Molar Specific Heats of Other Materials

* The Internal energy of more complex
gases must include contributions from
the rotational and vibrational motions of
the molecules

 In the cases of solids and liquids heated
at constant pressure, very little work Is
done since the thermal expansion Is
small and C; and C,, are approximately
equal



A Microscopic Description of Temperature

o Simplifying the equation relating
temperature and kinetic energy gives

lm 2 = 3kBT
2 2
* This can be applied to each direction,
lmg = lkBT
2 2

with similar expressions for v, and v,



A Microscopic Description of Temperature

 Each translational degree of freedom
contributes an equal amount to the energy
of the gas
— In general, a degree of freedom refers to an
Independent means by which a molecule can
POSSeSS energy
* A generalization of this result is called the
theorem of equipartition of energy



Theorem of Equipartition of Energy

e Each degree of freedom contributes
1/2k;T to the energy of a system, where
possible degrees of freedom In addition to
those associated with translation arise
from rotation and vibration of molecules

The total number of “types of motion” per
molecule consisting of n atoms is equal 3n



Total Kinetic Energy

* The total kinetic energy is just N times the kinetic
energy of each molecule

K., =N L szBT _ 3 uRT
3 2 >

 |f we have a gas with only translational energy,
this is the internal energy of the gas

* This tells us that the internal energy of an ideal
gas depends only on the temperature



Equipartition of Energy

« With complex -
molecules, other
contributions to internal ™,
energy must be taken .
Into account

 One possible energy Is
the translational motion
of the center of mass X
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Equipartition of Energy

e Rotational motion
about each of the 5
various axes
contributes 1/2kgT to
the energy of a N

system
— We can neglect the _ >\ -
rotation around the y

axis since it is negligible e
compared to the x and z X
axes (b)
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Equipartition of Energy

e The molecule can also z

vibrate m
.

 There is kinetic energy .
and potential energy
associated with the
vibrations

 Each of them is
contributing 1/2kgT

to the energy of a system, * (\ J
SO total per one vibration
IS kBT (C)




Water vibrations and rotations
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http://www.Isbu.ac.uk/water/vibrat.html



Values of Molar Specific Heats

Molar Specific Heats of Various Gases

Molar Specific Heat ( J/mol - K)*

Gas Cp Cy Cp— Cyp v = Cp/Cy

Monatomic Gases

He 20.8 125 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12,5 3.49 1.69

Diatomic Gases

Ho 28.8 20.4 8.33 1.41
No 291 20.8 8.33 1.40
o 29.4 211 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cly 34.7 257 3.96 1.3b

Polyatomic Gases

COq 37.0 28.5 8.50 1.30
S50y 40.4 31.4 9.00 1.29
HsO 35.4 27.0 8.37 1.30

CH,4 300 270 8.41 L&l



Equipartition of Energy: Diatomic molecule

The translational motion adds three degrees of
freedom

The rotational motion adds two degrees of
freedom

The vibrational motion adds two more degrees
of freedom

Therefore, E;, = 7/2nRT and C,, = 7/2 R



Agreement with Experiment

Molar specific heat Is
a function of
temperature

At low temperatures,
a diatomic gas acts
like a monatomic gas

~C,=32R
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Agreement with Experiment: H,

e At about room temperature, the value
iIncreases to C,, = 5/2 R

— This Is consistent with adding rotational
energy but not vibrational energy

« At high temperatures, the value increases
toC,=7/12R

— This includes vibrational energy as well as
rotational and translational



Complex Molecules

* For molecules with more than two atoms,
the vibrations are more complex

 The number of degrees of freedom is larger

 The more degrees of freedom available to a
molecule, the more “ways” there are to
store energy
— This results in a higher molar specific heat



Quantization of Energy

* To explain the results of the various molar
specific heats, we must use some
guantum mechanics

— Classical mechanics is not sufficient
* In quantum mechanics, the energy is

proportional to the frequency of the wave
representing the frequency

* The energies of atoms and molecules are
guantized



Quantization of Energy

* This energy level |
diagram shows the
rotational and }

Rotational
states

Rotational
states

vibrational states of a
diatomic molecule Vibrational)

« The lowest allowed A
state Is the ground
state

ENERGY
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Quantization of Energy

 The vibrational states are separated by

larger energy gaps than are rotational
states

o At low temperatures, the energy gained
during collisions is generally not enough to
raise It to the first excited state of either
rotation or vibration



Quantization of Energy

Even though rotation and vibration are
classically allowed, they do not occur

As the temperature increases, the energy
of the molecules increases

In some collisions, the molecules have
enough energy to excite to the first excited
state

As the temperature continues to increase,
more molecules are In excited states



Quantization of Energy

« At about room temperature, rotational
energy Is contributing fully

« At about 1000 K, vibrational energy levels
are reached

o At about 10 000 K, vibration is contributing
fully to the internal energy



Molar Specific Heat of Solids

* Molar specific heats in solids also
demonstrate a marked temperature

dependence

e Solids have molar specific heats that
generally decrease in a nonlinear manner
with decreasing temperature

It approaches zero as the temperature
approaches absolute zero



DulLong-Petit Law

At high temperatures, the molar specific
heats approach the value of 3R

— This occurs above 300 K
 The molar specific heat of a solid at high

temperature can be explained by the
equipartition theorem

— Each atom of the solid has six degrees of
freedom

— The internal energy iIs 3 nRT and C, = 3 R



Molar Specific Heat of Solids,
Graph
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Boltzmann Distribution Law

 The motion of molecules is extremely chaotic

« Any individual molecule is colliding with others at
an enormous rate
— Typically at a rate of a billion times per second

 We add the number density n,, (E)
— This i1s called a distribution function

— It is defined so that n,, (E ) dE Is the number of
molecules per unit volume with energy between E
and E + dE



Number Density and Boltzmann
Distribution Law

* From statistical mechanics, the number
density is n, (E ) = n_e —E’ksT

* This equation is known as the Boltzmann
distribution law

e |t states that the probability of finding the
molecule In a particular energy state
varies exponentially as the energy divided
by kg T



Distribution of Molecular
Speeds

N

(%

 The observed speed
distribution of gas
molecules in thermal
equilibrium is shown
at right

* N, Is called the
Maxwell-Boltzmann
speed distribution
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