Mathematical Methods Spring Term 2019
Answers to Problem Sheet 6

1. If S is stationary then y(z) satisfies the Euler-Lagrange equation
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We require the derivative of L(y(x),y'(z)) with respect to z; using the
chain rule
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Hence H is constant.

2. Here
L =2my\/1+ 2,

giving the Euler Lagrange equation
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Now (dropping the factor of 27 in L)
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Squaring this gives
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where C' is a positive constant. Therefore

\/Edy = 4dz.
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which integrates to
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By symmetry ¢ = 0 so that y(z) has the stated form (on setting C' =
1/p%).

ii) y(z) = p~t coshpz. p is fixed using the boundary condition

so that

y(—L/2) =y(L/2) = ;coshp; =R.

It is convenient to define ¢ = pL/2 so that ¢ (and hence p) is fixed via
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A quick sketch shows that for ¢ > 0, ¢~! cosh ¢ has a positive minimum
(Wolfram Alpha gives the minimum value as ~ 1.50888 at ¢ ~ 1.19968).
So if 2R/L is less than 1.50888 the boundary conditions cannot be
matched for any p. If 2R/ L is greater than the critical value two values
of ¢ fit the boundary conditions (this is clear from a plot of ¢~* cosh q).

Take the line to be the a-axis and the endpoints to be (a,0) and (b,0).
Maximize the integral
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/ y(z)dx  with y(a) =y(b) =0,

subject to the constraint that the length
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is fixed. Implementing the constraint using a Lagrange multiplier A.
Consider the integral
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The Euler-Lagrange equation is
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This can be solved using the result from question 1 or direct integration.
Integrating the Euler-Lagrange equation gives
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which integrates to
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which is circular.
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