
POSTULATES OF QUANTUM THEORY: SUMMARY OF MAIN EQUATIONS 
 
1) In quantum theory the value of an observable which we can measure (e.g. energy, momentum, 
angular momentum, etc.) is obtained from an EIGENVALUE EQUATION – see Eq. 4.1 
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nφ is an Eigenfunction and 

nλ  is an Eigenvalue. 
 
 
2) ORTHOGONALITY of the 

nφ  (Eq. 4.5) 
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NB. If the 

nφ are ORTHONORMAL the Eigenfunctions are both orthogonal and normalised.  So for 

the case where n = m:  
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3) COMPLETENESS of the 

nφ  (Eq. 4.6) : Any well-behaved Wavefunction can be expanded as a 

superposition 
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Then the probability of measuring the Eigenvalue nλ corresponding to the Eigenfunction, 

nφ is (Eq. 

4.7) 
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For orthonormal Eigenfunctions, 

nφ (Eq. 4.8) 
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Also, by orthonormality, 
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Once a measurement has yielded nλ λ=  all subsequent measurements of the system will yield 

the same value since ( ) n n
x C φ=∑Ψ reduces to ( )

n
x φ=Ψ . 

 
4) THE EXPECTATION VALUE of an Operator is the average obtained after many measurements of an 
observable of a large number of identical systems.  It is defined as (Eq. 4.12) 
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But if we know Ψ in terms of its Eigenfunctions, we do not have to calculate the integral explicitly, 
since we know (Eq. 4.13) 
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A word about notation:  
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Where ϕ * is the complex conjugate of the Wavefunction, ϕ  and H
∧

is an Operator, e.g. the 
Hamiltonian for the energy. 


