PHAS1245: Mathematical Methods I - Problem Sheet 3

(Solutions to be handed in at the lecture on Tuesday 23th October 2007)

Staple your answer sheets together and put **your name** and your **tutor's name** on your script (or Dr. Konstantinidis, if you have no tutor in the P&A department).

1. Evaluate
$$\int \cos^2 x \, dx \,,$$

using two different methods.

2. Evaluate
$$\int \cos^4 x \, dx \,.$$
 [3]

3. Evaluate
$$\int \frac{x^3}{(x+1)(x-3)} dx \,, \label{eq:constraint}$$

using the trick with partial fractions (hint: look at your notes from week 1).

4. Evaluate
$$\int \ln x \, dx \qquad \text{and} \qquad \int (\ln x)^2 \, dx \, . \tag{4}$$

5. Evaluate
$$\int x e^{-ax^2} dx.$$
 [3]

6. Show that
$$\int_0^\infty x^3 e^{-ax^2} \, dx = \frac{1}{2a^2} \, .$$
 [4]

(Hint: start from the previous integral and integrate by parts). This form of integral comes up in the evaluation of the average speed of molecules of a gas, based on the Maxwell-Boltzmann distribution.