Quantum Mechanics APHY-319Problems 1

Issue: Tuesday 10th January 2012 **Hand-in:** 16:00 Thursday 19th January 2012 Hand-In questions **1**

Please post your solutions in the box outside the 1st floor departmental offices.

QUESTION 1.

At t = 0 a particle in one dimension has the wave function shown below:

This can be written as: $\Psi(x,0) = N$ for $-a \le x \le +a$ and $\Psi(x,0) = 0$ elsewhere

- a) There is something not quite right with this wavefunction. What is it?
- b) By normalising the wave function, $\Psi(x,0)$, determine *N*.
- c) Evaluate $\langle x \rangle$ and $\langle x^2 \rangle$, and hence the uncertainty in position, Δx .

Exercise Class Questions.

1) Revision exercises in the use of complex numbers:

Write down the complex conjugate, Ψ^* , and the mod-squared, $|\Psi|^2$, of each of the following wave functions (all symbols except *i* are real unless otherwise stated):

a)
$$\Psi(x,t) = e^{-i\pi x} e^{-it}$$

b)
$$\Psi(x,t) = e^{-ax^2} e^{-\frac{iEt}{\hbar}}$$

- 2) Normalisation of a wavefunction:
- a) The ground state wavefunction for the simple harmonic oscillator can be written as:

$$\Psi(x,t) = \psi(x)e^{\frac{-iE_0t}{\hbar}}$$
 with $\psi(x)$ given by $\psi(x) = Ne^{-\frac{ax^2}{2}}$

By normalising the wave function, $\Psi(x, t)$, determine N.

b) The ground state wavefunction for for a particle in an infinite potential well, between 0 and L, can be written as:

$$\Psi(x,t) = N \sin\left(\frac{\pi}{L}x\right) e^{\frac{-iE_1t}{\hbar}} \text{ for } 0 \le x \le L$$
$$= 0 \quad \text{elsewhere}$$

By normalising the wave function, $\Psi(x,t)$, determine N.

Some useful maths:
$$\int_{-\infty}^{\infty} e^{-Cx^2} dx = \sqrt{\frac{\pi}{C}}$$
 and $\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$