ELECTRIC AND MAGNETIC FIELDS

ASSIGNMENT 1

Note: Questions 1 – 6 count for 95% of the marks and question 7 for 5%

$$\mathbf{Q1} \quad \overline{\mathbf{A}} = -10\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \quad \text{and} \quad \overline{\mathbf{B}} = 4\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$

Find $\overline{\mathbf{A}} + \overline{\mathbf{B}}$, $\overline{\mathbf{A}} - \overline{\mathbf{B}}$, and $4\overline{\mathbf{A}} - 3\overline{\mathbf{B}}$.

Q2 Two vectors $\overline{\bf E}_1$ and $\overline{\bf E}_2$ are in the x-y plane. $\overline{\bf E}_1$ has magnitude 20 units and makes an angle of $60^{\rm O}$ with the X-axis. $\overline{\bf E}_2$ has magnitude 10 units and points in the

negative Y-direction.

- (i) Draw a diagram showing the two vectors.
- (ii) Express $\overline{\mathbf{E}}_1$ and $\overline{\mathbf{E}}_2$ in terms of the orthogonal unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$
- (iii) Find the resultant vector $\overline{\mathbf{E}}_1 + \overline{\mathbf{E}}_2$ in terms of the orthogonal unit vectors, and illustrate it on another diagram.

$$\mathbf{Q3} \quad \overline{\mathbf{A}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 6\hat{\mathbf{k}}$$

Find a vector whose direction is opposite to $\overline{\mathbf{A}}$, and whose magnitude is 28 units.

Q4 (i) Calculate the dot product of

$$\overline{\mathbf{A}} = -3\hat{\mathbf{i}} - 8\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$$
 and $\overline{\mathbf{B}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$.

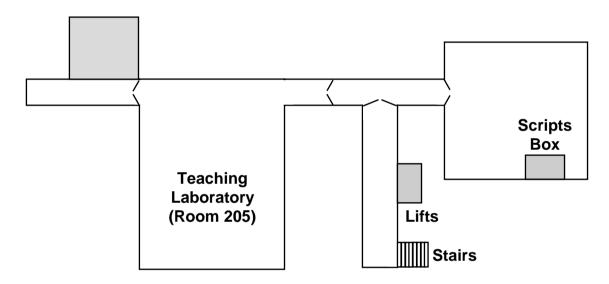
(ii) What is the angle between $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$?

Q5
$$\overline{\mathbf{P}} = 3\hat{\mathbf{i}} - 5\hat{\mathbf{j}}$$
 $\overline{\mathbf{E}} = 2\hat{\mathbf{i}} + 4\hat{\mathbf{j}}$

Find the cross product $\overline{P} \times \overline{E}$ without using the determinant method. Use the fact that the cross product is distributive.

$$\mathbf{Q6} \quad \overline{\mathbf{A}} = 3\hat{\mathbf{i}} \qquad \overline{\mathbf{B}} = 4\hat{\mathbf{j}} \qquad \overline{\mathbf{C}} = 5\hat{\mathbf{k}}$$

- (i) Draw a diagram showing the x, y and z axes, the orthogonal unit vectors, and the vectors \overline{A} , \overline{B} and \overline{C} .
 - (ii) Find $\overline{A} \times \overline{B}$, $\overline{A} \times \overline{C}$, $\overline{C} \times \overline{B}$, $\overline{A} \cdot \overline{B}$, $\overline{A} \cdot \overline{C}$, and $\overline{C} \cdot \overline{B}$


$$\mathbf{Q7} \quad \overline{\mathbf{A}} = -2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$$

Find a vector, $\overline{{\bm B}}$, whose magnitude is $90^{1/2},$ which lies in the first quadrant of the

x-y plane, and whose direction is perpendicular to $\overline{\mathbf{A}}$.

How to hand in your assignment scripts

Put them in the EMF slot in the scripts box on the Physics Dept. 2nd floor (beside the photocopier).

PHYSICS DEPT. SECOND FLOOR