
 

2 Complex Numbers

2.1 The imaginary number i [see Riley 3.1, 3.3]

Complex numbers are a generalisation of real numbers. they occur in many branches of mathematics and
have numerous applications in physics.

The imaginary number is
i =
√
−1⇔ i2 = −1

The obvious place to see where we have already needed this is in the solution to quadratic equation. Eg.
finds the roots of

z2 + 4z + 5 = 0

(z + 2)2 + 1 = 0

(z + 2)2 = −1

and
z1,2 = −2±

√
−1 .

So in this case we use the imaginary number and write the solutions as

z1,2 = −2± i .

which is called a complex number. The general form of a complex number is

z = x+ iy

where z is the conventional representation and is the sum of the real part x and i times the imaginary
part y: these are denoted as

Re(z) = x

Im(z) = y ,

respectively. The imaginary or real part can be zero, so if the imaginary part is, the number is real and
hence real numbers are just a subset of complex numbers.

Also when using the quadratic solutions formula, we had situations where there were no (real) roots
as b2 − 4ac < 0. we could have solved the above quadratic to get the same results:

z1,2 =
−4±

√
16− 20

2
=
−4±

√
−4

2
=
−4± 2

√
−1

2
= −2± i .

A complex number may also be written more compactly as z = (x, y) where x and y are two real numbers
which define the complex number and may be thought of as Cartesian coordinates.
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z=x+iy 

q 

r 

Re(z) 

Im(z) 

Argand diagram 

Recall that in Cartesian coordinates

x = r cos θ

y = r sin θ

Therefore we can represent z in polar coordinates as

z = x+ iy = r(cos θ + i sin θ) .

The number r is called the modulus of z, written as |z| or mod(z). This can be written in terms of x and
y as

|z| =
√
x2 + y2 .

The angle θ is called the argument of z, written as arg(z) (or arg z) and is defined as

arg(z) = tan−1
(y
x

)
.

so arg(z) is the angle that the line joining the origin to z on an Argand diagram makes with the positive
x− axis. The anti-clockwise direction is taken to be positive by convention.

However, θ is not unique since θ+ 2nπ (n is zero or any integer) are also arguments for the same complex
number. We therefore define a principal value of a complex number as that value of θ which satisfies
−π < θ ≤ π. (it could also be 0 < θ ≤ 2π). Also, account must be taken of the signs of x and y when
determining in which quadrants arg(z) lies. E.g. if x and y are both negatives, then −π < arg(z) < −π/2
rather than 0 ≤ arg(z) < π/2 even though the ratios of x and y will be the same when both negative or
both positive.

Example

Find the modulus and argument of z = −3 + 5i.

|z| =
√

32 + 52 =
√

34
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arg(z) = tan−1 5

−3
= −1.03 or − 1.03 + π = 2.11

but given where z must lie on the Argand diagram:

arg(z) = 2.11

i.e. positive and ≤ π.

Note: for z = 3− 5i we would have had arg(z) = −1.03.

2.2 Operations with complex numbers [see Riley 3.2]

Addition and subtraction

The addition or subtraction of two complex numbers leads to, in general, another complex number where
the real and imaginary components are added separately. Therefore for two complex numbers z1 and z2:

z1 ± z2 = (x1 + iy1)± (x2 + iy2) = (x1 ± x2) + i(y1 ± y2) .

Note that complex numbers, as with real numbers, satisfy the commutative and associative laws of addition:

z1 + z2 = z2 + z1

z1 + (z2 + z3) = (z1 + z2) + z3 .

Multiplication

Multiplication of two complex complex numbers gives, in general, another complex number. The product
is calculated by multiplying out in full.

z1 z2 = (x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + ix2y1 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1)

Multiplication is both commutative and associative

z1 z2 = z2z1

(z1z2)z3 = z1(z2z3)

and also has the simple properties
|z1z2| = |z1||z2|

arg(z1z2) = arg(z1) + arg(z2)

e.g. for z1 = 5− 3i, z2 = 1 + 2i:

|z1| =
√

52 + (−3)2 =
√

34

|z2| =
√

12 + 22 =
√

5
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and
|z1z2| =

√
(5 + 6)2 + (10− 3)2 =

√
170 =

√
34× 5 = |z1||z2|

Complex conjugate

If we define a complex number
z = x+ iy ,

then its complex conjugate is
z∗ = x− iy .

So the complex conjugate has the same magnitude as z and when multiplied by z gives a real positive
result:

zz∗ = (x+ iy)(x− iy)

= x2 − ixy + ixy − i2y2

= x2 + y2 = |z|2

Likewise for any two complex numbers

|z1z2|2 = z1z2z
∗
1z

∗
2 = z1z

∗
1z2z

∗
2 = |z1|2|z2|2

and since all moduli are positive
|z1z2| = |z1||z2|

as stated before. Also

z + z∗ = (x+ iy) + (x− iy) = 2x = 2Re(z)

z − z∗ = (x+ iy)− (x− iy) = 2iy = 2iIm(z)

Note that no matter how complicated the expression we can always form the conjugate by replacing every
i by −i.

Example

Consider
z = w(3y+2ix)

where
w = x+ 5i .

So
z = (x+ 5i)3y+2ix

and
z∗ = (x− 5i)3y−2ix

Division

What is
z1
z2

=
x1 + iy1
x2 + iy2

.
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To evaluate, we multiply top and bottom by the complex conjugate of the denominator, z∗2 :

z1
z2

=
x1 + iy1
x2 + iy2

x2 − iy2
x2 − iy2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x22 + y22

=
x1x2 + y1y2
x22 + y22

+ i
x2y1 − x1y2
x22 + y22

and so this multiplication allowed us to separate out real and imaginary components. So in brief:

z1
z2

=
z1z

∗
2

|z2|2
.

Example

−7 + 3i

4 + i
=

(−7 + 3i)(4− i)
(4 + i)(4− i)

=
−28 + 7i+ 12i+ 3

16 + 1
= −25

17
+

19

17
i

Division also has some simple properties: ∣∣∣∣z1z2
∣∣∣∣ =
|z1|
|z2|

arg

(
z1
z2

)
= arg(z1)− arg(z2)

2.3 Exponential form for complex numbers and Euler’s equation [see Riley
3.3]

We have already defined
z = x+ iy

and seen that this can be written as
z = r(cos θ + i sin θ) .

Another form of a complex number, which will allow various operations to be performed far more easily,
uses Euler’s equation:

eiθ = cos θ + i sin θ

(this will be proved later, once series are introduced). Therefore we can express z as

z = r(cos θ + i sin θ) = reiθ .

Also
e−iθ = cos θ − i sin θ

and
z∗ = re−iθ .

We again associate r with |z| and θ with arg(z) and note that rotation by θ is the same as rotation by
θ + 2nπ where n is any integer:

reiθ = rei(θ+2nπ) .
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Example

Write
z = (4 + 3i)eiπ/3

in the form x+ iy (x, y real).
We first expand the exponent:

eiπ/3 = cos
π

3
+ i sin

π

3
=

1

2
+ i

√
3

2

and then multiply:

z =
1

2
(1 + i

√
3)(4 + 3i) =

4− 3
√

3

2
+ i

3 + 4
√

3

2
.

Multiplication and division become more simple when using this exponential form.

For
z1 = r1e

iθ1 and z2 = r2e
iθ2 :

z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2)

and
|z1z2| = |z1||z2|

and
arg(z1z2) = arg(z1) + arg(z2)

follow immediately.
In the same way:

z1
z2

=
r1e

iθ1

r1eiθ1
=
r1
r2
ei(θ1−θ2)

and ∣∣∣∣z1z2
∣∣∣∣ =
|z1|
|z2|

and

arg

(
z1
z2

)
= arg(z1)− arg(z2)

follow immediately.

Example

Considering the real and imaginary parts of the product

eiθeiφ

prove the standard formulae for cos(θ + φ) and sin(θ + φ).

eiθeiφ = ei(θ+φ) = cos(θ + φ) + i sin(θ + φ)
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and

eiθeiφ = (cos(θ) + i sin(θ))(cos(φ) + i sin(φ))

= cos θ cosφ+ i cos θ sinφ+ i sin θ cosφ− sin θ sinφ (1)

as the two above expresssions for eiθeiφ must be equal, we can equate the real parts and imaginary parts.
We obtain in this way

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = sin θ cosφ+ cos θ sinφ

2.4 Hyperbolic and trigonometric functions and complex numbers [see Riley
3.7]

Given our form of exponential representation of a complex number in polar coordinates, we can find new
expressions for the cosine and sine of a quantity. We have

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ

from which we derive

eiθ + e−iθ = 2 cos θ ⇒ cos θ =
eiθ + e−iθ

2

eiθ − e−iθ = 2i sin θ ⇒ sin θ =
eiθ − e−iθ

2i
(2)

Hyperbolic functions are defined as:

sinhx =
ex − e−x

2

coshx =
ex + e−x

2
.

So there are simple relationships between the trigonometric and hyperbolic functions:

cosh(ix) =
eix + e−ix

2
= cosx

or

cos(ix) =
ei(ix) + e−i(ix)

2
=
e−x + ex

2
= coshx .

And, in the same way:

sinh(ix) =
eix − e−ix

2
= i sinx

or

sin(ix) =
ei(ix) − e−i(ix)

2i
=
e−x − ex

2i
= i sinhx .
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2.5 de Moivre’s theorem and application [see Riley, section 3.4]

Since we have (
eiθ
)n

= einθ ,

then
(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) .

This is the Moivre’s theorem. It is valid for all n; real, imaginary, or complex.

Trigonometric identities

We can express a multiple-angle function in terms of a polynomial of single angles and e.g. derive identities,
e.g. cos(2x):

cos(2x) + i sin(2x) = (cos(x) + i sin(x))2 = cos2 x− sin2 x+ 2i sinx cosx .

Equating real and imaginary parts

cos(2x) = cos2 x− sin2 x

sin(2x) = 2 sinx cosx

Identities for z = eiθ:

zn +
1

zn
= 2 cosnθ

zn − 1

zn
= 2i sinnθ

which can be obtained from de Moivre’s theorem and we have already shown for the case of n = 1.

Finding roots

To find n complex roots of e.g. zn − 1 = 0, where n is a positive integer, we use the form

1 = e2πki = cos 2πk + i sin 2πk

where k is any integer or 0. Thus

z = 11/n = (cos 2πk + i sin 2πk)1/n = cos
2πk

n
+ i sin

2πk

n

which letting k = 0, 1, 2, 3, ..., (n− 1) has n distinct values z1, z2, ..., zn.

Example

Find the roots (−8)1/3.

There is one obvios value, -2, but there are two other complex roots. we can write

−8 = 8ei(π+2nπ)
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thus
(−8)1/3 = 2e(iπ/3)(2n+1) .

So the roots are for n = 0, 1, 2:

z1 = 2eiπ/3 = 2(cos
π

3
+ i sin

π

3
) = 1 + i

√
3

z2 = 2eiπ = 2(cosπ + i sin π) = −2

z3 = 2ei5π/3 = 2(cos
5π

3
+ i sin

5π

3
) = 1− i

√
3
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