Mathematical Methods Spring Term 2019

Answers to Problem Sheet 7

L= %i‘-f—l—qf-A(r,t) — qo(r,1).

Expanding out the dot products the Lagrangian can be written
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To obtain the Lorentz force law one must regard ¢, A,, A, and A, as
arbitrary functions of x, y, z and ¢t. Accordingly,
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which is the z-component of the Lorentz force law. Similarly, the other two Euler-
Lagrange equations yield the y and z components of the Lorentz force law.

xr = FRcosu, y=Rsinu 2= au,

where u 1s a real parameter.
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The potential energy is V' = mgz. The Lagrangian is
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E—Po = (R + 1) 2 — mg-z.
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The equation of motion can be written as
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This is the same as for vertical motion under constant gravity but with
a reduced acceleration g.
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Now p; = 0L/0¢; and the Euler-Lagrange equations can be written as
pi = OL/0q;. Accordingly
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If the Lagrangian is invariant under the transformation

n

ZplQ’L(qlv q2, .. Qn)

i=1

is a constant of the motion.

ii) Apply Noether’s theorem with ¢ = z, ¢ = y, Q1 = y = ¢,
()o = —x = —q then

P1Q1 + p2Q2 = Yps — TPy

is a constant of the motion. This is conservation of angular momentum
Lz = TPy — YPz-
The transformation is an infinitesimal rotation about the origin. Any

Lagrangian that is rotationally invariant has this symmetry (eg. the
Kepler problem) and associated conservation law.



4. 1) The kinetic energy of a particle of mass m in spherical polar coordi-
nates 1s

m : )
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Spherical polar coordinates are conventionally defined with # as the
angle between ' and the positive z-axis so that z = rcosf. Now let 6
be measured with respect to the negative z-axis so that z = —rcosf
and as usual r = rsinfcoso, y = rsinfsino. With these ‘modified’
spherical polar coordinates the kinetic energy formula is unchanged.

Now setting r» = [ and ¢ = () gives the stated formula
2
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ii) The potential energy is the same as for a non-rotating pendulum,
ie. V.= —mgl cosf. Accordingly,
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L=T-V= N (92 + Q% sin? 9) + mgl cos 6.

The Euler-Lagrange equation
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vields )
ml*0 — ml*Q? sinf cos § + mgl sinh = 0,
or
.. _ g _
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1i) Solutions of the form # =constant require sinf = 0 (vielding the
standard equilibria § = 0 and # = 7) or

(? + Q2 cos 6) =0

which has the solutions
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provided 92 > g/I.

1v) As L does not depend explicitly on ¢
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1s constant. Note that this 1s not the total energy

mi?
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2 + TQQ sin® @ — mgl cos 6.

The total energy is not constant since
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7 (H + ml*Q?sin? 0) = 2mi*Q*sinf cos 0 0.
v

v) To find the frequency of small oscillations look at the equations of
motion for § near # = 0, 7 and 6y = cos™(g/Q?1).

Near # = 0
i—0(-2+),

a SHO with angular frequency w = /g/l — Q2. If Q* > g/l, 6 =01is

an unstable equilibrium point.

For 6 near 6
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using the Taylor expansion cos|fy+ (0 —6y)] = cos by —sinfy(6—6p) +....
The approximate equation of motion describes a SHO with
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w? = Q%sin® 0y = Q*(1 — cos? fy) = Q? (1 S )
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which is always less than the frequency of the turntable.

or

The equilibrium at ¢ = 7 is unstable for any 2. Why?
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