
2B27 Problem Sheet 3

1. Show that the maximum power of the wind blowing with velocity v at an angle θ with
respect to the normal of a wind turbine, rotor diameter d can expressed as

P =
1

8
ρπd2v3 cos3 θ.

[5]
Briefly explain why the maximum obtainable power from the wind on a turbine which is
100% efficient must be less than this. [3]
Write down an expression for the coefficient of performance and show that it has a maximum
of 16/27. [2]

Solution

Consider wind velocity v incident at angle θ with respect to the normal of a disc, area A.
The wind velocity normal to the disc will be

v⊥ = v cos θ.

So the kinetic energy carried by a mass or air, dm miving through A in time dt will be

dE =
1

2
dmv2 cos2 θ

but dm = ρAdl where dl = vdt is the distance traveled by the wind in time dt, so

dE =
1

2
ρAv cos θdtv2 cos2 θ.

But A = πr2 = πd2/4 so

P ≡ dE

dt
=

1

8
ρπd2v3 cos3 θ.

For power to be extracted from the air, the air must be able to get away from the turbine,
or else there will be no flow. The air must therefore still have some kinetic energy after
passing through the turbine, so it is not possible to extract all the kinetic energy carried by
the wind.
The maximum amount of energy that can be extracted with a turbine is know as the Betz
limit. If the coefficient of performance CF is given by

CF = 4ε(1 − ε)2

then this has a maximum when dCF/dε = 0, ie

4(1 − ε)2 − 8ε(1 − ε) = 0.

(1 − ε) − 2ε = 0 ⇒ ε =
1

3
.

Which gives us the maximum value, CF = 16
27 .
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2. An estuary has area 100 km2, width 0.5 km and depth at low tide 25 m. If the tidal
range is 6 m, calculate the average power that could be obtained from the estuary using a
barrage scheme. [5]
Calculate the average flow rate during the rising tide. [3]
Calculate the power that could be obtained from the average rising tidal flow using a 100%
efficient underwater turbine with blade radius 8 m. Why would the average power during
the rising tide be higher than this? [6]
How many turbines would be required to power a small town requiring 20 MW. [1]

Solution

The estuary has surface area A = 100×106 m2 and width 500 m, and tidal range 6 m at high
tide. Therefore, the extra volume in the estuary at high tide is V = Ah and the potential
energy of this additional mass of water (assuming all the mass is at the common centre of
gravity) is given by

E = mg
h

2
=

1

2
Ahρgh

=
1

2
Aρgh2

=
1

2
× 108 × 9.81 × 1027 × 36

= 1.813 × 1013J.

The tidal period is T = 12 hours 25 minutes = 44700 s, so the average power is

P = E/T =
1.813 × 1013

44700
= 4.056 × 108W = 405.6MW.

The average volume flow rate, is the total volume over the time it flows, ie the water flows
in, and out during one tidal cycle, so during the rising tide ) ie time T/2, the flow rate is

F =
V

T/2

=
2Ah

T
= 1.68 × 104m3s−1

The mass flow rate (ie the above × the density of sea water, 1027 kg m−3) is also acceptable.
During the rising tide, the water flows through an aperture area a =width×hight. At high
tide, the height is the depth at low tide (ie 25 m) + the tidal range, ie 31 m. At low tide, it
is 25m. Assuming the average of 28 m then

a = 500 × 28m

so the velocity of flow, is the volume flow rate through the apperture, ie

v =
2Ah

Ta

=
2 × 108 × 6

44700 × 500 × 28
= 1.92ms−1.
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So for a turbine which was 100% efficient (ie the Betz limit) then the maximum power is

P =
1

2
CFρAv3

=
1

2
× 16

27
× 1027π × 64 × 1.923

= 4.33 × 105W

= 433kW.

The average power would most likely be more than this, since this is the power calculated
at the average flow rate. Since the power goes as v3, so higher velocities would contribute
more, ie

P̄ ∼
∫

v3dt∫
dt

>

[∫
vdt∫
dt

]3

.

For a town requiring 20 MW, then a total of

n =
20

0.433
= 46.2

ie 47 turbines would be required if power was generated during both the rising and falling
tides, or 94 if power was generated only during the rising, or during the falling tide.
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3. A small block of flats has side lengths 10 m and 5 m and the rooms on each floor are 2 m
high. All the flats are kept at the same temperature so heat loss through the ceiling and floor
of the middle flat can be neglected. If the overall U value for the walls of the flats is 2 W
m−2K−1 and the input and output boundary layer resistances h are 0.1 K m2W−1 calculate
the steady state temperature of the middle flat if the flat is heated by a 1 kW heater and
the outside temperature is 0◦ C. [5]
A building with surface area A and volume V has an overall thermal transmittance (including
boundary resistance) of U . The outside temperature varies with time t as

Tout = T0 exp(−kt)

where T0 is a constant. Derive the following equation determining the evolution of the
temperature, T, inside the building.

T +
ρV cv

AU

dT

dt
= T0 exp(−kt).

[4]
Solve this differential equation to show that the temperature can be expressed as

T =
T0

AU − kρV cv

[
AU exp(−kt) − kρV cv exp

(−AUt

ρV cv

)]
.

[11]

Solution

The U value including the thermal resistances of the boundary layers is given by

1

U
=

1

Uwalls
+ rin + rout

=
1

2
+ 0.1 + 0.1

= 0.7

⇒ U = 1.428Wm−2K−1.

The surface area of the walls of the middle flat is

A = 2 × (10 × 2) + 2 × (5 × 2) = 60m2.

For a system in thermal equilibrium with heat input rate dI/dt, heat loss rate dQ/dt and
rate of internal energy change dU/dt then

dI

dt
=

dQ

dt
+

dU

dt
.

So in the steady state case, where dI/dt = 103 W and the internal energy is not changing,
then dU/dt = 0. Since dQ/dt = AU∆T then

dI

dt
= AU∆T

∆T =
1

AU

dI

dt

=
103

60 × 1/0.7
= 11.7◦C.
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Since the outside temperature is 0◦ C, so the temperature of the room is

T = 11.7◦C.

Consider a building volume, V and surface area A with outside temperature, Tout with time
dependence

Tout = T0 exp−kt.

Since
dI

dt
=

dQ

dt
+

dU

dt

Then if there is no heating, dI/dt = 0 so

dQ

dt
= AU∆T and

dU

dt
= mcv

dT

dt
= ρV cv

dT

dt

where m is the mass of the air and cv is the heat capacity at constant volume (näıvely
asuming no volume dependence on temperature). Therefore

AU∆T + ρV cv
dT

dt
= 0.

but ∆T = T − Tout so

T − T0 exp−kt +
ρV cv

AU

dT

dt
= 0

⇒ T +
ρV cv

AU

dT

dt
= T0 exp−kt.

To solve this for T , we first solve the auxilliary equation

T +
ρV cv

AU

dT

dt
= 0

since you can always add a solution to this equation, to get the general solution, so we try
a form

T = A exp−κt.

Substituting into our auxilliary equation we get

A exp−κt − κρV cv

AU
A exp−κt = 0

⇒ 1 − κρV cv

AU
= 0

⇒ κ =
AU

ρV cv

which gives us

T = A exp
−AUt

ρV cv
.
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Now we need to find a particular integral to our original equation. We try a solution of the
same form as the right hand side of our equation

T = B exp−kt

⇒ B exp−kt − kBrhoV cv

AU
exp−kt = T0 exp−kt

⇒ B
[
1 − kρV cv

AU

]
= T0 ⇒ B =

AUT0

AU − kρV cv
.

So our overall solution becomes

T = A exp
−AUt

ρV cv
+

[
AUT0

AU − kρV cv

]
exp−kt.

Now we take the boundary condition T (t = 0) = T0, so that

T0 = A +
AUT0

AU − kρV cv

so that

A = T0 − AUT0

AU − kρV cv

=
AUT0 − T0kρV cv − AUT0

AU − kρV cv

=
−T0kρV cv

AU − kρV cv

So that our overall solution becomes

T =
T0

AU − kρV cv

[
−kρV cv exp

(−AUt

ρV cv

)
+ AU exp−kt

]

NB. In the original problem sheet, there were some typos, in that the - was missing in
the coefficient of the first exponent and a factor of −t was missing in the first exponent.
Allowances have been made for this in the marking.
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