1B24

WAVES OPTICS AND ACOUSTICS REVISION LECTURE

A guide to the basics

A.H. Harker

email:a.harker@ucl.ac.uk

April 23, 2002

1 Simple Oscillations and their Description

• harmonic motion and motion in a circle: rotating vector — phasor

- **1** Simple Oscillations and their Description
- **1.1 Motion in a circle, projection on a line, phasors**
 - harmonic motion and motion in a circle: rotating vector phasor

- **1** Simple Oscillations and their Description
- **1.1 Motion in a circle, projection on a line, phasors**
 - harmonic motion and motion in a circle: rotating vector phasor
 - Simple harmonic motion is the projection of circular motion onto one axis

1 Simple Oscillations and their Description

1.1 Motion in a circle, projection on a line, phasors

- harmonic motion and motion in a circle: rotating vector phasor
- Simple harmonic motion is the projection of circular motion onto one axis
- 2-D motion complex plane complex number representation

• A single-frequency wave has a wave-like pattern both in space and time

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

phase =

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

 $phase = \omega t$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

 $phase = \omega t {-} k x$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

$$phase = \omega t - kx$$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

$$phase = \omega t - kx$$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

$$phase = \omega t - kx$$

- A single-frequency wave has a wave-like pattern both in space and time
- In time it is characterised by a frequency f, angular frequency $\omega=2\pi f$
- In space it is characterised by a wavelength $\lambda,$ wavevector $k=2\pi/\lambda$
- The phase varies in space and time,

$$phase = \omega t - kx$$

$$Ae^{i(\omega t - kx)}$$

- Something observable (a displacement, , an electric or magnetic field....) must be real.
- De Moivre's theorem tells us

$$\Re\left[e^{i(\omega t - kx)}\right] = \cos(\omega t - kx)$$

• What if we want a sine wave rather than a cosine?

$$\Re \left[e^{i(\omega t - kx - \pi/2)} \right] = \Re \left[-ie^{i(\omega t - kx)} \right]$$
$$= \Re \left[-i(\cos(\omega t - kx) + i\sin(\omega t - kx)) \right]$$
$$= \Re \left[-i\cos(\omega t - kx) + \sin(\omega t - kx) \right]$$
$$= \sin(\omega t - kx)$$

• Energy density is proportional to the square of the amplitude A^2

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$
- In terms of impedance Z

 $\langle E \rangle =$

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$
- In terms of impedance Z

$$\langle E \rangle = \frac{1}{2} \frac{}{c}$$

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$
- In terms of impedance Z

$$\langle E \rangle = \frac{1}{2} \frac{Z}{c}$$

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$
- In terms of impedance Z

$$\langle E \rangle = \frac{1}{2} \frac{Z \omega^2}{c}$$

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$
- In terms of impedance Z

$$\langle E \rangle = \frac{1}{2} \frac{Z \omega^2 |A|^2}{c}$$

- Energy density is proportional to the square of the amplitude A^2
- The amplitude (in complex exponential notation) may be complex then the energy density is proportional to $|A|^2$
- In terms of impedance Z

$$\langle E \rangle = \frac{1}{2} \frac{Z \omega^2 |A|^2}{c}$$

• Intensity = energy per area per time

$$\langle I
angle = rac{1}{2} Z \omega^2 |A|^2$$

3.1 Superposition of two waves

3.1.1 same frequency – same amplitude

• phasor representation

3.1 Superposition of two waves

3.1.1 same frequency – same amplitude

- phasor representation
- two vectors, both rotating with the same angular velocity

3.1 Superposition of two waves

3.1.1 same frequency – same amplitude

- phasor representation
- two vectors, both rotating with the same angular velocity
- resultant also rotates with that angular velocity.

3.1 Superposition of two waves

3.1.1 same frequency – same amplitude

- phasor representation
- two vectors, both rotating with the same angular velocity
- resultant also rotates with that angular velocity.
- altered phase and amplitude

• The sum of two oscillations with different frequencies

- The sum of two oscillations with different frequencies
- product of two functions, with half-sum and half-difference frequencies and wavevectors

- The sum of two oscillations with different frequencies
- product of two functions, with half-sum and half-difference frequencies and wavevectors
- higher-frequency term is called the carrier wave

- The sum of two oscillations with different frequencies
- product of two functions, with half-sum and half-difference frequencies and wavevectors
- higher-frequency term is called the carrier wave
- lower-frequency wave which modulates the amplitude of the carrier is the envelope

- The sum of two oscillations with different frequencies
- product of two functions, with half-sum and half-difference frequencies and wavevectors
- higher-frequency term is called the carrier wave
- lower-frequency wave which modulates the amplitude of the carrier is the envelope
- phenomenon of beats

- The sum of two oscillations with different frequencies
- product of two functions, with half-sum and half-difference frequencies and wavevectors
- higher-frequency term is called the carrier wave
- lower-frequency wave which modulates the amplitude of the carrier is the envelope
- phenomenon of beats
- what the ear, for example, detects as the beat frequency is the variation of intensity, which is double the envelope frequency

- The sum of two oscillations with different frequencies
- product of two functions, with half-sum and half-difference frequencies and wavevectors
- higher-frequency term is called the carrier wave
- lower-frequency wave which modulates the amplitude of the carrier is the envelope
- phenomenon of beats
- what the ear, for example, detects as the beat frequency is the variation of intensity, which is double the envelope frequency
- beat frequency is the difference between the two original frequencies

4 The Wave Equation – Basic Properties

4.1 The one-dimensional wave equation
4.1 The one-dimensional wave equation

4.1 The one-dimensional wave equation

4.1 The one-dimensional wave equation

$$\frac{\partial^2 \psi}{\partial t^2} = c^2$$

4.1 The one-dimensional wave equation

4.1 The one-dimensional wave equation

General form of wave equation

$$rac{\partial^2 \psi}{\partial t^2} = c^2 rac{\partial^2 \psi}{\partial x^2},$$

with c being the wave speed.

 $\psi(x,t)$

$$\psi(x,t) = h(ct - x)$$

$$\psi(x,t) = h(ct-x) + g(ct+x),$$

$$\psi(x,t) = h(ct-x) + g(ct+x),$$

representing waves travelling to the right (ct - x) and to the left (ct + x)

$$\psi(x,t) = h(ct-x) + g(ct+x),$$

representing waves travelling to the right (ct - x) and to the left (ct + x) — note that what determines the direction of travel is the relative sign of the *t* term and the *x* term

$$\psi_0 e^{irac{2\pi}{\lambda}(ct-x)}$$

$$\psi_0 e^{irac{2\pi}{\lambda}(ct-x)}$$

$$\psi_0 e^{i2\pi(
u t - rac{x}{\lambda})}$$

$$\psi_0 e^{irac{2\pi}{\lambda}(ct-x)}$$

$$\psi_0 e^{i2\pi(
u t-rac{x}{\lambda})}$$

$$\psi_0 e^{i\omega(t-rac{x}{c})}$$

$$\psi_0 e^{irac{2\pi}{\lambda}(ct-x)}$$

$$\psi_0 e^{i2\pi(
u t - rac{x}{\lambda})}$$

$$\psi_0 e^{i\omega(t-rac{x}{c})}$$

$$\psi_0 e^{i(\omega t-kx)}$$

$$\psi_0 e^{irac{2\pi}{\lambda}(ct-x)}$$

$$\psi_0 e^{i2\pi(
u t - rac{x}{\lambda})}$$

$$\psi_0 e^{i\omega(t-rac{x}{c})}$$

$$\psi_0 e^{i(\omega t - kx)}$$

$$c = \lambda \nu = \frac{\omega}{k}.$$

$$\psi_0 e^{irac{2\pi}{\lambda}(ct-x)}$$

$$\psi_0 e^{i2\pi(
u t-rac{x}{\lambda})}$$

$$\psi_0 e^{i\omega(t-rac{x}{c})}$$

$$\psi_0 e^{i(\omega t-kx)}$$

$$c = \lambda \nu = \frac{\omega}{k}.$$

c is speed at which peaks and troughs (points of constant phase) move through the medium — phase velocity.

4.1.1 linearity/superposition

We know that as the wave equation is linear, we may superpose solutions and still get a solution which is a solution of the wave equation.

5.0.2 wave equation

• Look at forces on small section of string

5.0.2 wave equation

Derivation:

• Look at forces on small section of string

5.0.2 wave equation

- Look at forces on small section of string
- Transverse force is tension times slope of string (small displacements)

5.0.2 wave equation

- Look at forces on small section of string
- Transverse force is tension times slope of string (small displacements)
- Nett force on section is tension times difference in slopes at ends of section

5.0.2 wave equation

- Look at forces on small section of string
- Transverse force is tension times slope of string (small displacements)
- Nett force on section is tension times difference in slopes at ends of section
- Hence nett force is proportional to second derivative of displacement

5.0.2 wave equation

- Look at forces on small section of string
- Transverse force is tension times slope of string (small displacements)
- Nett force on section is tension times difference in slopes at ends of section
- Hence nett force is proportional to second derivative of displacement
- Set this equal to mass of section times acceleration

(1)

 $\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho}$

 $\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2},$

(1)

$$\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2},$$

(1)

that is, a wave equation with wave speed $c = \sqrt{T/\rho}$.

$$\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2},\tag{1}$$

that is, a wave equation with wave speed $c = \sqrt{T/\rho}$. For a wave on a string, the transverse velocity depends on the frequency and the amplitude, and varies with time.

$$\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2},\tag{1}$$

that is, a wave equation with wave speed $c = \sqrt{T/\rho}$. For a wave on a string, the transverse velocity depends on the frequency and the amplitude, and varies with time. The wave velocity is a constant: in a linear wave (the only sort we deal with) it is independent of amplitude, although (dispersion) it may depend on frequency.

5.0.3 running waves

5.0.3 running waves

 $e^{i(\omega t \pm kx)}$, are running waves —-
5.0.3 running waves

 $e^{i(\omega t \pm kx)}$, are running waves —- they travel along the x axis either left to right (-)

5.0.3 running waves

 $e^{i(\omega t \pm kx)}$, are running waves —- they travel along the x axis either left to right (–) or right to left (+).

boundary conditions may involve specifying displacements or 'forces' at the ends.

boundary conditions may involve specifying displacements or 'forces' at the ends. For example, fixed ends on string of length L:

boundary conditions may involve specifying displacements or 'forces' at the ends. For example, fixed ends on string of length L:

$$y(x,t) = ae^{i(\omega t + kx)} + be^{i(\omega t - kx)}.$$
(2)

boundary conditions may involve specifying displacements or 'forces' at the ends. For example, fixed ends on string of length L:

$$y(x,t) = ae^{i(\omega t + kx)} + be^{i(\omega t - kx)}.$$
(2)

with y(x, t) = 0 at x = 0, x = L for all t:

boundary conditions may involve specifying displacements or 'forces' at the ends. For example, fixed ends on string of length L:

$$y(x,t) = ae^{i(\omega t + kx)} + be^{i(\omega t - kx)}.$$
(2)

with y(x, t) = 0 at x = 0, x = L for all t: x = 0 gives a + b = 0.

boundary conditions may involve specifying displacements or 'forces' at the ends. For example, fixed ends on string of length L:

$$y(x,t) = ae^{i(\omega t + kx)} + be^{i(\omega t - kx)}.$$
(2)

with y(x, t) = 0 at x = 0, x = L for all t: x = 0 gives a + b = 0. Two equal and opposite running waves give a standing wave with nodes at the ends of the string Then we have

$$y(x,t) = ce^{i\omega t}\sin(kx)$$

Then we have

$$y(x,t) = ce^{i\omega t}\sin(kx)$$

whence boundary condition at x = L gives

Then we have

$$y(x,t) = ce^{i\omega t}\sin(kx)$$

whence boundary condition at x = L gives

$$\lambda_n = \frac{2L}{n}$$

(3)

5.0.5 Nodes/antinodes of standing wave

• node=zero displacement

5.0.5 Nodes/antinodes of standing wave

- node=zero displacement
- antinode = maximum displacement

5.0.5 Nodes/antinodes of standing wave

- node=zero displacement
- antinode = maximum displacement
- fixed positions on string vibrating in normal mode.

- 6 Acoustic waves
- 6.1 Elastic waves in a rod

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod.

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$,

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$, then the element which was of length dx has been stretched.

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$, then the element which was of length dx has been stretched. The amount of the stretch is

$$\mathrm{d}\xi = \frac{\partial\xi}{\partial x}\mathrm{d}x.$$

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$, then the element which was of length dx has been stretched. The amount of the stretch is

$$\mathrm{d}\xi = \frac{\partial\xi}{\partial x}\mathrm{d}x.$$

Remember that ξ is the change in position of a marker on the rod.

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$, then the element which was of length dx has been stretched. The amount of the stretch is

$$\mathrm{d}\xi = \frac{\partial\xi}{\partial x}\mathrm{d}x.$$

Remember that ξ is the change in position of a marker on the rod. Force at each point depends on local strain (change in length divided by length),

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$, then the element which was of length dx has been stretched. The amount of the stretch is

$$\mathrm{d}\xi = \frac{\partial\xi}{\partial x}\mathrm{d}x.$$

Remember that ξ is the change in position of a marker on the rod. Force at each point depends on local strain (change in length divided by length), i.e.

$$F(x) = AY \frac{\partial \xi}{\partial x}$$

6.1 Elastic waves in a rod

At a point x along the rod an element of the rod (a thin disk) has been displaced by ξ as a result of wave passing down the rod. A little further along, at x + dx, the displacement is $\xi + d\xi$, then the element which was of length dx has been stretched. The amount of the stretch is

$$\mathrm{d}\xi = \frac{\partial\xi}{\partial x}\mathrm{d}x.$$

Remember that ξ is the change in position of a marker on the rod. Force at each point depends on local strain (change in length divided by length), i.e.

$$F(x) = AY \frac{\partial \xi}{\partial x}$$

If we had a rod under constant tension, of course, the fractional extension would be constant along the rod, and $\xi = \frac{F}{AY}x$.

With a wave, the stretching is not constant along the rod, the force will not be constant either.

$$F' = F + \mathrm{d}F = F + \frac{\partial F}{\partial x}\mathrm{d}x$$

$$F' = F + \mathrm{d}F = F + \frac{\partial F}{\partial x}\mathrm{d}x$$

and the nett force on the element dx is therefore

$$F' - F = \frac{\partial F}{\partial x} \mathrm{d}x,$$

$$F' = F + \mathrm{d}F = F + \frac{\partial F}{\partial x}\mathrm{d}x$$

and the nett force on the element dx is therefore

$$F' - F = \frac{\partial F}{\partial x} \mathrm{d}x,$$

so that

$$F' - F = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x.$$

$$F' = F + \mathrm{d}F = F + \frac{\partial F}{\partial x}\mathrm{d}x$$

and the nett force on the element dx is therefore

$$F' - F = \frac{\partial F}{\partial x} \mathrm{d}x,$$

so that

$$F' - F = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x.$$

The mass of the element of thickness dx and area A is $\rho A dx$, and its change in position is given by ξ ,

$$F' = F + dF = F + \frac{\partial F}{\partial x} dx$$

and the nett force on the element dx is therefore

$$F' - F = \frac{\partial F}{\partial x} \mathrm{d}x,$$

so that

$$F' - F = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x.$$

The mass of the element of thickness dx and area A is $\rho A dx$, and its change in position is given by ξ , so Newton's equation of motion gives

$$\rho A \mathrm{d}x \frac{\partial^2 \xi}{\partial t^2} = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x$$

$$F' = F + dF = F + \frac{\partial F}{\partial x} dx$$

and the nett force on the element dx is therefore

$$F' - F = \frac{\partial F}{\partial x} \mathrm{d}x,$$

so that

$$F' - F = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x.$$

The mass of the element of thickness dx and area A is $\rho A dx$, and its change in position is given by ξ , so Newton's equation of motion gives

$$\rho A \mathrm{d}x \frac{\partial^2 \xi}{\partial t^2} = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x$$

$$F' = F + dF = F + \frac{\partial F}{\partial x} dx$$

and the nett force on the element dx is therefore

$$F' - F = \frac{\partial F}{\partial x} \mathrm{d}x,$$

so that

$$F' - F = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x.$$

The mass of the element of thickness dx and area A is $\rho A dx$, and its change in position is given by ξ , so Newton's equation of motion gives

$$\rho A \mathrm{d}x \frac{\partial^2 \xi}{\partial t^2} = AY \frac{\partial^2 \xi}{\partial x^2} \mathrm{d}x$$

6.2 Elastic waves in a bulk solid

6.2.1 compression waves and shear waves

Remember that different types of wave exist, but that's about all you need to know.

$$B = -\frac{\text{change in pressure}}{\text{fractional change involume}} = -\frac{\mathrm{d}P}{\mathrm{d}V/V} = -V\frac{\mathrm{d}P}{\mathrm{d}V}.$$
 (5)
$$\frac{\partial^2 \xi}{\partial t^2} = \frac{B_{\mathrm{a}}}{\rho_0}\frac{\partial^2 \xi}{\partial x^2}$$
 (6)
that is, a wave with velocity $v = \sqrt{B_{\mathrm{a}}/\rho}.$

 $B = -\frac{\text{change in pressure}}{\text{fractional change involume}} = -\frac{\mathrm{d}P}{\mathrm{d}V/V} = -V\frac{\mathrm{d}P}{\mathrm{d}V}.$ (5)

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{B_{\rm a}}{\rho_0} \frac{\partial^2 \xi}{\partial x^2} \tag{6}$$

that is, a wave with velocity $v = \sqrt{B_a/\rho}$. We use the adiabatic bulk modulus because the changes which the wave induces are fast compared with the time-scales for heat transfer through the gas.

$$B = -\frac{\text{change in pressure}}{\text{fractional change involume}} = -\frac{\mathrm{d}P}{\mathrm{d}V/V} = -V\frac{\mathrm{d}P}{\mathrm{d}V}.$$
 (5)

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{B_{\rm a}}{\rho_0} \frac{\partial^2 \xi}{\partial x^2} \tag{6}$$

that is, a wave with velocity $v = \sqrt{B_a/\rho}$. We use the adiabatic bulk modulus because the changes which the wave induces are fast compared with the time-scales for heat transfer through the gas.

$$PV^{\gamma} = \text{constant}$$
 (7)

where γ is a constant characteristic of the type of gas.

$$B = -\frac{\text{change in pressure}}{\text{fractional change involume}} = -\frac{\mathrm{d}P}{\mathrm{d}V/V} = -V\frac{\mathrm{d}P}{\mathrm{d}V}.$$
 (5)

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{B_{\rm a}}{\rho_0} \frac{\partial^2 \xi}{\partial x^2} \tag{6}$$

that is, a wave with velocity $v = \sqrt{B_a/\rho}$. We use the adiabatic bulk modulus because the changes which the wave induces are fast compared with the time-scales for heat transfer through the gas.

$$PV^{\gamma} = \text{constant}$$
 (7)

where γ is a constant characteristic of the type of gas. Thus the wave velocity $v = \sqrt{B_a/\rho} = \sqrt{\gamma P_0/\rho_0}$.

6.4.1 general form

The impedance is the ratio of the generalised force to the response.

6.4.1 general form

The impedance is the ratio of the generalised force to the response.

6.4.2 wave in gas

6.4.1 general form

The impedance is the ratio of the generalised force to the response.

6.4.2 wave in gas

Specific acoustic impedance

$$Z == \frac{\text{excess pressure}}{\text{particle velocity}} = \frac{p}{\dot{\xi}} = \sqrt{B_{\rm a}\rho}.$$
 (8)

6.4.1 general form

The impedance is the ratio of the generalised force to the response.

6.4.2 wave in gas

Specific acoustic impedance

$$Z == \frac{\text{excess pressure}}{\text{particle velocity}} = \frac{p}{\dot{\xi}} = \sqrt{B_{\rm a}\rho}.$$

(8)

6.4.3 of a string

6.4.1 general form

The impedance is the ratio of the generalised force to the response.

6.4.2 wave in gas

Specific acoustic impedance

$$Z == \frac{\text{excess pressure}}{\text{particle velocity}} = \frac{p}{\dot{\xi}} = \sqrt{B_{\rm a}\rho}.$$
 (8)

6.4.3 of a string

$$Z = \frac{\text{Transverse force}}{\text{particle velocity}} = \sqrt{T\rho}.$$

(9)

7.1 Derivation

7.1 Derivation

Sum of KE and PE

7.1 Derivation

Sum of KE and PE: both oscillate,

7.1 Derivation

Sum of KE and PE: both oscillate, so average over a period (or over a wavelength)

7.1 Derivation

Sum of KE and PE: both oscillate, so average over a period (or over a wavelength) which involves averaging $\sin^2(kx - \omega t)$

7.1 Derivation

Sum of KE and PE: both oscillate, so average over a period (or over a wavelength) which involves averaging $\sin^2(kx - \omega t)$ Overall the energy density in a sound wave is

$$\langle E_{\rm tot} \rangle = \frac{1}{2} \rho \omega^2 \xi_0^2 = \frac{1}{2} Z \omega^2 \xi_0^2 / c.$$
 (10)

7.1 Derivation

Sum of KE and PE: both oscillate, so average over a period (or over a wavelength) which involves averaging $\sin^2(kx - \omega t)$ Overall the energy density in a sound wave is

$$\langle E_{\rm tot} \rangle = \frac{1}{2} \rho \omega^2 \xi_0^2 = \frac{1}{2} Z \omega^2 \xi_0^2 / c.$$
 (10)

The rate at which energy is transferred, the energy flux, is the product of energy density and wave velocity,

$$I = c\langle E \rangle = \frac{1}{2}\omega^2 Z \xi_0^2. \tag{11}$$

7.1.1 Measurement of Sound

7.1.1 Measurement of Sound

If $I/I_0 = 10^b$, then I is said to be b bels louder than I_0 .

7.1.1 Measurement of Sound

If $I/I_0 = 10^b$, then *I* is said to be *b* bels louder than I_0 . Correspondingly, one decibel (db) is a factor of $10^{0.1} \approx 1.3$, three decibels (3 db) is $10^{0.3} \approx 2$.