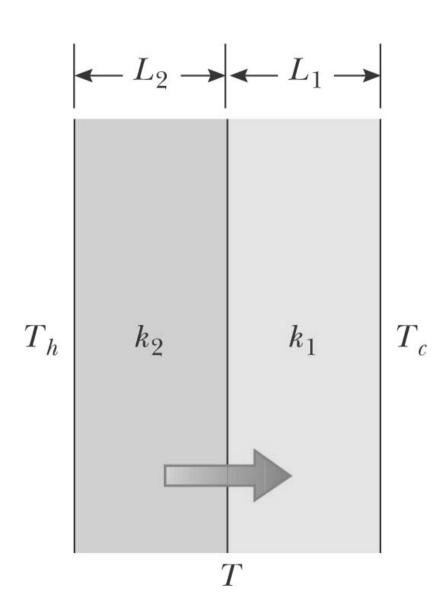

Some Thermal Conductivities

Substance	Thermal Conductivity (W/m · °C)
Metals (at 25°C)	
Aluminum	238
Copper	397
Gold	314
Iron	79.5
Lead	34.7
Silver	427

More Thermal Conductivities

Thermal Conductivity (W/m · °C)
0.08
0.8
2 300
0.8
2
0.2
0.6
0.08

More Thermal Conductivities



Thermal Conductivity $(W/m \cdot {}^{\circ}C)$

Gases (at 20°C) Air Helium Hydrogen Nitrogen Oxygen

0.02340.1380.1720.02340.0238

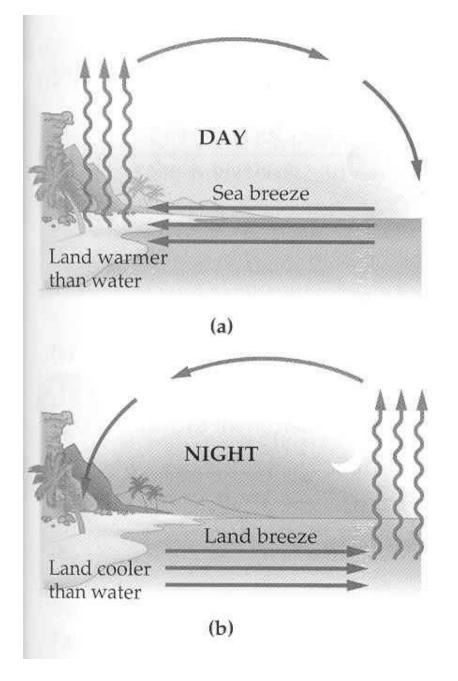
Compound Slab

Compound Slab

For a compound slab containing several materials of various thicknesses (L₁, L₂, ...) and various thermal conductivities (k₁, k₂, ...) the rate of energy transfer depends on the materials and the temperatures at the outer edges:

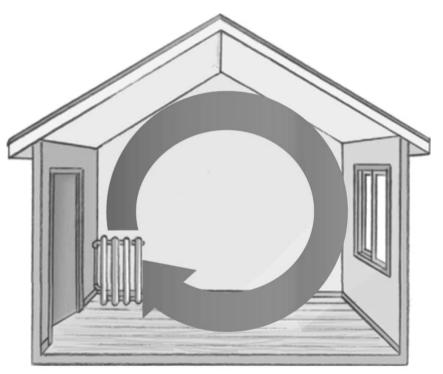
$$\mathfrak{S} = \frac{A(T_h - T_c)}{\sum_i (L_i/k_i)}$$

Home Insulation


Substances are rated by their *R* values
 - *R* = *L* / *k* and the rate becomes

$$\wp = \frac{A(T_h - T_c)}{\sum R_i}$$

- For multiple layers, the total *R* value is the sum of the *R* values of each layer
- Wind increases the energy loss by conduction in a home


Convection

- Energy transferred by the movement of a substance
 - When the movement results from differences in density, it is called *natural convection*
 - When the movement is forced by a fan or a pump, it is called *forced convection*

Convection example

- Air directly above the radiator is warmed and expands
- The density of the air decreases, and it rises
- A continuous air current is established

© 2004 Thomson/Brooks Cole

Radiation

- Radiation does not require physical contact
- All objects radiate energy continuously in the form of electromagnetic waves due to thermal vibrations of their molecules
- Rate of radiation is given by **Stefan's law**

Stefan's Law

• $P = sAeT^4$

- P is the rate of energy transfer, in Watts
- $-s = 5.6696 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
- A is the surface area of the object
- e is a constant called the **emissivity**
 - e varies from 0 to 1
 - The emissivity is also equal to the **absorptivity**
- *T* is the temperature in Kelvins

Energy Absorption and Emission by Radiation

• The rate at which the object at temperature T with surroundings at T_{o} radiates is

$$-P_{\rm net} = sAe(T^4 - T_0^4)$$

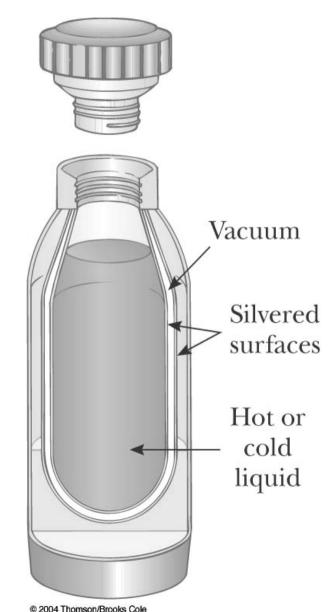
- When an object is in equilibrium with its surroundings, it radiates and absorbs at the same rate
 - Its temperature will not change

Ideal Absorbers

- An *ideal absorber* is defined as an object that absorbs all of the energy incident on it
 -e = 1
- This type of object is called a **black body**
- An ideal absorber is also an ideal radiator of energy

Ideal Reflector

 An ideal reflector absorbs none of the energy incident on it


-e = 0

The Dewar Flask

- A Dewar flask is a container designed to minimize the energy losses by conduction, convection, and radiation
- It is used to store either cold or hot liquids for long periods of time
 - A Thermos bottle is a common household equivalent of a Dewar flask

Dewar Flask

- The space between the walls is a vacuum to minimize energy transfer by conduction and convection
- The silvered surface minimizes energy transfers by radiation
 - Silver is a good reflector
- The size of the neck is reduced to further minimize energy losses

