Mathematical Methods Spring Term 2019

Answers to Problem Sheet 5
L i) f(z) = e™0(x), g(x) = e"0(x).

(F*9)@) = [ Fgla—tdt= [~ egla—
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This is zero if # < 0 since then g(z — t) is zero for all positive ¢. If

x>0
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What happens if a = b?

i) f(z) = 1/(2®+a?) and g(z) = 1/(2®+b?). It is messy to compute (f*
g)(z) directly (try it!). Following the hint use (f x g)(k) = o1 f(k)g(k).
We require f(k) (g(k) is the same with a replaced by b). Assume a and

b are positive. Now
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This can be obtained using the Fourier integral from Q1 on Problem
Sheet 6 or by contour integration. Therefore
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which is 7(a + b)/(ab) multiplied by the Fourier transform of 1/[z? +
(a +b)?]. Therefore
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2. 1) Multiply by f(z) and integrate from z = —o0 to x = co. This gives
(on switching the order of the summation and integration)

217T i /_O:O f(z)e™dx = i /_O:O f(z)o(x — 2mm)dz,
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or

S femy= S femm).

As the sum is over all integers one can replace f(—n) with f(n).

ii) Take f(z) = el with a > 0 (f(x) = [a® + (z/27)%]" also works).
From Q1 on Problem Sheet 6

a
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Using Poisson’s summation formula
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. 1) &(t)+4x(t) = sint/t. Write sint/t as a Fourier integral (see problem

sheet 6
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A particular solution is

zwt
7d
rei(t) = 5 / L~ + 4

i) @(t) + 2x(t) + x(t) = 6(t). Write 6(¢) as a Fourier integral

i(t) = L /OO e dw
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Therefore a particular solution is

1 foo e“tdw 1
t / i = 77{ d
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where f(z) = €*'/(—2 4+ 2iz + 1) = —e*'/(z —1)® and C is a semi-
circular contour with radius R > 1 (if ¢ > 0 the semi-circle must be
taken in the upper half-plane and if ¢ < 0 in the lower half-plane).

This has a double pole at z = i. To compute the residue Taylor expand
the exponential about z = i. ¢ = ¢lG=0+t = =[] 4 jt(z — i) + ..
so that Res(f,i) = —ite™*

If ¢ < 0 the contour does not enclose the pole and so xp;(t) = 0. If

t > 0 the Residue Theorem gives xp;(t) = te~*. One can combine the
two results xp;(t) = te~*0(t). Check that this satisfies the ODE!!

0o . e’** sinh ky
¢(z,y) —[mf(k) ok
The Laplacian of ¢ is
o etk smh ky ek sinh e k% sinh ky
beatom = [ () (B)° i [ J) i k=0,

so that ¢ is harmonic. Since sinhky = 0if y = 0, ¢(x,y = 0) = 0. At
y=1
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since f(k) = e"2¥* //27 (see problem sheet 6).
ii) ¢(z,y) is harmonic in half-plane —co < z < oo, y > 0 with the
properties

O,y =0)=e ", ¢(z,y) = 0 as y — oo,
The (harmonic) function ¢(z,y) = e**~*¥ decays exponentially as
y — 00. Consider a linear combination of these solutions

day) = [ clkje=a
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The y = 0 boundary condition gives c(k) = f(k) where f(z) = e 1.
From problem sheet 6, wf(k) = 1/(1 + k?) giving
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. Writing ¢(x,t) as a Fourier integral

oz, 1) = / T Ak, e dE,
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where A(k,t) is the Fourier transform of ¢(z,t) with respect to x only
(t is not Fourier-transformed).
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The wave equation yields
Ap(k,t) = —k*A(k, 1)
which has the general solution
Ak, t) = p(k)e'™ + g(k)e™"",

where the ‘constants of integration’ p and ¢ are arbitrary functions of
k. Therefore
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where p(k) = f(k) and q(k) = §(k).
Fourier Transform Conventions

A 1 00 )
Fourier transform  f(k) = 2—/ f(x) e”™ dx
T J—o00

Fourier integral f(x) = /oo f(k) e* dk.



