Perfect gas law
$$P = \frac{1000R}{\bar{M}} \rho T = R_s \rho T$$

Hydrostatic equation
$$\frac{dP}{dz} = -g\rho(z)$$

Scale Height $P = P_0 \exp(-z/H)$ where

$$H = \frac{1000R\bar{T}}{g\bar{M}} = \frac{R_S\bar{T}}{g}$$

Adiabatic Lapse Rate $\frac{dT}{dz} = -\frac{g}{C_P}$

Parcel and Environmental viewpoints

Residence time $\tau = \text{Mass/Flux}$

Solar constant S; energy per unit area delivered by the Sun at earth orbit.

The Beer-Lambert Law dI = -KNIdz

Ozone layer creation by UV radiation; Destruction by free radical reactions.

$$CIO + O_3 \longrightarrow CIO_2 + O_2$$

 $CIO_2 + O \longrightarrow CIO + O_2$

Damage functions $D = \int_0^\infty E(\lambda)I(\lambda)d\lambda$

Energy balance of atmosphere

$$T_E^4 = S(1-a)/4\sigma$$

The Greenhouse effect Atmosphere lets through solar radiation, absorbs terrestrial radiation.

$$T_0 = T_E \sqrt[4]{2}$$

Clausius-Clapeyron Equation

$$\frac{d \ln e_s}{dT} = \frac{L_S}{R_S(\mathrm{H_2O})T^2}$$

Humidity - specific, saturated, relative

- e depends on temperature since $e = \rho_v R_S T$
- q is independent of temperature (if there is no condensation) since $q=\frac{e}{P}\frac{M_v}{M}$
- ullet e_s depends on temperature (Clausius-Clapeyron equation)
- \bullet q_s depends on temperature and pressure
- Relative humidity depends on temperature $(RH = 100e/e_s)$

Water vapour in the air measured by a wet bulb thermometer or dew-point meter.

Evolution of rain drops nucleation using aerosol particles. Growth by diffusion then coalescence.

Lightning potential difference created by falling hailstones; leader (downwards) followed by upward return stroke.

Porosity of soil field capacity, permanent wilting point, available capacity

Water potential $\Psi = -(depth + suction)$

Groundwater flow Darcy's Law $Q_W = -\kappa \frac{d\Psi}{dx}$

Forces on air gravity, pressure, coriolis, friction

Geostrophic wind
$$\frac{1}{\rho}\frac{dP}{dx} = (2\Omega \sin \phi)V$$

Thermal Wind Equation
$$\frac{\Delta V_g}{\Delta z} = \frac{g}{f_c T} \frac{d \bar{T}}{dx}$$

Gradient Wind Equation
$$\frac{1}{\rho}\frac{dP}{dx} = \frac{V^2}{R} + f_c V$$

Depressions and frontal systems origin, growth and decay.

Hurricanes and tornadoes life-cycle; geostrophic vs. cyclostrophic.

Global air circulation Combination of "seabreeze" effect and conservation of angular momentum. Polar, Ferrel and Hadley cells.