
Mathematical Methods Spring Term 2019

Answers to Problem Sheet 6

1. If S is stationary then y(x) satisfies the Euler-Lagrange equation
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We require the derivative of L(y(x), y′(x)) with respect to x; using the
chain rule
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Hence H is constant.

2. Here
L = 2πy

√
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giving the Euler Lagrange equation
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Now (dropping the factor of 2π in L)
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Squaring this gives
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where C is a positive constant. Therefore
√
Cdy√
y2 − C

= ±dx.

1



which integrates to
√
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so that
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By symmetry c = 0 so that y(x) has the stated form (on setting C =
1/p2).

ii) y(x) = p−1 cosh px. p is fixed using the boundary condition
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1
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2
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It is convenient to define q = pL/2 so that q (and hence p) is fixed via

q−1 cosh q =
2R

L
.

A quick sketch shows that for q > 0, q−1 cosh q has a positive minimum
(Wolfram Alpha gives the minimum value as≈ 1.50888 at q ≈ 1.19968).
So if 2R/L is less than 1.50888 the boundary conditions cannot be
matched for any p. If 2R/L is greater than the critical value two values
of q fit the boundary conditions (this is clear from a plot of q−1 cosh q).
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