
5 Partial Differentiation

5.1 The partial derivative [see Riley et al, Sec. 5.1]

So far we have considered functions of a single variable ie f = f(x) and the slope or gradient at x have

been given by df(x)
dx

where

df(x)

dx
= lim

δx→0

f(x+ δx)− f(x)

δx
.

We now consider a function of two (or more) variables f(x, y), which for two variables represents a surface
(see below), the z axis representing the value of the function f(x, y).

Definition of the partial derivatives

It is clear that a function f(x, y) of two variables will have a gradient in all directions in the xy plane.
These rates of change/slopes/gradients are defined as partial derivatives w.r.t the x and y axes. For the
positive x direction, holding y constant(

∂f

∂x

)
y

= lim
δx→0

f(x+ δx, y)− f(x, y)

δx
= fx .

Similarly for the positive y direction, holding x constant(
∂f

∂y

)
x

= lim
δy→0

f(x, y + δy)− f(x, y)

δy
= fy .

We can also define second and higher partial derivatives ie

∂

∂x

∂f

∂x
=
∂2f

∂x2
= fxx ,

∂

∂y

∂f

∂y
=
∂2f

∂y2
= fyy ,

∂

∂x

∂f

∂y
=

∂2f

∂xδy
= fxy and

∂

∂y

∂f

∂x
=

∂2f

∂y∂x
.

Provided the second partial derivatives are continuous then
∂2f

∂x∂y
=

∂2f

∂y∂x
.

Examples

If s = tu find ∂s
∂t

and ∂s
∂u

∂s

∂t
= utu−1

∂s

∂u
=
∂tu

∂u
=

∂

∂u
(eu ln t) = ln teu ln t = tu ln t .

5.2 The total differential and total derivative. [See Riley et al, Sec. 5.2]

For a function of one varaiable, f(x),

df =
df

dx
dx = f(x+ δx)− f(x)
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is the differential (change) in f when x is changed infinitesimally by dx.
Having defined the partial derivatives, we now ask what is the change df in f(x, y) if the coordinates (x, y)
are changed to (x+ dx, y + dy)

We have df = f(x+ δx, y + δy)− f(x, y)

= f(x+ δx, y + δy)− f(x, y + δy) + f(x, y + δy)− f(x, y)

and df =

(
f(x+ δx, y + δy)− f(x, y + δy)

δx
δx

)

+

(
f(x, y + δy)− f(x, y)

δy
δy

)
.

Thus df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy.

As an example find the total differential of the function

f(x, y) = yex+y

We have

(
∂f

∂x

)
y

= yex+y and

(
∂f

∂y

)
x

= yex+y + ex+y .

Thus df = yex+ydx+ (1 + y)ex+ydy .

Total derivative
When x = x(t) and y = y(t) then f(x, y) is essentially a function of one variable, t. to get the total
derivative df/dt, instead of substituting x(t) and y(t) into f , we can proceed using

df =
∂f

∂x
dx+

∂f

∂y
dy

so to obtain

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Moreover, we note that if f has an explicit dependence on t, then we rewrite the above as:

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Example
If f(x, y, t) = ln t+ xe−y and x = 1 + at, y = bt3 (a,b constants), find df/dt.
We calculate the partial derivatives of f

∂f

∂t
=

1

t
,

∂f

∂x
= e−y,

∂f

∂y
= −xe−y
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and the derivatives of x and y with respect to t

dx

dt
= a,

dy

dt
= 3bt2

Thus, the total derivative is given by

df

dt
=

1

t
+ e−ya− xe−y3bt2 =

1

t
+ e−bt

3 [
a− (1 + at)3bt2

]
5.3 Exact and inexact differentials [see Riley et al, Sec. 5.3]

In the last section we obtained the total differential df by determining the partial derivatives from f(x, y).
We now address the inverse problem.

Consider the differential:
df = A(x, y)dx+B(x, y)dy .

Can we go back to the function f(x, y)? If we can, this is an exact differential, and if not it is an inexact
differential.

From the above general expression, we can identify the partial derivatives

∂f

∂x
= A(x, y),

∂f

∂y
= B(x, y)

then using the property
∂2f

∂y∂x
=

∂2f

∂x∂y

we can derive the condition for the differential to be exact:

∂A

∂y
=
∂B

∂x

Example

Show that x2dy − (y2 + xy)dx is an inexact differential, but if you multiply by (xy2)−1, it is exact.

A = −(y2 + xy), B = x2

∂A

∂y
= −2y − x, ∂B

∂x
= 2x

which shows that it is not an exact differential.

Now multiply by (xy2)−1:
x2

xy2
dy − y2 + xy

xy2
dx =

x

y2
dy − x+ y

xy
dx
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A = −x+ y

xy
= −1

x
− 1

y
, B =

x

y2

∂A

∂y
=

1

y2
,

∂B

∂x
=

1

y2

which shows that it is an exact differential.
[NB: The function is f = −x/y − lnx]

5.4 Change of variables [See Riley, section 5.6]

We have a function f(x, y) and x = x(t, s) and y = y(t, s). We want to change variable to determine ∂f
∂t

and ∂f
∂s

.
From previously

df =
∂f

∂x
dx+

∂f

∂y
dy

And, since x, y are functions of t, s:

dx =
∂x

∂t
dt+

∂x

∂s
ds

dy =
∂y

∂t
dt+

∂y

∂s
ds

Thus,

df =
∂f

∂x

(
∂x

∂t
dt+

∂x

∂s
ds

)
+
∂f

∂y

(
∂y

∂t
dt+

∂y

∂s
ds

)
=

(
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t

)
dt+

(
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

)
ds

But f is also a function of t and s, so

df =
∂f

∂t
dt+

∂f

∂s
ds

Comparing the last two equations:

∂f

∂t
=

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
∂f

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

Example

If z(x, y) = xy and x(s, t) = s− t and y(s, t) = sin(s+ t), find ∂z
∂s

and ∂z
∂t

.

First use:
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∂z

∂s
=

∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

= y · 1 + x · cos(s+ t) =

= sin(s+ t) + (s− t) cos(s+ t)

and similarly for ∂z
∂t

.
Or we could have expressed z in terms of s and t

z = xy = (s− t) sin(s+ t)

from which we can immediately derive the partial derivative

∂z

∂s
= sin(s+ t) + (s− t) cos(s+ t)

5.5 Stationary points of multivariate functions [see Riley, section 5.8]

In multivariate calculus, stationary points are determined by the condition(
∂f

∂x

)
y

=

(
∂f

∂y

)
x

= 0 .

To determine their nature, we consider the following conditions:

• A minimum if the following three conditions are satisfied

fxx > 0, fyy > 0 and fxxfyy > f 2
xy .

• A maximum if

fxx < 0, fyy < 0 and fxxfyy > f 2
xy .

This last part of this condition turns out the same as for a minimum.

• A saddle point if

f 2
xy > fxxfyy .

If f 2
xy = fxxfyy, further investigation is required by Taylor-expanding (see Chapter 6) the function

to higher orders. This includes the case fxx = fyy = fxy = 0.

Example
Find the critical point of the function

f(x, y) = x2 − 2xy + 2y2 − 2y + 2
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and show that this critical point is a local minimum.

We have

∂f

∂x
= 2x− 2y

∂f

∂y
= −2x+ 4y − 2

By setting the first partial derivatives to zero we find:

2x− 2y = 0⇒ x = y

−2x+ 4y − 2 = 0⇒ (replacing x = y)2x− 2 = 0

which gives x = y = 1. Now, we calculate the higher order derivative:

∂2f

∂x2
= 2

∂2f

∂y2
= 4

∂2f

∂x∂y
= −2

Since fxx > 0, fyy > 0 and fxxfyy − f 2
xy > 0, f has a local minimum at (1, 1).

5.6 Stationary points when there is a constraint [see Riley 5.9]

We may have a situation where not all variables are independent, as has been the case so far. So, we may
have have a constraint of the form φ(x, y, z) =constant. Then one of the variables, say z is not independent,
it depends on x and y. We could in fact use φ(x, y, z) = c to eliminate z from f , but this can be diffi-
cult or even impossible. The method of the Lagrange multiplier is an elegant way of handling this problem.

So, for a function of three variables f(x, y, z) and the constraint φ(x, y, z) = c we have

df = 0 =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

and dφ =
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz = 0

multiplying dφ by λ and adding to df

df + λdφ =

(
∂f

∂x
+ λ

∂φ

∂x

)
dx+

(
∂f

∂y
+ λ

∂φ

∂y

)
dy +

(
∂f

∂z
+ λ

∂φ

∂z

)
dz = 0 .

where λ is the Lagrange multiplier.
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Then since dx, dy, dz are independent and df + λdφ = 0, we must choose λ such that

∂f

∂x
+ λ

∂φ

∂x
= 0

∂f

∂y
+ λ

∂φ

∂y
= 0

∂f

∂z
+ λ

∂φ

∂z
= 0

Example
Find the rectangle of maximum area which can be placed with its sides parallel lo the x and y axes inside
the ellipse x2 + 4y2 = 1.

So we want to maximize the area
A = 2x · 2y = 4xy

under the constraint
x2 + 4y2 = 1 .

We identify f and φ as

f = 4xy

φ = x2 + 4y2

and derive:

∂f

∂x
+ λ

∂φ

∂x
= 4y + 2λx = 0⇒ 2y + λx = 0⇒ λ = −2y

x
∂f

∂y
+ λ

∂φ

∂y
= 4x+ 8λy = 0⇒ x+ 2λy = 0

⇒ (substituting for lambda)x+ 2y(−)
2y

x
= 0⇒ x2 − 4y2 = 0⇒ x = ±2y

but x > 0, y > 0 so x = 2y. And replacing in the original equation for the ellipse:

x2 + 4y2 = 1⇒ 4y2 + 4y2 = 1⇒ y =
1

2
√

2
, x =

1√
2

and the maximum area is

A = 4xy = 4
1√
2

1

2
√

2
= 1 .

Example
Find the values of x and y that maximise the function

f(x, y) = xy3/2
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subject to the constraint
x+ 2y = 100 .

The first order conditions are:

y3/2 + λ = 0
3

2
xy1/2 + λ · 2 = 0

from which
3

2
xy1/2 − 2y3/2 = 0⇒ y =

3

4
x

and replacing in the constraint:

x+ 2y = 100⇒ x+ 2
3

4
x = 100⇒ 5

2
x = 100⇒ x = 40

and

y =
3

4
x =

3

4
· 40 = 30

5.7 Polar coordinates in two dimensions

Consider polar coordinates in two dimensions. The position vector is

r = xi+ yj ,

with

x = r cos θ (1)

y = r sin θ . (2)

The unit vectors are r̂ and θ̂ and are not constant because their directions change. If a vector, r, depends
on a parameter u, then a vector that points in the direction determined by an infinitesimal increase in u
is defined by

eu =
∂r

∂u

and the unit vector pointing in the same direction is

êu =
eu

|eu|

In terms of i and j

er =
∂r

∂r
, êr ≡ r̂ = cos θi+ sin θj

eθ =
∂r

∂θ
, êθ ≡ θ̂ = − sin θi+ cos θj

from which we can derive the derivatives:
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dr̂

dθ
= − sin θi+ cos θj = θ̂

dθ̂

dθ
= − cos θi− sin θj = −r̂

The velocity v is

v =
dr

dt
=
drr̂

dt
=

dr

dt
r̂ + r

dr̂

dt

=
dr

dt
r̂ + r

dr̂

dθ

dθ

dt

=
dr

dt
r̂ + r

dθ

dt
θ̂

= vrr̂ + vθθ̂

and the acceleration is given by (show it as an exercise)

a =
dv

dt
=

d

dt

(
dr

dt
r̂ + r

dθ

dt
θ̂

)
=

=

(
d2r

dt2
− r

(
dθ

dt

)2
)
r̂ +

(
r
d2θ

dt2
+ 2

dr

dt

dθ

dt

)
θ̂

or in another notation
a =

(
r̈ − rθ̇2

)
r̂ +

(
rθ̈ + 2ṙθ̇

)
θ̂

5.8 Cylindrical and spherical polar coordinates [see Riley, section 10.9]

Cylindrical polar coordinates

The position of a point P in cylindrical polar coordinates is

x = ρ cosφ

y = ρ sinφ

z = z

and the position vector r is
r = ρ cosφi+ ρ sinφj + zk .

The unit vectors, ρ̂, φ̂, k̂, are in the directions of increasing ρ, φ, z, i.e.:

eρ =
∂r

∂ρ

eφ =
∂r

∂φ

ez =
∂r

∂z
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and after normalization we have for the unit vectors:

ρ̂ = i cosφ+ j sinφ

φ̂ = −i sinφ+ j cosφ

k̂ = k

Spherical polar coordinates

The position of point P in spherical polar coordinates is

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ .

The position vector is
r = r cosφ sin θi+ r sinφ sin θj + r cos θk

and the unit vectors r̂,θ̂,φ̂ in directions of increasing r,θ,φ respectively are

r̂ = i sin θ cosφ+ j sin θ sinφ+ k cos θ

θ̂ = i cos θ cosφ+ j cos θ sinφ− k sin θ

φ̂ = −i sinφ+ j cosφ
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