Quantum Mechanics PHYS2B22 Problem Sheet 3 Work in by Monday February 28th

1) A particle is confined in a 1D box with walls of infinite height at x = -a and x = +a. At t = 0 it is found to have the wavefunction

$$\Psi(x,t=0) = \frac{1}{\sqrt{2a}} \left[\cos\left(\frac{\pi x}{2a}\right) + \sin\left(\frac{\pi x}{a}\right) \right]$$

for $-a \leq x \leq a$ and $\Psi = 0$ otherwise.

a) Sketch the probability density for t = 0. [3]

b) Since the energy eigenfunctions $\psi_n(x)$ for the infinite well form a complete set, we can expand the initial wavefunction in terms of them, i.e. $\Psi(x, t = 0) = \sum_{n=0}^{\infty} a_n \psi_n(x)$. Find (by inspection or otherwise) the coefficients a_n in this expansion. Hence confirm that the wavefunction is correctly normalized. [4]

c) What are the possible results of a measurement of the particle's energy at t = 0? What are the corresponding probabilities? [4]

d) What would be the average value of the energy if many measurements were made on identically prepared particles? [2]

e) Use your expansion of $\Psi(x, t = 0)$ in terms of the energy eigenfunctions to write down the wavefunction $\Psi(x, t)$ at an arbitrary time t. [Hint: use your knowledge of the time-evolution of the energy eigenfunctions and the superposition principle for the time-dependent Schrödinger equation.] [4] f) Hence sketch the probability density at $t = 8ma^2/\pi\hbar$. [3]

[You may use:

Normalized energy eigenfunctions are:

$$\psi_n(x) = \frac{1}{\sqrt{a}} \cos\left(\frac{n\pi x}{2a}\right), \quad (n \text{ odd: } n = 1,3,5 \dots),$$
$$= \frac{1}{\sqrt{a}} \sin\left(\frac{n\pi x}{2a}\right), \quad (n \text{ even: } n = 2,4,6 \dots).$$

Corresponding energy eigenvalues:

$$E_n = \frac{n^2 \pi^2 \hbar^2}{8ma^2}.$$

PTO

2) Suppose the functions $\{\phi_1(x), \phi_2(x), \phi_3(x)\}\$ are normalized eigenfunctions of a Hermitian operator \hat{O} with eigenvalues $\{\lambda_1 = 1, \lambda_2 = 5, \lambda_3 = 9\}\$ respectively. Suppose also that a system has the (un-normalized) wavefunction $\psi(x) = \phi_1(x) + 2\phi_2(x) + 3\phi_3(x).$

(a) Normalize $\psi(x)$. [4]

(b) What are the possible results that can be obtained by measuring the physical quantity corresponding to \hat{O} in the state $\psi(x)$, and what is the probability of each outcome? [3]

(c) What is $\langle O \rangle$, i.e. the expectation value of the physical quantity corresponding to \hat{O} in the state $\psi(x)$? [3]

(d) If \hat{O} is measured and the result $\lambda_2 = 5$ is obtained, what is the wavefunction immediately after the measurement? [2]

3) Consider the following superposition of right and left moving waves: $\psi(x) = Ae^{ikx} + Be^{-ikx}$, where A and B are constants. Show that the particle flux in this state is $j = \frac{\hbar k}{m} (|A|^2 - |B|^2)$. [4] Apply this result to evaluate the particle flux in the first excited state of an infinite square well of width 2a for which the wavefunction is $\psi(x) = \frac{1}{\sqrt{a}} \sin(\frac{2\pi x}{2a})$ [2]. Does your answer make sense physically? [2]

[HINT: remember $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$].