
4 Integration

4.1 The definite and indefinite integrals

Definition of definite integral

The expression:

Iab =

∫ b

a

f(x)dx = lim
δx→0

x=b∑
x=a

f(xi)δx .

is the definition of the definite integral of f(x) between the lower limit x = a and the upper limit x = b.
It corresponds to the area under the curve.

Definition of indefinite integral

The indefinite integral is defined by

I(x) =

∫ x

a

f(u)du

where a is an arbitrary value of x and u is a dummy variable.

We now show that if we differentiate the indefinite integral just defined we get back to f(x) ie integration
is the reverse of differentiation and vice versa.
Using the basic definition of the derivative we find

dI(x)

dx
=
d

dx

∫ x

a

f(u)du = lim
δx→0

∫ x+δx
a

f(u)du−
∫ x
a
f(u)du

δx
= f(x)

(Think of the two integrals in the numerator in terms of areas
∑
f(xi)δx where the first has one bin more

than the second).
From now on we can regard the indefinite integral as the reverse of the derivative and we will write it as∫

f(x)dx

and not worry about limits a and x or the dummy variable u.
Of course, if F(x) is a function whose derivative is f(x), then all functions F (x) + c, where c is a constant,
also have a derivative of f(x). So we conventionally write∫

f(x)dx = F (x) + c

where c is the constant of integration.
Returning to the definite integral between two limits x = A and x = b, this can be written as follows∫ b

a

f(x)dx =

∫ b

x0

f(x)dx−
∫ a

x0

f(x)dx = F (b)− F (a) ≡ [F ]ba

where x0 is an arbitrary fixed point.
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4.2 Integrals of basic functions

In this section we obtain integrals by regarding integration as the reverse of differentiation. This method
may be extended slightly by differentiating the result of an integration, and adjusting the result, so as to
obtain the integrand that we started with.
The integral of xn

Since we have

d xn

dx
= nxn−1 then

∫
d xn

dx
dx = xn =

∫
nx(n−1)dx or xn+1 =

∫
(n+ 1)xndx and

∫
xndx =

1

n+ 1
xn+1 + constant

The integral of 1/x
Although the curve of 1/x has clearly an area between it and the x axis the formula above fails for n = −1.
We have seen that the function lnx has derivative given by

d lnx

dx
=

1

x

thus the integral of 1/x is: ∫
1

x
dx = ln |x|+ c

Exponential functions
Considerations of differentiation have led to the identification

dex

dx
= ex

therefore ∫
exdx = ex + c .

Consider now the integral of ax. We first calculate its derivative. We notice that

If y = ax then ln y = x ln a

and

d ln y

dx
=
d ln y

dy

dy

dx
= ln a.

Thus

1

y

dy

dx
= ln a

and multiplying both sides by y
dy

dx
= y ln a .
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Finally, replacing y = ax we obtain the wanted derivative

dax

dx
= ax ln a

Since
d ax

dx
= axln a,

∫
d ax

dx
dx =

∫
ax ln adx

and ∫
axdx =

ax

ln a
+ c.

Trigonometric functions

We have seen that:

d sin θ

dθ
= cos θ .

d cos θ

dθ
= − sin θ .

From the above we also have ∫
sin θdθ = − cos θ + c

and ∫
cos θdθ = sin θ + c .

By taking derivatives it is immediate to verify that:∫
tan θdθ = − ln | cos θ|+ c

∫
cos θ sinn θdθ =

sinn+1 θ

n+ 1
+ c

∫
sin θ cosn θdθ =

cosn+1 θ

n+ 1
+ c

Integrals producing inverse trigonometric functions

We have seen that:

d sin−1(x/a)

dx
=

1√
a2 − x2

;

d cos−1(x/a)

dx
=

−1√
a2 − x2

;
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d tan−1(x/a)

dx
=

a

a2 + x2
.

Thus it is immediate to verify that: ∫
1√

a2 − x2
dx = sin−1(x/a) + c∫

−1√
a2 − x2

dx = cos−1(x/a) + c∫
a

a2 + x2
dx = tan−1(x/a) + c

Integration of some hyperbolic functions.

We have seen that:

d sinhx

dx
= coshx;

d coshx

dx
= sinhx;

from which it follows that: ∫
sinhxdx = coshx;∫
coshxdx = sinhx;∫

tanhxdx = ln | coshx| .

Integrals producing inverse hyperbolic functions

We saw that:

d sinh−1(x/a)

dx
=

1√
x2 + a2

.

The above can be integrated, thus giving:∫
dx√
x2 + a2

= sinh−1
x

a

Likewise from

d

dx
tanh−1

x

a
=

a

a2 − x2
it follows that
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∫
a dx

a2 − x2
= tanh−1

x

a

Example I

I =

∫
sin5 xdx

We need to reduce it to several of the above forms.

∫
sin5 xdx =

∫
sin4 x sinxdx (1)

=

∫
(1− cos2 x)2 sinxdx (2)

=

∫
(1− 2 cos2 x+ cos4 x) sinxdx (3)

=

∫
(sinx− 2 cos2 x sinx+ cos4 x sinx)dx (4)

= − cosx+
2

3
cos3 x− 1

5
cos5 x+ c . (5)

Example II

I =

∫ π

−π
x cosxdx

We recall the definition of odd and even functions.

An odd function satisfies the condition f(x) = −f(−x).

An even function satisfies the condition f(x) = f(−x).

The definite integral of an odd function from x = −a to x = +a is zero because the area calculated for x
less than zero is equal but of opposite sign to the area for x greater than zero.

Thus ∫ π

−π
x cosxdx = 0 .

Example III

I =

∫
1

3x+ 2
dx

Substitute
u = 3x+ 2⇒ du = 3dx

We can now determine the integral

I =

∫
1

u

du

3
=

1

3
ln |u|+ c =

1

3
ln |3x+ 2|+ c

5



Example IV

I =

∫
sinx cosxdx

We could use the standard formulae for
∫

sinx cosn xdx. However, it can also be easily solved directly. By
substituting

u = sinx⇒ du = cosxdx

we obtain

I =

∫
udu =

u2

2
+ c =

1

2
sin2 x+ c

Example V

I =

∫
tanxdx =

∫
sinx

cosx
dx

By substituting
u = cosx⇒ du = − sinxdx

we obtain

I =

∫
−1

u
du = − ln |u|+ c = − ln | cosx|+ c .

4.3 Integration using partial fractions

Reminder: partial fractions
First let us consider expressing proper fractional functions in terms of partial fractions 1 (We shall return
to improper fractional functions shortly). The procedure we adopt is justified by considering that denom-
inators like (x + 1)2 could result from partial fractions with a denominator of the form (x + 1) as well as
its square. Also quadratic denominators will in general have terms linear in x in the numerator. We do a
series of illustrative examples.

Example 1.

x+ 3

(x− 2)(x+ 4)
≡ A

(x− 2)
+

B

(x+ 4)
≡ A(x+ 4) +B(x− 2)

(x− 2)(x+ 4)
ie x+ 3 = A(x+ 4) +B(x− 2) .

Choosing x = 2 to eliminate the B term we find A = 5
6
.

Similarly choosing x = −4 to eliminate A, we find B = 1
6
.

Example 2.

x2 − 3

(x− 1)(x2 + 1)
≡ A

x− 1
+
Bx+ C

x2 + 1
≡ A(x2 + 1) + (Bx+ C)(x− 1)

(x− 1)(x2 + 1)
and

x2 − 3 ≡ A(x2 + 1) + (Bx+ C)(x− 1)

1In a ’proper’ fraction the degree of the numerator is less than that of the denominator. For an ’improper’ fraction the
degree of the numerator is greater or equal to that of the denominator.
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Substituting x = 1 so as to eliminate B and C gives A = −1 and substituting x = 0 will eliminate B. Since
A = −1 we find C = 2 and substituting any other value for x, a small value is sensible, will determine
B = 2.

Example 3.
x− 1

(x+ 1)(x− 2)2
≡ A

x+ 1
+

B

x− 2
+

D

(x− 2)2

Choosing the obvious values for x determines D to be 1
3

and A to be −2
9
. Then comparing the coefficients

of x2 determines B to be 2
9

.

Example 4.

Since
x3

(x+ 1)(x− 3)
is an improper fraction we must do a long division first.

The result of dividing x2 − 2x− 3 into x3 is x+ 2 with a remainder we need not determine, and we have

x3

(x+ 1)(x− 3)
≡ x+ 2 +

Remainder

(x+ 1)(x− 3)
≡ x+ 2 +

A

x+ 1
+

B

x− 3

Obvious substitutions determine A = 1
4

and B = 27
4

.
We now consider the use of partial franctions for integration. Integration sometimes requires fractional
functions to be expressed in terms of two or more simpler fractional functions. If we can split up compli-
cated fractions into several simpler forms, we can then do the integration more easily.

Best demonstrated with an example:

I =

∫
x+ 3

(x− 2)(x+ 4)
= (6)

=

∫
5

6(x− 2)
dx+

∫
1

6(x+ 4)
dx (7)

=
5

6
ln |x− 2|+ 1

6
ln |x+ 4|+ c (8)

When considering a quadratic polynom as the denominator, i.e.

I =

∫
dx

ax2 + bx+ c
.

The way we solve this depends on the discriminant b2 − 4ac.

(a) If b2 − 4ac > 0, we can decompose the original fraction into partial fractions.

(b) If b2 − 4ac < 0, then we will need to resort to trigonometric substitutions.

c) If b2 − 4ac = 0 then we have:

ax2 + bx+ c = a(x+
b

2a
)2

and ∫
dx

ax2 + bx+ c
=

∫
dx

a(x+ b/2a)2
= −1

a

1

(x+ b
2a

)
+ c
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Example

I =

∫
dx

(x− 1)2 + 4

We substitute u = (x− 1) thus du = dx, and the integral becomes

I =

∫
du

u2 + 4

We recall the standard integral ∫
a

a2 + x2
dx = tan−1

(x
a

)
+ c

from which we can derive:

I =
1

2
tan−1

u

2
+ c =

1

2
tan−1

x− 1

2
+ c

4.4 Integration by parts

Integration by parts is the analogue of the product rule for differentiation and indeed we start from the
product rule

(uv)′ = u′v + uv′

Now integrate: ∫
(uv)′dx =

∫
u′vdx+

∫
uv′dx

But ∫
(uv)′dx = uv

Thus rearranging ∫
uv′dx = uv −

∫
u′vdx

Therefore for a product we assign the first term as u and the second as v′ where the former should be easy
to differentiate and the latter easy to integrate. And the results u′v should be easier to integrate.

Example I

I =

∫
xexdx

We identify u and v as follows:

u = x⇒ u′ = 1 (9)

v = ex ⇒ v′ = ex (10)
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Thus

I = xex −
∫

1× exdx = (x− 1)ex

Example II

I =

∫
tan−1 xdx

We identify u and v as follows:

u = tan−1 x⇒ u′ =
1

1 + x2
(11)

v = x⇒ v′ = 1 (12)

Thus

I = x tan−1 x−
∫

x

1 + x2
dx

To determine the second integral, we set

t = 1 + x2 ⇒ dt = 2xdx

I2 ≡
∫

x

1 + x2
dx =

∫
1

t

dt

2
=

1

2
ln t =

1

2
ln(1 + x2)

And we have

I = x tan−1 x− 1

2
ln(1 + x2) + c .

Example III
Consider ∫

lnxdx

Now we set

u = ln x⇒ du =
dx

x
v = x⇒ v′ = 1 (13)

Now

∫
lnx dx = x lnx−

∫
x
dx

x
= x lnx−

∫
dx = x(lnx− 1) .

4.5 Integration using differentiation with respect to a parameter

Example:

I =

∫
xe−axdx

We notice that

xe−ax = − d

da
e−ax
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hence

I = −
∫

d

da
e−axdx .

As the differentiation with respect to a is an independent operation from the integration with respect to
x, we can do whichever we prefer first and then the other. So

I = − d

da

∫
e−axdx = (14)

= − d

da

(
e−ax

−a

)
= (15)

=
d

da

(
e−ax

a

)
= (16)

= −xe
−ax

a
− e−ax

a2
= (17)

= −e−ax1 + ax

a2
(18)

4.6 Integration using reduction formulae

By being able to evaluate a simple expression, e.g.∫ 1

0

(1− x3)0dx

we can use reduction formulae to evaluate a more complicated integral, e.g.∫ 1

0

(1− x3)4dx

By using integration by parts we want to find a relationship between In and In−1 where

In =

∫ 1

0

(1− x3)ndx

and n is a positive integer.

In =

∫ 1

0

(1− x3)(1− x3)n−1dx (19)

=

∫ 1

0

(1− x3)n−1dx−
∫ 1

0

x3(1− x3)n−1dx (20)

= In−1 −
∫ 1

0

xx2(1− x3)n−1dx (21)

We can evaluate the 2nd term by integrating by parts. We set

u = x⇒ u′ = 1 (22)

v =
(1− x3)n

−3n
⇒ v′ = x2(1− x3)n−1 (23)
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and obtain

In = In−1 +
[ x

3n
(1− x3)n

]1
0
−
∫ 1

0

1

3n
(1− x3)ndx

In = In−1 −
1

3n
In ⇒ In =

3n

3n+ 1
In−1

Evaluating I0 is immediate:

I0 =

∫ 1

0

(1− x3)0dx =

∫ 1

0

dx = [x]10 = 1

from which all the others follow:

I1 =
3× 1

3× 1 + 1
× 1 =

3

4

I2 =
6

7
I1, I3 =

9

10
I2, I4 =

12

13
I3

I2 =
12

13
× 9

10

6

7

3

4
=

1944

3640
=

243

455

4.7 Average of a distribution [see Riley et al, 2.2.13]

Average of a function
The average of y1, y2, y3, ...., yn is

ȳ =
1

n

n∑
k=1

yk

For a function f we sample values at equally spaced points in [a, b]: x1, x2, ....xn. The spacing is ∆x =
(b− a)/n. Thus we have

f̄ =
1

n

n∑
k=1

f(xk)

We notice that
1

n
=

∆x

b− a
thus f̄ can be written as

f̄ =
1

b− a

n∑
k=1

f(xk)∆x

And for n→∞,

f̄ =
1

b− a

∫ b

a

f(x)dx

Example: determine the time-averaged electrical power generated by a current I = I0 cos(2πft) and a
voltage V = V0 cos(2πft+ δ), which is phase shifted, over one cycle, i.e. from t = 0 to t = T = 1/f .
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P = 〈IV 〉 =
1

T

∫ T

0

I0V0 cos(2πft) cos(2πft+ δ)

=
I0V0
T

∫ T

0

cos(2πft)[cos 2πft cos δ − sin(2πft) sin δ]dt

=
I0V0
T

∫ T

0

cos2(2πft) cos δ − cos(2πft) sin(2πft) sin δ]dt

=
I0V0
T

∫ T

0

[
1 + cos(4πft)

2
cos δ − sin(4πft)

2
sin δ]dt

=
I0V0
T

{[
cos δ

2
t

]T
0

+

[
sin(4πft)

2× 4πf
cos δ

]T
0

+

[
cos(4πft)

2× 4πf
sin δ

]T
0

}
= (24)

=
I0V0

2
cos δ (25)

Average for a discrete variable probability distribution
Let x be a discrete random variable taking the values x1,..., xn with probability P (x1), P (x2), ...., P (xn).
The mean, or expectation or expected value of x, is defined as

x̄ =
n∑
i=1

xiP (xi) .

Example: if x can take the values 1,2,3,4 and 5 with probabilities P (1) = 1/10, P (2) = 2/10, P (3) = 4/10,
P (4) = 2/10, P (5) = 1/10, then

x̄ =
1

10
+

4

10
+

12

10
+

8

10
+

5

10
= 3

Average for a continuous variable probability distribution

We can use integration to find the mean (or expectation) value of a variable in a probability function. To
find the mean value of x in a function between the limits a and b, we do the following integration

x̄ =

∫ b

a

xf(x)dx

Example: take the Maxwell-Boltzmann distribution, which describes the distribution of the magnitude of
speed for non-interacting particles in a gas:

P (v) = Av2e−B
2v2

where

A = 4π
( m

2πkT

)3/2
, B2 =

m

2kT
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From which we can derive the average of v:

v̄ =

∫ +∞

0

v × Av2e−B2v2dv

We can integrate by parts:

u = v2 ⇒ u′ = 2v (26)

w = −e
−B2v2

2B2
⇒ w′ = ve−B

2v2 (27)

v̄ = A

[
−v2 e

−B2v2

2B2

]+∞
0

+
A

B2

∫ +∞

0

ve−B
2v2dv (28)

= 0 +
A

B2

[
e−B

2v2

−2B2

]+∞
0

(29)

=
A

2B4
(30)

Replacing with values of A and B we obtain

v̄ = 4π
( m

2πkT

)3/2
× 1

2
×
(

2kT

m

)2

=

√
8kT

πm

4.8 Volumes of revolution [see Riley et al, 2.2.13]

One can use integration to find the volume of a solid generate when a curve f(x) is rotated about the
x−axis. We can think of the volume as being composed of disks with radius f(x) and thickness ∆x, and
hence the volume

V = πf(x)2∆x

for one disk. To find the total volume, we sum up all disks between the limits x = 0 and x = b. So the
volume of revolution is

V =
x=b∑
x=a

πf(x)2∆x

which becomes the following equality when ∆x→ 0

V =

∫ b

a

πf(x)2dx

Example: derive the volume of a sphere of radius r.

A sphere is formed by rotating a disk around the x axis, which has the equation

x2 + y2 = r2, i.e. y2 = r2 − x2 .
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Putting this into the volume of revolution formula, we have:

Vsphere = π

∫ +r

−r
(r2 − x2)dx (31)

= π

[
r2x− x3

3

]+r
−r

(32)

= π

(
r3 − r3

3

)
− π

(
−r3 +

r3

3

)
=

4

3
πr3 (33)

4.9 Numerical integration and the trapezium rule [see Riley et al, 27.4.1]

We divide the area under a curve which has a range [a, b] into N strips of equal width.

The thickness, h, is defined by

h =
b− a
N

As each strip, spanning yi−1 to yi is a trapezium and we know its area we can write

∆A =
1

2
(yi−1 + yi)

b− a
N

and summing up all trapezia

A =

∫ b

a

f(x)dx =
b− a
N

[
1

2
y0 + (y1 + y2 + ....+ yN−1 +

1

2
yN

]

4.10 Applications of complex numbers to integration [see Riley 3.6]

We can use complex numbers to perform differentiation or integration which should make the process
simpler. For example, consider the integral

I =

∫
eax cos bxdx .

We could do integration by parts twice. Or, note that

eibx = cos bx+ i sin bx

thus
eax(cos bx+ i sin bx) = eaxeibx = e(a+ib)x

where the real part is the integrand we want.∫
e(a+ib)x = =

e(a+ib)x

(a+ ib)
+ constant =

=
e(a+ib)x

(a+ ib)

a− ib
(a− ib)

+ constant =
eax

(a2 + b2)
(cos bx+ i sin bx)(a− ib) + constant =

=
eax

(a2 + b2)
[a cos bx+ b sin bx+ i(a sin bx− b cos bx)] + constant (34)
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Thus ∫
eax cos bxdx =

eax

(a2 + b2)
[a cos bx+ b sin bx] + constant

and we also get ∫
eax sin bxdx =

eax

(a2 + b2)
[a sin bx− b cos bx] + constant

4.11 Various examples [see Riley et al, 2.2.7]

More trigonometric substitution

Integrals of the form

I =

∫
dx

a+ b cosx
dx and I =

∫
dx

a+ b sinx
dx

can be solved by making the substitution

t = tan
x

2
.

From before,
dt

dx
=

1

2
sec2

x

2
=

1

2
(1 + tan2 x

2
) =

1 + t2

2

i.e.

dx =
2dt

1 + t2
.

And sin x, cos x can be expressed in terms of t as

sinx =
2 tan(x/2)

1 + tan2(x/2)
=

2t

1 + t2
(35)

cosx =
1− tan2(x/2)

1 + tan2(x/2)
=

1− t2

1 + t2
(36)

Example

I =

∫ π/2

−π/2

2

1 + 3 cosx
dx

First we do the indefinite integral.

t = tan
x

2
⇒ dx =

2

1 + t2
dt

cosx =
1− t2

1 + t2
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I =

∫
2

1 + 31−t2
1+t2

2

1 + t2
dt

=

∫
4

1 + t2 + 3(1− t2)
dt

=

∫
2

2− t2
dt

=

∫
2

(
√

2− t)(
√

2 + t)
dt

=
1√
2

∫ (
1√

2− t
+

1√
2 + t

)
dt

= − 1√
2

ln(
√

2− t) +
1√
2

ln(
√

2 + t)

=
1√
2

ln

(√
2 + t√
2− t

)

=
1√
2

ln

(√
2 + tan(x/2)√
2− tan(x/2)

)

Now the definite integral

I =
1√
2

[
ln

(√
2 + tan(x/2)√
2− tan(x/2)

)]π/4
−π/4

=
1√
2

(
ln

(√
2 + tan(π/4)√
2− tan(π/4)

)
− ln

(√
2 + tan(−π/4)√
2− tan(−π/4)

))
(37)

Example

I =

∫
1

3 + cos2 x
dx

We change variable

t = tanx⇒ dt

dx
= 1 + tan2 x⇒ dx =

dt

1 + t2
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I =

∫
1 + t2

4 + 3t2
dt

1 + t2

=

∫
dt

4 + 3t2

=
1

3

∫
dt

4/3 + t2

=
1

3

√
3

2
tan−1

(
t
2√
3

)
+ c

=
1

2
√

3
tan−1

(√
3

2
tanx

)
+ c (38)
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