Mathematical Methods

Spring Term 2019

Problem Sheet 8

1. i) Find the values of

a)
$$\delta_{ij}\delta_{ij}$$
 b) $\delta_{ij}\delta_{jk}\delta_{kl}\delta_{li}$ c) $\epsilon_{ijk}\epsilon_{jki}$.

- ii) Prove the identity $\epsilon_{ikl}\epsilon_{jkl} = 2\delta_{ij}$.
- iii) Show that the cross product of two axial vectors is axial.
- 2. i) Let A_{ij} be the entries of 3×3 matrix A. Show that

$$\det A = \epsilon_{ijk} A_{1i} A_{2j} A_{3j}.$$

- ii) Show that under proper rotations ϵ_{ijk} is a rank 3 tensor.
- 3. i) Prove the identity

$$\epsilon_{ijp}\epsilon_{klp} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}.$$

ii) Use the result from part i) to prove the vector identity

 $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}.$

iii) Use index notation to prove the vector calculus identity

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}).$$

4. In the lectures the rank 2 anti-symmetric tensor $F_{ij} = \partial_i A_j - \partial_j A_i$ was introduced (A_i is the vector potential). Maxwell's equations are

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}, \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \cdot \mathbf{B} = 0.$$

i) Write Maxwell's equations using F_{ij} , E_i , j_i , ρ and the operator ∂_i . In other words rewrite the equations using F_{ij} instead of **B**.

Hint: write $\nabla \cdot \mathbf{B} = 0$ as a tensor equation rather than a scalar equation! ii) The Poynting vector \mathbf{S} and electromagnetic energy density are given by

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}, \qquad u = \frac{\epsilon_0}{2} \mathbf{E} \cdot \mathbf{E} + \frac{1}{2\mu_0} \mathbf{B} \cdot \mathbf{B}$$

Write S_i and u in terms of the vector E_i and the tensor F_{ij} . Is S_i polar or axial?

iii) Show that

$$\frac{\partial u}{\partial t} + \partial_i S_i = -E_i j_i.$$

5. The Pauli matrices are defined as

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- i) Show that $[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$.
- ii) Under a rotation of angle θ about an axis with direction $\hat{\mathbf{n}}$

$$B'_i \sigma_i = e^{-\frac{1}{2}i\theta\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}} B_i \sigma_i \ e^{+\frac{1}{2}i\theta\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}}$$

where ${\cal B}_i$ is the magnetic field. Show that for an infinitesimal rotation

$$B'_i \sigma_i = B_i \sigma_i - \frac{i\theta}{2} [\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}, B_i \sigma_i].$$

iii) Verify the infinitesimal rotation formula quoted in part ii) Hint: an infinitesimal rotation matrix has the form $R_{ij} = \delta_{ij} - \theta \epsilon_{ijk} n_k$.