PHAS1245: Mathematical Methods I - Problem Class 4 Week starting Monday 19th November

- 1. (a) Find the angle between the vectors $\overrightarrow{A} = (2, 3, -1)$ and $\overrightarrow{B} = (2, -1, 2)$.
 - (b) Construct unit vectors parallel to \overrightarrow{A} and \overrightarrow{B} of the previous example.
 - (c) Calculate the projection P (or component) of \overrightarrow{A} on to (along) \overrightarrow{B} . What is the projection Q of \overrightarrow{B} on to \overrightarrow{A} ?
 - (d) Find $\overrightarrow{A} \times \overrightarrow{B}$ when $\overrightarrow{A} = (2, 3, -1)$ and $\overrightarrow{B} = (-1, 3, 3)$.

(e) Hence find the angle between \overrightarrow{A} and \overrightarrow{B} in the previous example and check your result using the scalar product.

2. Prove Lagrange's identity

$$(\overrightarrow{A}\times\overrightarrow{B}).(\overrightarrow{C}\times\overrightarrow{D})=(\overrightarrow{A}\cdot\overrightarrow{C})(\overrightarrow{B}\cdot\overrightarrow{D})-(\overrightarrow{A}\cdot\overrightarrow{D})(\overrightarrow{B}\cdot\overrightarrow{C}).$$

(Hint: the triple **scalar** product remains unchanged under cyclic permutation of the vectors, since it represents the volume of the parallelepiped defined by the three vectors.)

3. The position of a particle is given by

$$\overrightarrow{r} = A(e^{\alpha t}\widehat{i} + e^{-\alpha t}\widehat{j}),$$

where A and α are constants. Find the magnitude of the velocity at time t.

4. Starting from the expression of velocity in polar coordinates derived in the lectures:

$$\overrightarrow{v} = \frac{dr}{dt}\hat{r} + r\frac{d\theta}{dt}\hat{\theta}$$

derive the expression for the acceleration in polar coordinates.

- 5. The position vector of a particle is given in polar coordinates by $r = 1/\cos t$, $\theta = t$. Sketch the path of the particle for $0 \le t < \pi/2$ and find its radial and transverse components of accelleration.
- 6. Particles P_1 and P_2 move around concentric circles of radii a_1 and a_2 in the same sense and with angular velocities ω_1 and ω_2 , all respectively. Show that the angular velocity of P_2 about P_1 is given by

$$\Omega = \frac{1}{2} (\omega_1 + \omega_2) + \frac{1}{2} (\omega_1 - \omega_2) \frac{a_1^2 - a_2^2}{r^2},$$

where $r = P_1 P_2$.

If P_1, P_2 represent two planets, it may be shown that $\omega_1 = \mu^{\frac{1}{2}}/a_1^{\frac{3}{2}}$, $\omega_2 = \mu^{\frac{1}{2}}/a_2^{\frac{3}{2}}$, where μ is a constant for the solar system. Derive that, in this case, the motion of P_2 , as observed from P_1 , reverses its direction when the angle θ between the radii to the planets is given by

$$\cos \theta = \frac{\sqrt{a_1 a_2}}{a_1 + a_2 - \sqrt{a_1 a_2}}$$