
Solution A1

A1(a) [seen similar]

The ”effective” gravitational mass of photon is

E/c2 = hν/c2. (1)

From energy conservation

hν − Gm

R

hν

c2
= hνs −

Gm

R

hνs

c2
, (2)

where νs is the frequency of the photon at the surface of the planet.
Thus

ν

νs
=

1− Gm
rc2

1− Gm
Rc2

. (3)

[? Marks]
Taking into account that in Newtonian limit Gm/rc2 � 1,
for redshift z we have

1 + z =
λ

λs
=

νs

ν
≈ 1− Gm

Rc2
+

Gm

rc2
, (4)

hence

z =
Gm

rc2

(
1− r

R

)
=

Gm

rc2
(1− 1

3
) =

2Gm

3rc2
. (5)

Then taking into account that

m =
4πρr3

3
, r =

(
3m

4πρ

)1/3

(6)

we obtain

z =
2Gm

3c2

(
3m

4πρ

)−1/3

= Am2/3ρ1/3, where A =
2G

3c2
(
4π

3
)1/3. (7)

A1(b) [seen similar]

From Eq. (7)

m = Bz3/2ρ−1/2, where B =
(

3c2

3G

)3/2 (
3
4π

)1/2

. (8)

Then

m =
(

3× (3× 1010cm · s−1)2 × 5× 10−10

2× 6.7× 10−8cm3g−1s−2

)3/2 (
3

4× 3.14× 5 · g · cm−3

)1/2

≈

≈ 6× 1027g = 6× 1024kg (9)

(the mass of the Earth)



Solution A2

A2(a) [seen similar]

At the moment of the black hole formation the radius of the cloud is equal to its gravitational
radius, rg.

M =
4π

3
ρ0R

3
0, and M =

4π

3
ρBHr3

g . (10)

Taking into account that

rg =
2GM

c2
, hence M =

c2

2G
rg, (11)

we obtain

c2

2G
rg =

4π

3
ρBHr3

g , hence rg =

√
3c2

8πGρbh
= c

√
3

8πGρbh
. (12)

A2(b) [seen similar]

Obviously

ρ0 =
ρBH

α
= 104−9 kg/m−3 = 1)−5 kg/m−3. (13)

M =
c2

2G
rg =

c3

2G

√
3

8πGρbh
=

1
2

√
3
8π

c3

G3/2ρ
1/2
BH

=

=
27

2× 2× 6.7

√
3

2π × 6.7
× 1034 s3−3m3−3/2cm−3/2kg−1/2g3/2 ≈

≈ 3× 1033
( m

cm

)3/2
(

g
kg

)3/2

≈ 3× 1033
(
102−3

)
kg ≈ 1032kg. (14)



Solution A3

A3(a) [seen similar]

The Ergosphere is the region between the event horizon of rotating black hole and its limit of
stationarity. The term ergosphere reflects the fact that it is possible to extract the rotational
energy of the black hole, located outside the event horizon, with the help of some processes in
ergosphere (like Penrose mechanism).
Thus, the inner radius of ergosphere is the radius of the event horizon, rEH , which is determined
from

g11 = 0, i.e. g11 = ∞. (15)

From the Kerr metric we obtain

∆ ≡ r2 − rgr + a2 = 0, (16)

hence

rEH =
1
2

(
rg +

√
r2
g − 4a2

)
, where a =

J

Mc
. (17)

The outer region of the ergosphere is the radius of the limit of stationarity, rLS , which is determined
from

g00 = 0. (18)

From the Kerr metric we obtain

1− rgr

ρ2
, where ρ2 = r2 + a2 cos2 θ. (19)

In the equatorial plane, where θ = π/2, this gives

1− rgr

r2
= 0, hence rLS = rg. (20)

Hence,

f =
rLS

rEH
=

2rg

rg +
√

r2
g − 4a2

=
2

1 +

√
1−

(
2a
rg

)2
=

=
2

1 +
√

1−
(

Jc
GM2

)2
. (21)

A3(b) [seen similar]

From the previous equation

1 +

√
1−

(
Jc

GM2

)2

=
2
f

, (22)

J =
GM2

c

√
1−

(
2
f
− 1

)2

=
2GM2

cf

√
f − 1. (23)



From expression for rEH we can see that

a ≥ rg

2
=

GM

c2
. (24)

From the previous equation

a =
rg

f

√
f − 1. (25)

From Eq.? follows that

f = 2, if a =
rg

2
. (26)

It is easy to show that af is monotonic function in the range 1 ≤ f ≤ 2. Indeed, in this range of f

da

df
=

rg

f2

(
f

2
√

f − 1
−

√
f − 1

)
=

rg

2f2
√

f − 1
(2− f) ≥ 0. (27)

Hence the rang of a corresponding to f > 3/2 is

rg

√
3/2− 1
3/2

< a <
rg

2
. (28)

Finally

rg

√
2

3
< a <

rg

2
. (29)



Solution B1

B1(a) [seen similar]

To an order of magnitude gravitational force experienced by a particle of mass δm on the surface
of the star from the star itself is Fs ≈ Gmδm/r2, while the tidal force producing a relative
acceleration between the the same particle and the centre of the star to an order of magnitude is
FTD ≈ GMδmr/R3, hence defining the tidal radius as the radius at which Fg ≈ FTD, we have

Gmδm

r2
≈ GMrδm

R3
TD

, (30)

and finally,

RTD ≈ r

(
M

m

)1/3

≈
(

3M

4πρs

)1/3

. (31)

B1(b) [seen similar]

The critical mass, M = Mcrit,can be found from the following equality

RTD = rg, where; rg =
2GMcrit

c2
, (32)

(
3Mcrit

4πρs

)1/3

=
2GMcrit

c2
, (33)

M
1/3
critρ

−1/3
s = AMcrit, where A =

241/3π1/3G

31/3c2
, (34)

ρ−1/3
s = AM

2/3
crit, hence Mcrit = Bρ−1/2

s , where B = A−3/2 =
31/2c3

421/2
π1/2G3/2 ≈? (35)

ρs ≈
3M�

4π106R3
�

, (36)

hence, Mcrit ≈? (37)

B1(c) [seen similar]

c) Luminosity is

L ∝
∫ RT D

3rg

r′2dr′r′−2 ∝
∫ RT D

3rg

dr′ ∝ (RTD − 3rg) ∝∝
(
AM1/3 −M

)
, where A =?. (38)

[? Marks] (unseen )



Taking into account that

RTD(Mcrit) = rg(Mcrit) =
2GMcrit

c2
, (39)

we have

L ∼ x1/3 −Bx, where x = M/Mcrit and B =? (40)

.
[? Marks]

From

dL

dx
∝ 1

3
x−2/3 −B = 0, we have x = (3B)−3/2 ≈?. (41)

Thus

M ≈?Mcrit. (42)

B1(d) [seen similar]



Solution B2

B2(a) [seen similar]

Taking θ = π/2 we can write down the Hamilton-Jacobi equation in the Schwarzschild metric as(
1− rg

r

)−1
(

∂S

c∂t

)2

−
(
1− rg

r

) (
∂S

∂r

)2

− 1
r2

(
∂S

∂φ

)2

−m2c2 = 0.

•[3 Marks](book work)
Then putting S = −Et + Lφ + Sr(r), we have for the radial component of the four-momentum
•[4 Marks](book work)

∂S

∂r
= p1 = g11p

1 = g11
dr

ds
=

√
E2

c2

(
1− rg

r

)−2

−
(

m2c2 +
L2

r2

) (
1− rg

r

)−1

=

=
1
c

(
1− rg

r

)−1

√
E2 −

[
mc2

(
1 +

L2

m2c2r2

) (
1− rg

r

)]2

.

•[2 Marks](book work)
On other hand

dt

ds
= p0 = g00p0 = g00

(
∂S

∂t

)
= −g00E.

•[6 Marks](book work)
Thus

dr

dt
=

dr
ds
dt
ds

=
1
c

(
1− rg

r

) √
E2 − U2

eff

1
E

=
1
c

(
1− rg

r

)−1 √
E2 − U2

eff ,

where

Ueff = mc2

√(
1 +

L2

m2c2r2

) (
1− rg

r

)
,

hence
E

(
1− rg

r

)−1 dr

dt
= c

√
E2 − U2

eff .

Introducing x = rg/r, we have U
′

r = 0 corresponds U
′

x = 0, so

[(1− x)(1 + αx2]
′

x = 0, (43)

where

α =
L2

m2c2r2
g

, (44)

− 1− 3αx2 + 2αx = 0, (45)

and

α =
1

x(2− 3x)
. (46)

Then

E2

m2c4
= (1− x)(1 +

x

2− 3x
) =

2(1− x)2

3− 3x
, (47)



and finally

E =
√

2mc2(1− rg/r)
(2− 3rg/r)1/2

=
√

2mc2(r − rg)
(2r − 3rg)1/2r1/2

. (48)

B2(b) [seen similar]

The effective potential energy includes potential energy and that part of kinetic energy, which
is related with non-radial, angular motion. Points at which E = U , (E is the conservative total
energy) correspond to turning points, where dr/dt = 0.

U = E, U
′

r = 0,

corresponds to the circular orbit, stable, if U
′′

rr > 0, and unstable, if U
′′

rr < 0.

B2(c) [seen similar]

The last circular orbit corresponds the following system of equations: E = U , U
′
= 0, U

′′
= 0.

0 = U
′′
∼ 2α(1− 3x), (49)

so x = 1/3, which corresponds to r = 3rg.

E2

m2c4
= (1− 1/3)(1 + 3/32) = 8/9, (50)

and

Elo = mc2 2
√

2
3

. (51)

B2(d) [seen similar]



Solution B3

B3(a) [seen similar]

The difference between Newtonian and general relativistic treatment is...?
The covariance principle says: The shape of all physical equations should be the same in an

arbitrary frame of reference, including the most general case of non-inertial frames. If in contrast
to the covariance principle the shape of physical equations were different in local inertial frames in
presence of gravitational field and in non-inertial frames in absence of gravitational field then these
equations would give different solutions, i.e. different predictions for (a) standing on the Earth,
feeling the effects of gravity as a downward pull and (b) standing in a very smooth elevator that
is accelerating upwards with the acceleration g , hence these equations would contradict to the
basic postulate of the General Relativity, the principle of equivalence, which states that a uniform
gravitational field (like that near the Earth) is equivalent to a uniform acceleration. Hence, the
covariance principle is the mathematical formulation of the principle of equivalence.

B3(b) [seen similar]

DAi = gikDAk

DAi = D(gikAk) = gikDAk + AkDgik,

hence
gikDAk = gikDAk + AkDgik,

which obviously means that

AkDgik = 0.

Taking into account that Ak is arbitrary vector, we conclude that

Dgik = 0.

Then taking into account that
Dgik = gik;mdxm = 0

for arbitrary infinitesimally small vector dxm we have

gik;m = 0.

Introducing useful notation

Γk, il = gkmΓm
il ,

we have
gik; l =

∂gik

∂xl
− gmkΓm

il − gimΓm
kl =

∂gik

∂xl
− Γk, il − Γi, kl = 0.

Permuting the indices i, k and l twice as

i → k, k → l, l → i,

we have

∂gik

∂xl
= Γk, il + Γi, kl,

∂gli

∂xk
= Γi, kl + Γl, ik and − ∂gkl

∂xi
= −Γl, ki − Γk, li.



Taking into account that
Γk, il = Γk, li,

after summation of these three equation we have

gik,l + gli,k − gkl,i = 2Γi, kl,

and finally

Γi
kl =

1
2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
.

B3(c) [seen similar]

This situation corresponds to gravitational fields (for example, gravitational waves), when the
space-time is curved, but matter is absent (empty space-time).

B3(d) [seen similar]

x1 = r cos ω0t,

x2 = r sinω0t,

D11 = mr2
c (3 cos2 ω0t− 1) =

1
2
mr2(1 + 3 cos 2ω0t),

D22 = mr2
c (3 sin2 ω0t− 1) =

1
2
mr2(1− 3 cos 2ω0t),

D12 =
3
2
mr2

c sin 2ω0t,

then

h11 = −2Gmr2

3c4R

3
2
(2ω0)2 cos 2ω0t =

4ω2
0Gmr2

c4R
cos 2ω0,

h22 =
2Gmr2

3c4R

3
2
(2ω0)2 cos 2ω0t = −4ω2

0Gmr2

c4R
sin 2ω0,

h12 =
2Gmr2

3c4R

3
2
(2ω0)2 sin 2ω0t =

4ω2
0Gmr2

c4R
sin 2ω0,

it is clear, that
ω = 2ω0.

From
rω2

0 =
GM

r2
,

we have
1
r3

=
ω2

0

GM
,

and finally
r−1
c = (4GM)−1/3ω2/3.

Thus

h ≈ 4ω2
0Gmr2

c4R
=

rgRg

rR
≈ rg

R

(
Rgω

c

)2/3

.


