Solution A1l

Al(a) [seen similar]

The ”effective” gravitational mass of photon is

E/c® = hv/c.
From energy conservation
Gm hv Gm hvg
oy il

where v, is the frequency of the photon at the surface of the planet.
Thus
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[? Marks]
Taking into account that in Newtonian limit Gm/rc? < 1,
for redshift z we have

Vs Gm Gm
As U Rc2  re?’

hence

Then taking into account that
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we obtain
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A1(b) [seen similar]

From Eq. (7)
3 2 3/2 3 1/2
m= Bz3/2p*1/2, where B = (32) <47T) .
Then
o (3X(3x10"m-s71)? x 5 x 1071 3/2 3 v
- 2 % 6.7 x 10~8cm3g—1s2 4%314x5-g-cm=3 -

~ 6 x 10*7g = 6 x 10*kg

(the mass of the Earth)



Solution A2

A2(a) [seen similar]

At the moment of the black hole formation the radius of the cloud is equal to its gravitational

radius, 4.

i i

M = ?pORg’ and M = 3 pBHrS.
Taking into account that
2GM c?
9=z hence M = %7’9,

we obtain
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A2(b) [seen similar]

Obviously

po = PBH _ qpt-9 kg/m™3 =1)"° kg/m~3.
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Solution A3

A3(a) [seen similar]

The Ergosphere is the region between the event horizon of rotating black hole and its limit of
stationarity. The term ergosphere reflects the fact that it is possible to extract the rotational
energy of the black hole, located outside the event horizon, with the help of some processes in
ergosphere (like Penrose mechanism).

Thus, the inner radius of ergosphere is the radius of the event horizon, rgg, which is determined
from

gt =0, ie g1 =o0. (15)
From the Kerr metric we obtain
A=r?—ryr+a®=0, (16)

hence

1 J
rEHzi(rqu,/rgfélaQ), where a:ﬁc' (17)

The outer region of the ergosphere is the radius of the limit of stationarity, r1s, which is determined
from

goo = 0. (18)
From the Kerr metric we obtain
1- T;—;, where p? = r? + a® cos? 6. (19)
In the equatorial plane, where § = 7/2, this gives

1——=-=0, hence rrg =ry. (20)
r

Hence,

LS 2r 2
f= I =

_ 2 - (21)
L+ /1= (&)
A3(b) [seen similar]
From the previous equation
Je \? 2
1 1—-—= ] == 22
w\i-(gie) =+ (22)

GM? 2 2 ogM?
J == ,/1—<f—1> = =7 f—1. (23)



From expression for rgy we can see that

a> %g = G;TM (24)
From the previous equation
wf% F-1 (25)
From Eq.? follows that
f=2 if a= L. (26)

It is easy to show that af is monotonic function in the range 1 < f < 2. Indeed, in this range of f

da 7 f _ —\ _  Tg s
i~ 7 (V) e ez 0

Hence the rang of a corresponding to f > 3/2 is

7‘/3/2_1<G<LQ (28)

YD) 2

Finally

rgﬁ <a< . (29)



Solution B1

B1(a) [seen similar]

To an order of magnitude gravitational force experienced by a particle of mass dm on the surface
of the star from the star itself is F, ~ Gmdm/r?, while the tidal force producing a relative
acceleration between the the same particle and the centre of the star to an order of magnitude is
Frp ~ GMd&mr/R?, hence defining the tidal radius as the radius at which Fy = Frp, we have
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and finally,

B1(b) [seen similar]

The critical mass, M = M_.;+,can be found from the following equality

2GMcm't

Rrp =1y, where; ry = 5
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p;1/3 — AM?’3. hence M iy = Bp;1/2, where B = A73/2 =
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hence, M, ,.;; ~7

B1(c) [seen similar]

¢) Luminosity is

Rrp Rrp
L x / r2dr'r’ 2 o / dr' < (Rrp — 3ry) oxox (AMl/3 - M) , where A =7.
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Tg Tg

[? Marks] (unseen )
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Taking into account that

2C;(]\4cri
RTD(Mcrit) = rg(Mcrit) = Ttv
we have
L ~z'3 — Bz, where z = M/M_.;; and B =?
[? Marks)
From

L x 1x72/3 — B =0, wehave z = (3B)_3/2 ~7.

dxr 3
Thus

M %?Mcrit-

B1(d) [seen similar]



Solution B2

B2(a) [seen similar]
Taking 6 = 7/2 we can write down the Hamilton-Jacobi equation in the Schwarzschild metric as
2 2 2
rg\~1 [0S rg\ [0S 1 /08 9 9
) ) (-2 (2) -5 (2) - =0.
( T ) (c@t) ( r ) or r2 \ 0¢ e
¢[3 Marks](book work)

Then putting S = —Et + L¢ + S,.(r), we have for the radial component of the four-momentum
o[4 Marks](book work)

?Tf =p1=gup' =g11% = \/fc?; (1— %)72 — (m202+f22> (1— %)71 =
S e () )

¢[2 Marks](book work)
On other hand

ds ot
o[6 Marks](book work)
Thus 4
ar 91 r 1 1 7o\ 1
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dt % c ( r UeffE c r Ults
where
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Uepy = me \/<1+ m262r2> ( r
hence

Introducing = ry/r, we have UT/ = 0 corresponds U;/, =0, so

[(1—2)(1+ az?], =0, (43)
where
L2
¢ R (44)
g
—1—3az® + 2ax =0, (45)
and
1
- - 46
“ x(2 — 3x) (46)
Then
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— 1 — 4
m2ch (1 —x)( +2—3x) 3_3s (47)



and finally

Veme2(1 —ry/r) V2me(r —ry)
E= (2= 3ry/r)1/? T (2r— 3ry) /212" (48)

B2(b) [seen similar]

The effective potential energy includes potential energy and that part of kinetic energy, which
is related with non-radial, angular motion. Points at which E = U, (E is the conservative total
energy) correspond to turning points, where dr/dt = 0.

U=E, U.=0,

corresponds to the circular orbit, stable, if UTHT > 0, and unstable, if U;Ir < 0.
B2(c) [seen similar]

The last circular orbit corresponds the following system of equations: £ = U, U "=0,U" =0.

0=U" ~2a(l —3z), (49)
so x = 1/3, which corresponds to r = 3r,,.

E2
= (1= 1/3)(1+3/3%) = 8/9, (50)

and

22V2
=

E;, = mc

B2(d) [seen similar]



Solution B3

B3(a) [seen similar]

The difference between Newtonian and general relativistic treatment is...7

The covariance principle says: The shape of all physical equations should be the same in an
arbitrary frame of reference, including the most general case of non-inertial frames. If in contrast
to the covariance principle the shape of physical equations were different in local inertial frames in
presence of gravitational field and in non-inertial frames in absence of gravitational field then these
equations would give different solutions, i.e. different predictions for (a) standing on the Earth,
feeling the effects of gravity as a downward pull and (b) standing in a very smooth elevator that
is accelerating upwards with the acceleration g , hence these equations would contradict to the
basic postulate of the General Relativity, the principle of equivalence, which states that a uniform
gravitational field (like that near the Earth) is equivalent to a uniform acceleration. Hence, the
covariance principle is the mathematical formulation of the principle of equivalence.

B3(b) [seen similar]

DA; = gi DA*

hence
giDA* = gix DA* + A¥ Dy,

which obviously means that
AkDgik =0.
Taking into account that A* is arbitrary vector, we conclude that
Dg;, = 0.

Then taking into account that
Dy, = giymdaz™ =0

for arbitrary infinitesimally small vector dz™ we have
Gik;m = 0.
Introducing useful notation

m
Tk, it = gem Ly,

we have
Gik; 1 = %—gmkrﬁ—gim b= %_Fk,il_ri,kl =0.
Permuting the indices ¢, k£ and [ twice as
1—k, k—1I, | —1,
we have
%g;f =Tk au+T15 ki, % =15 w+T1T 4 and — 689;2[ =TI ki — Tk, 14-



Taking into account that
Ly, a =Tk u,

after summation of these three equation we have
Gikl + Giik — grts = 20 ki,

and finally

ozl ozk  Ozm

i L im OGm Ogmi Ogm
K= 29 + .

B3(c) [seen similar]

This situation corresponds to gravitational fields (for example, gravitational waves), when the
space-time is curved, but matter is absent (empty space-time).

B3(d) [seen similar]

Ty = rcoswgpt,

To = rsinwgt,

1

Dyy = mr?(3cos? wot — 1) = émr2(1 + 3 cos 2wyt),
1

Dy = mr?(3sin® wot — 1) = imTQ(l — 3 cos 2wqt),

3
Dy = imrg sin 2wt

then ) ) )
2G 3 4wiG
hi1 = 7%5(%}0)2 cos 2wot = WOT]Z” cos 2wy,
2Gmr? 3 4w Gmir?
hog = Tgi(Zwo)Q cos 2wot = —%T;:T sin 2wp,
2Gmr? 3 42 Gmr?
hia = Tgi(%)o)z sin 2wt = WOTIZW sin 2wy,
it is clear, that
w = 2wp.
From
s  GM
TWwy = TT,
we have
1T Wi
3 GM’
and finally
rot = (4GM)71/3M2/3.
Thus
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