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1. Stokes’ theorem states that
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where the closed contour v is along the boundary of the surface S, dr is a line
element along v, and 7 is a unit vector normal to S whose direction is fixed by
the motion of a right-handed screw rotated in the direction of . [No marks
given here for this statement.]
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By simple trigonometry on the figure, we see immediately that

€g = —sinfé, +coslé, . [2]

For the specific problem, we are given that
W= (z+y)é, +ay’e,+a2°¢,.

Along (a) we have

1

~ 1 2]

1 1
lo= [ Weds= [ wdv=}a?
0 0 0

On the circle of radius 1, the infinitesimal length element is
ds = ¢épdf) = (—sinb ¢, +cosbé,)df , [1]
so that
I, = (cosf +sinf) é, + cosfsin*fe,] - (—sinfé, + cosbé,) df

—sinf cos @ — sin? @ + sin” § cos 0] df) . [2]
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The final integral is much simpler because W, = 0 on the last leg, which means
that I. = 0. 1]

Putting the terms together,
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To check Stokes’ theorem, we must first evaluate

e} 0 A ~
VxW= B2 5 02 | — —ngy + <y2 — 1>§z . [2]
r+y xy? a?

The normal to the surface is in the positive z-direction following the Stokes’
theorem definition. Thus
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Fortunately this agrees with the result of the line integral and so Stokes’ the-
orem is valid in this case.



2. On the surface z = 0, the outward normal n = —¢,, and F -n = —z. Now,
integrating over the quadrant,
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On z = 0 we get the same result I, = I, whereas along y = 0 the flux I,
vanishes. [1]

On the curved surface,

n =sinfcospe, +Sinﬁsin¢éy +cosfeé,,
and

F =costle, +sinfsinge, +sinfcospe, .
Hence

F -7 =2sinf cosfcos ¢ + sin? fsin? ¢ . 2]

The flux through the curved surface
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The total flux
[=L+I,+L+1,="1. [1]

Now for the easy bit! The divergence of the vector
V- F=1. [2]

Integrating this over the volume gives % of the volume of the unit sphere, viz

5
£ = %, as before, but with only 5% of the work. [2]

NOTE The question should have specified the radius of the sphere by giving
2?2 +y?+ 2% = 1. Any other radius chosen in answering the question would just
scale the result. The marker therefore has to be sympathetic to all attempts
to compensate for this error.



