
Mathematical Methods Spring Term 2017

Answers to Easter Problem Sheet

1. i)

L = −mc2

√
1− ẋ2

c2
,

p =
∂L

∂ẋ
=

mẋ√
1− ẋ2

c2

.

p is constant since L does not depend on x (or x is cyclic). Hence ẋ is
constant.

ii)

L = −mc2

√
1− ẋ2

c2
+ qEx,

The Euler Lagrange equation can be written

dp

dt
=
∂L

∂x
= qE,

giving p(t) = qEt. The formula for p obtained in part i) is unchanged
- rearranging this

ẋ =
p√

m2 + p2c−2
=

qEt√
m2 + q2c−2E2t2

,

which can be integrated to give

x(t) =
c2

qE

√
m2 + q2c−2E2t2 + constant.

2.

i) f(z) =
eiz

1 + z2
=

eiz

(z + i)(z − i)
which has simple poles at z = ±i. The residues are Res(f, i) = e−1/(2i)
and Res(f,−i) = e/(−2i).

ii) f(z) =
1

(z + 1)(z + 2)(z + 3)
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has simple poles at −1, −2 and −3. The residues are

Res(f,−1) =
1

(−1 + 2)(−1 + 3)
=

1

2
, Res(f,−2) =

1

(−2 + 1)(−2 + 3)
= −1,

Res(f,−3) =
1

(−3 + 1)(−3 + 2)
=

1

2
.

3. The (principal value of the) integral of f(z) = 1/z over the given square
contour, C, is iπ/2. Here f has a simple pole at the origin with residue
1. There are no singularities inside C but the contour crosses the
origin. Applying the half-residue rule gives P

∮
c f(z)dz = iπ. This is

wrong because the half-residue rule only applies if the simple pole is on
a smooth part of a contour. The half-residue rule avoids having to use
a semi-circular indentation. As the pole is on a corner of the square
the necessary indentation is a quarter-circle rather than a semi-circle.

4. i) Consider g(x) = x2e−αx
2 
. From √Problem Sheet    4     f(x) = e−ax2

has Fourier transform f̂(k) = e−k
2/(4a)/ 4πa. g(x) = −∂/∂α f(x).

Accordingly

ĝ(k) = − ∂

∂α
f̂(k) = −

(
− 1

2a
+

k2

4a2

)
1√
4πa

e−k
2/(4a).

Setting a = 1
2

yields the Fourier integral

x2e−
1
2
x2 =

1√
2π

∫ ∞
−∞

(1− k2)e−
1
2
k2eikx dk.

ii) A particular solution to the ODE ẍ(t) + 3ẋ(t) + 2x(t) = t2e−
1
2
t2 is

x(t) =
1√
2π

∫ ∞
−∞

(1− ω2)e−
1
2
ω2
eiωt

−ω2 + 3iω + 2
dw.

5.

f ′(x) = 2δ(x)− 2

π

1

1 + x2
.

Therefore

f̂ ′(k) = ikf̂(k) =
1

2π

∫ ∞
−∞

[
2δ(x)− 2

π

1

1 + x2

]
e−ikx dx =

1

π
− e−|k|

π
.

In the last step the Fourier integral from Q1 of Problem Sheet 7 was
used (alternatively use contour integration). Accordingly,

f̂(k) =
i(e−|k| − 1)

πk
.
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6. i)

ψ̃(p) =
1√
2πh̄

∫ ∞
−∞

e−ipx/h̄ψ(x) dx =

√
2π

h̄
ψ̂(p/h̄).

Therefore∫ ∞
−∞

ψ̃∗(p)ψ̃(p)dp =
2π

h̄

∫ ∞
−∞

ψ̂∗(p/h̄)ψ̂(p/h̄)dp = 2π
∫ ∞
∞
|ψ̂(k)|2dk

using the change of variable k = p/h̄. By Parseval’s formula this is
equal to ∫ ∞

−∞
|ψ(x)|2dx

which is 1 if ψ(x) is normalised.

ii) The momentum-space wave function is

ψ̃(p) =
1

(2πh̄)3/2

∫
e−ip·r/h̄ψ(r) d3r

=
1

(2πh̄)3/2

∫ 2π

0
dφ
∫ ∞

0
dr
∫ π

0
r2 sin θ dθ e−ipr cos θ/h̄e−r/a.

=
2π

(2πh̄)3/2

∫ ∞
0

dr
rh̄

ip
e−ipr cos θ/h̄e−r/a

∣∣∣∣∣
θ=π

θ=0

.

=
1

(2πh̄)1/2

∫ ∞
0

dr
r

ip

(
e+ipr/h̄ − e−ipr/h̄

)
e−r/a

=
−i

(2πh̄)1/2p

[
1

(a−1 − ip/h̄)2
− 1

(a−1 + ip/h̄)2

]
=

1

(2πh̄)1/2

4a−1/h̄

(a−2 + p2/h̄2)2
.

Here the following integral was used∫ ∞
0

re−brdr =
1

b2
(Re b > 0)

was used (derivation via parts).

ψ̃(p) =
1

(2πh̄)1/2

4a3h̄3

(h̄2 + a2|p|2)2

7. The divergence of a polar vector is a scalar. As a pseudo vector picks
up an extra factor of detR the divergence of an axial vector is a pseudo
scalar. Hence ρm is a pseudo scalar.

As both ∇× E and ∂B/∂t are axial jm must be axial as well.
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From Problem Sheet 7 the two homogeneous Maxwell equations can be 
written as

∂iEj − ∂jEi = −∂Fij
∂t

,

and
∂iFjk + ∂jFki + ∂kFij = 0.

Including a magnetic density and current:

∂iEj − ∂jEi = −∂Fij
∂t

+ kij,

and
∂iFjk + ∂jFki + ∂kFij = λijk.

where kij is the rank 2 anti-symmetric tensor (not a pseudo tensor)

kij = εijk(jm)k,

and λijk is the rank three totally anti-symmetric isotropic tensor (not
a pseudo-tensor) λijk = ρmεijk.
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