ELECTRIC AND MAGNETIC FIELDS ASSIGNMENT 8

All questions carry equal marks

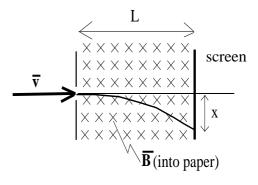
Q1 At a particular location, the Earth's magnetic field has a vertical component (downwards) of 1×10^{-4} T, and a horizontal component (Northwards) of 3×10^{-5} T. An electron in a TV tube is moving East \rightarrow West with speed 2×10^{6} m s⁻¹. Find the magnitude and direction of the magnetic force on the electron.

Hint: Define an x, y, z co-ordinate system, and draw a diagram showing all the relevant vectors in terms of their components. Use the equation for the magnetic force on a moving charged particle, being careful to apply the right hand rule and take the negative charge of the electron into account.

Q2 A magnetic field is used to deflect a beam of electrons before it strikes a screen. The electrons, travelling at a speed v, enter a region in which the magnetic field, **B**, is perpendicular to the direction of motion, as shown.

As proved in the lectures, the path followed by the electrons is a circle of radius, r, given by

$$r = \frac{m_e v}{eB}$$



In a particular case, $v = 10^7 \text{ m s}^{-1}$, $B = 3 \times 10^{-4} \text{ T}$, and L = 100 mm. Find the distance, x, from the centre of the screen to the point where the electrons strike. [Answer = 28 mm]

perpendicular to the direction of the current, and E is the magnitude of the Hall electric field.

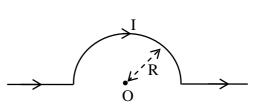
- (a) Using the result derived in the lectures for the Hall voltage, show that $R_H = 1/(ne)$, where n is the volume number density of charge carriers and e is the electronic charge.
- (b) For copper, $R_H = 6 \times 10^{-11} \text{ V m A}^{-1} \text{ T}^{-1}$.
 - (i) Find the volume number density of free electrons.
 - (ii) The mass density of copper is 8.9×10^3 kg m⁻³ and the mass of a copper atom is 1.06×10^{-25} kg. On average, how many free electrons does each atom contribute?

Continued on other side

Q4 (a) Use the Biot Savart Law,

$$\mathbf{d}\overline{\mathbf{B}} = \frac{\mu_{o}\mathbf{I}}{4\pi r^{2}} \left[\mathbf{d}\overline{\mathbf{L}} \times \hat{\mathbf{r}} \right],$$

to show that the magnetic field, **B**, at the centre, O, of a semi-circular coil of radius R, carrying a current I, as shown, is given by



 $\overline{\mathbf{B}} = \frac{\mu_{o}I}{4R}\hat{\mathbf{a}}$ where $\hat{\mathbf{a}}$ is a unit vector perpendicular to the plane of the coil.

In which direction does $\hat{\mathbf{a}}$ point (into or out of the paper)?

(b) A current loop consists of two semicircular arcs of radii R_1 and R_2 , and two perpendicular sections as shown. Show that the magnetic field, **B**, at O is given by

$$\overline{\mathbf{B}} = \frac{\mu_0 \mathbf{I}(\mathbf{R}_2 - \mathbf{R}_1)}{4\mathbf{R}_1 \mathbf{R}_2} \stackrel{\wedge}{\mathbf{a}} .$$

