PHAS1245: Mathematical Methods I - Problem Class 1 Week starting Monday 8th October

1. If x_1 and x_2 are the roots of the quadratic equation $ax^2 + bx + c = 0$, show without using the formula for the solutions that

$$x_1 + x_2 = -\frac{b}{a}$$
 and $x_1 x_2 = \frac{c}{a}$.

2. Express the following as partial fractions:

$$\frac{x^2+3}{x(x^2+2)}$$
 and $\frac{3}{x(3x-1)^2}$.

3. (a) Starting from

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$

show that $\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A$ and

$$\sin A = \frac{2\tan(\frac{A}{2})}{1+\tan^2(\frac{A}{2})} \quad \cos A = \frac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}.$$

(b) Solve the following for values of θ between 0 and 2π

$$\cos 2\theta + 3\sin \theta = 2$$
 and $\sin \theta + 2\cos \theta = 1$.

(c)Find all the solutions of

$$\sin\theta + \sin 4\theta = \sin 2\theta + \sin 3\theta$$

that lie in the range $-\pi < \theta \leq \pi$. What is the multiplicity of the solution $\theta = 0$?

4. The maximum possible efficiency ϵ of a power plant is given by

$$\epsilon = 1 - \frac{T_C}{T_H}$$

where T_C is the temperature of the cooling water and T_H the maximum steam temperature.

Obtain a formula for the fractional change in efficiency $\frac{\Delta \epsilon}{\epsilon_1}$ where $\Delta \epsilon = \epsilon_2 - \epsilon_1$ if the temperature of the cooling water changes from T_{C1} to T_{C2} where $T_{C2} > T_{C1}$.

In the summer of 2003 the temperature of the cooling water of continental European power plants rose by 15K. If T_H for a gas plant and for a PWR nuclear plant are 675K and 525K respectively calculate the fractional change in the maximum possible efficiencies for both type of power plant, given that T_{C1} is normally 290K.

- 5. Using the formula for the binomial coefficients from your notes, calculate the expansion of $(a + b)^6$.
- 6. (A much harder question both conceptually and technically.)

A car is at the origin of a coordinate system at t = 0 and is travelling along the positive z axis with speed v so that after time t its x, y, z coordinates are (0, 0, vt). The car emits a sharp pulse of sound which travels through still air with speed c_s . An observer at coordinates (x, y, z) detects the sound pulse at time t. Explain why the time at which the pulse was emitted is given by [t]where

$$[t] = t - \frac{\lfloor |\vec{r}| \rfloor}{c_s}$$
 where $[|\vec{r}|] = \sqrt{(z - v[t])^2 + x^2 + y^2)}$

Obtain an expression for [t].