Relativistic Astrophysics. 2009. Course Work 3

Q1.

a) Explain what is the reciprocal tensor.

b) Demonstrate how using the reciprocal contravariant metric tensor g^{ik} and the covariant metric tensor g_{ik} you can form contravariant tensor from covariant tensors and vice versa.

c) Show that in an arbitrary non-inertial frame

$$g^{ik} = S^{i}_{(0)0}S^{k}_{(0)0} - S^{i}_{(0)1}S^{k}_{(0)1} - S^{i}_{(0)2}S^{k}_{(0)2} - S^{i}_{(0)3}S^{k}_{(0)3},$$

where $S_{(0)k}^{i}$ is the transformation matrix from locally inertial frame of reference (galilean frame) to this non-inertial frame.

Q2.

a) Give a rigorous proof that the interval is a scalar.

b) Prove that the metric tensor is symmetric.

Q3. Using lecture notes 3, write a short essay (1-2 pages) "Proper time and physical distances".

Q4.

a) Show that all covariant derivatives of metric tensor are equal to zero.

b) Find the relationship between the Cristoffel symbols and first partial derivative of the metric tensor.