write the general form of the wave in a number of equivalent

ways



We can write the general form of the wave in a number of equivalent

ways

 0ei 2�� (ct�x)



We can write the general form of the wave in a number of equivalent

ways

 0ei 2�� (ct�x)

 0ei2�(�t� x

�
)



We can write the general form of the wave in a number of equivalent

ways

 0ei 2�� (ct�x)

 0ei2�(�t� x

�
)

 0ei!(t�x

c
)



We can write the general form of the wave in a number of equivalent

ways

 0ei 2�� (ct�x)

 0ei2�(�t� x

�
)

 0ei!(t�x

c
)

 0ei(!t�kx)



We can write the general form of the wave in a number of equivalent

ways

 0ei 2�� (ct�x)

 0ei2�(�t� x

�
)

 0ei!(t�x

c
)

 0ei(!t�kx)

c = �� = !
k :



We can write the general form of the wave in a number of equivalent

ways

 0ei 2�� (ct�x)

 0ei2�(�t� x

�
)

 0ei!(t�x

c
)

 0ei(!t�kx)

c = �� = !
k :c is speed at which peaks and troughs (points of constant phase) move

through the medium —phase velocity.



4.1.1 linearity/superposition

We know that as the wave equation is linear, we may superpose

solutions and still get a solution which is a solution of the wave

equation.
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5 Transverse waves on a stretched string

5.0.2 wave equation

Derivation:

� Look at forces on small section of string

� Transverse force is tension times slope of string (small

displacements)

� Nett force on section is tension times difference in slopes at ends

of section

� Hence nett force is proportional to second derivative of

displacement

� Set this equal to mass of section times acceleration
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Hence @2y
@t2 =

T
�
@2y
@x2 ; (1)

that is, a wave equation with wave speedc = pT=�. For a wave on

a string, the transverse velocity depends on the frequency and the

amplitude, and varies with time. The wave velocity is a constant: in

a linear wave(the only sort we deal with) it is independent of

amplitude, although (dispersion) it may depend on frequency.
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5.0.3 running waves

ei(!t�kx), are running waves —- they travel along the x axis either left

to right (�) or right to left (+).
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5.0.4 normal modes, harmonics

boundary conditionsmay involve specifying displacements or ‘forces’

at the ends. For example, fixed ends on string of lengthL:

y(x; t) = aei(!t+kx) + bei(!t�kx): (2)

with y(x; t) = 0 atx = 0, x = L for all t: x = 0 givesa+ b = 0.

Two equal and opposite running waves give a standing wave with

nodes at the ends of the string



Then we have

y(x; t) = cei!t sin(kx)



Then we have

y(x; t) = cei!t sin(kx)
whence boundary condition atx = L gives



Then we have

y(x; t) = cei!t sin(kx)
whence boundary condition atx = L gives

�n = 2L
n (3)
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5.0.5 Nodes/antinodes of standing wave

� node=zero displacement

� antinode = maximum displacement

� fixed positions on string vibrating in normal mode.
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6 Acoustic waves

6.1 Elastic waves in a rod

At a pointx along the rod an element of the rod (a thin disk) has been

displaced by� as a result of wave passing down the rod. A little

further along, atx+ dx, the displacement is� + d�, then the element

which was of lengthdx has been stretched. The amount of the stretch

is

d� = @�
@xdx:

Remember that� is thechangein position of a marker on the rod.

Force at each point depends on local strain (change in length divided

by length), i.e.

F (x) = AY @�@x



If we had a rod under constant tension, of course, thefractional

extension would be constant along the rod, and� = FAY x.
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With a wave, the stretching is not constant along the rod, the force

will not be constant either. Force atx+ dx will be

F 0 = F + dF = F + @F
@x dx

and the nett force on the elementdx is therefore

F 0 � F = @F
@x dx;

so that

F 0 � F = AY @2�@x2dx:
The mass of the element of thicknessdx and areaA is �Adx, and its

change in position is given by�, so Newton’s equation of motion

gives

�Adx@2�@t2 = AY @2�@x2dx



or @2�
@t2 = Y

�
@2�
@x2 : (4)



6.2 Elastic waves in a bulk solid

6.2.1 compression waves and shear waves

Remember that different types of wave exist, but that’s about all you

need to know.
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6.3 Sound waves in a gas

B = � change in pressure
fractionalchangeinvolume = � dP

dV=V = �V dP
dV : (5)

@2�
@t2 = Ba�0

@2�
@x2 (6)

that is, a wave with velocityv = pBa=�. We use the adiabatic bulk

modulus because the changes which the wave induces are fast

compared with the time-scales for heat transfer through the gas.

PV 
 = constant (7)

where
 is a constant characteristic of the type of gas. Thus the wave

velocityv = pBa=� = p
P0=�0.
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6.4 Characteristic impedance

6.4.1 general form

The impedance is the ratio of the generalised force to the response.

6.4.2 wave in gas

Specific acoustic impedance

Z == excess pressure
particle velocity = p_� = pBa�: (8)



6.4.3 of a string

Z = Transverse force
particle velocity = pT�: (9)
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7 Energy in Waves

7.1 Derivation

Sum of KE and PE: both oscillate, so average over a period (or over a

wavelength) which involves averagingsin2(kx� !t) Overall the

energy density in a sound wave is

hEtoti = 1
2�!2�20 = 1

2Z!2�20=c: (10)

The rate at which energy is transferred, the energy flux, is the

product of energy density and wave velocity,

I = chEi = 1
2!2Z�20 : (11)





7.1.1 Measurement of Sound



7.1.1 Measurement of Sound

If I=I0 = 10b, thenI is said to beb bels louder thanI0.



7.1.1 Measurement of Sound

If I=I0 = 10b, thenI is said to beb bels louder thanI0.
Correspondingly, one decibel (db) is a factor of100:1 � 1:3, three

decibels (3 db) is100:3 � 2.
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