Mathematical Methods Spring Term 2017
Answers to Easter Problem Sheet

1. i)
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p is constant since L does not depend on x (or z is cyclic). Hence 7 is

constant.
72
L =—mc® 1 — — +qkx,
C

ii)
The Euler Lagrange equation can be written
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giving p(t) = qEt. The formula for p obtained in part i) is unchanged
- rearranging this
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which can be integrated to give
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which has simple poles at z = 4. The residues are Res(f, i) = e™1/(2i)
and Res(f, —1) = e/(—2i).

i) f(2)
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has simple poles at —1, —2 and —3. The residues are
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3. The (principal value of the) integral of f(z) = 1/z over the given square
contour, C', is iw /2. Here f has a simple pole at the origin with residue
1. There are no singularities inside C' but the contour crosses the
origin. Applying the half-residue rule gives P §, f(z)dz = im. This is
wrong because the half-residue rule only applies if the simple pole is on
a smooth part of a contour. The half-residue rule avoids having to use
a semi-circular indentation. As the pole is on a corner of the square
the necessary indentation is a quarter-circle rather than a semi-circle.

4.1) Consider g(z) = wQe_’”f. From Problem Sheet 4 f(z)= e’
has Fourier transform f(k) = e/* /9 / dma. g(z) = —0/da f(z).
Accordingly
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Setting a = 1 yields the Fourier integral
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ii) A particular solution to the ODE #(t) 4 3i(t) + 2x(t) = t2e~2" is
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In the last step the Fourier integral from Q1 of Problem Sheet 7 was
used (alternatively use contour integration). Accordingly,
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6. i)
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using the change of variable k& = p/h. By Parseval’s formula this is

equal to
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which is 1 if ¢(z) is normalised.

ii) The momentum-space wave function is
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Here the following integral was used

oo 1
/ re " dr = (Re b > 0)
0 b?

was used (derivation via parts).
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7. The divergence of a polar vector is a scalar. As a pseudo vector picks
up an extra factor of det R the divergence of an axial vector is a pseudo
scalar. Hence p,, is a pseudo scalar.

As both V x E and 0B/0t are axial j,,, must be axial as well.
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From Problem Sheet 7 the two homogeneous Maxwell equations can be
written as
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Including a magnetic density and current:

_ (9FU
ot

and
0;iFji + 0; Fyi + OpFij = Niji-
where k;; is the rank 2 anti-symmetric tensor (not a pseudo tensor)
kij = Gijk(jm)kv

and \;jx is the rank three totally anti-symmetric isotropic tensor (not
a pseudo-tensor) \;jx = Pm€ijk-



