Molar Specific Heats of Other Materials

- The internal energy of more complex gases must include contributions from the rotational and vibrational motions of the molecules
- In the cases of solids and liquids heated at constant pressure, very little work is done since the thermal expansion is small and C_P and C_V are approximately equal

A Microscopic Description of Temperature

• Simplifying the equation relating temperature and kinetic energy gives

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_{\rm B}T$$

• This can be applied to each direction,

$$\frac{1}{2}m\overline{v_x^2} = \frac{1}{2}k_{\rm B}T$$

with similar expressions for v_v and v_z

A Microscopic Description of Temperature

- Each translational degree of freedom contributes an equal amount to the energy of the gas
 - In general, a degree of freedom refers to an independent means by which a molecule can possess energy
- A generalization of this result is called the theorem of equipartition of energy

Theorem of Equipartition of Energy

 Each degree of freedom contributes 1/2k_BT to the energy of a system, where possible degrees of freedom in addition to those associated with translation arise from rotation and vibration of molecules

The total number of "types of motion" per molecule consisting of n atoms is equal **3n**

Total Kinetic Energy

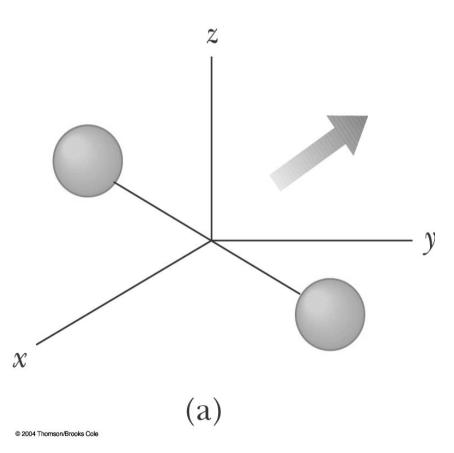
• The total kinetic energy is just *N* times the kinetic energy of each molecule

$$K_{\text{tot trans}} = N\left(\frac{1}{2}m\overline{v^2}\right) = \frac{3}{2}Nk_{\text{B}}T = \frac{3}{2}nRT$$

- If we have a gas with only translational energy, this is the internal energy of the gas
- This tells us that the internal energy of an ideal gas depends only on the temperature

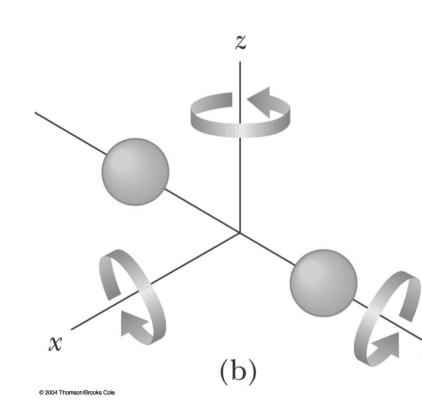
Equipartition of Energy

- With complex molecules, other contributions to internal energy must be taken into account
- One possible energy is the translational motion of the center of mass



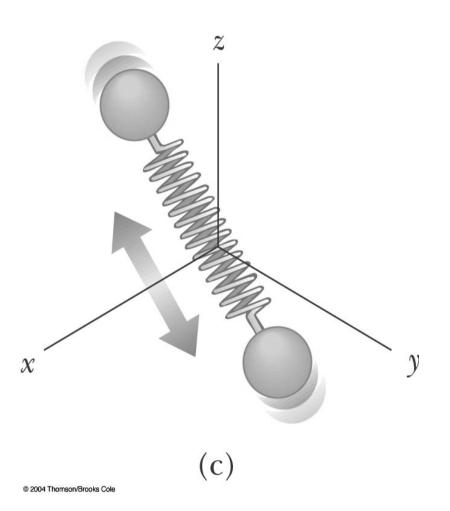
Equipartition of Energy

- Rotational motion about each of the various axes contributes 1/2 k_B T to the energy of a system
 - We can neglect the rotation around the *y* axis since it is negligible compared to the *x* and *z* axes

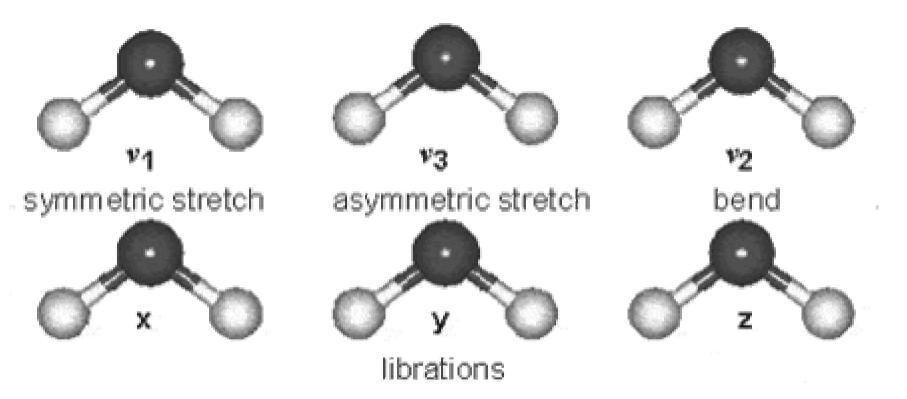


Equipartition of Energy

- The molecule can also vibrate
- There is kinetic energy and potential energy associated with the vibrations
- Each of them is contributing 1/2k_BT
 to the energy of a system, so total per one vibration is k_BT



Water vibrations and rotations



http://www.lsbu.ac.uk/water/vibrat.html

Values of Molar Specific Heats

Molar Specific Heat $(J/mol \cdot K)^a$				
Gas	C_P	C_V	$C_P - C_V$	$\gamma = C_P / C_V$
Monat	omic Gases	5		
He	20.8	12.5	8.33	1.67
Ar	20.8	12.5	8.33	1.67
Ne	20.8	12.7	8.12	1.64
Kr	20.8	12.3	8.49	1.69
Diaton	iic Gases			
H_2	28.8	20.4	8.33	1.41
N_2	29.1	20.8	8.33	1.40
O_2	29.4	21.1	8.33	1.40
СО	29.3	21.0	8.33	1.40
Cl_2	34.7	25.7	8.96	1.35
Polyate	omic Gases			
CO_2	37.0	28.5	8.50	1.30
SO_2	40.4	31.4	9.00	1.29
H_2O	35.4	27.0	8.37	1.30
CH_4	35.5	27.1	8.41	1.31

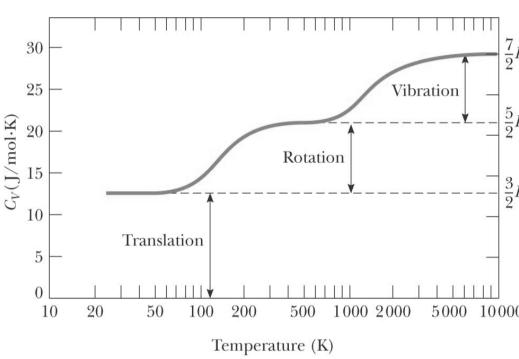
Equipartition of Energy: Diatomic molecule

- The translational motion adds three degrees of freedom
- The rotational motion adds two degrees of freedom
- The **vibrational** motion adds **two** more degrees of freedom
- Therefore, $E_{int} = 7/2 \ nRT$ and $C_V = 7/2 \ R$

Agreement with Experiment

- Molar specific heat is a function of temperature
- At low temperatures, a diatomic gas acts like a monatomic gas

$$-C_V = 3/2 R$$



© 2004 Thomson/Brooks Cole

Agreement with Experiment: H₂

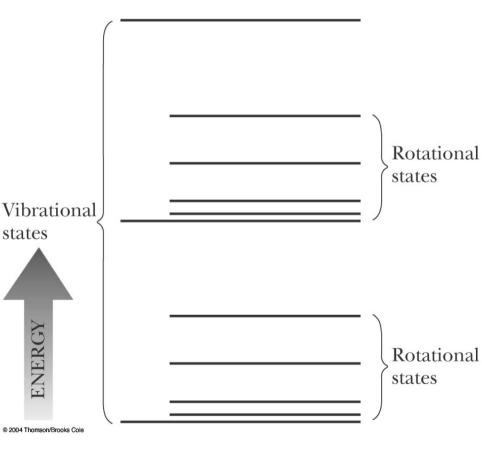
- At about room temperature, the value increases to $C_V = 5/2 R$
 - This is consistent with adding rotational energy but not vibrational energy
- At high temperatures, the value increases to $C_V = 7/2$ R
 - This includes vibrational energy as well as rotational and translational

Complex Molecules

- For molecules with more than two atoms, the vibrations are more complex
- The number of degrees of freedom is larger
- The more degrees of freedom available to a molecule, the more "ways" there are to store energy
 - This results in a higher molar specific heat

- To explain the results of the various molar specific heats, we must use some quantum mechanics
 - Classical mechanics is not sufficient
- In quantum mechanics, the energy is proportional to the frequency of the wave representing the frequency
- The energies of atoms and molecules are quantized

- This energy level diagram shows the rotational and vibrational states of a diatomic molecule
- The lowest allowed state is the ground state



- The vibrational states are separated by larger energy gaps than are rotational states
- At low temperatures, the energy gained during collisions is generally not enough to raise it to the first excited state of either rotation or vibration

- Even though rotation and vibration are classically allowed, they do not occur
- As the temperature increases, the energy of the molecules increases
- In some collisions, the molecules have enough energy to excite to the first excited state
- As the temperature continues to increase, more molecules are in excited states

- At about room temperature, rotational energy is contributing fully
- At about 1000 K, vibrational energy levels are reached
- At about 10 000 K, vibration is contributing fully to the internal energy

Molar Specific Heat of Solids

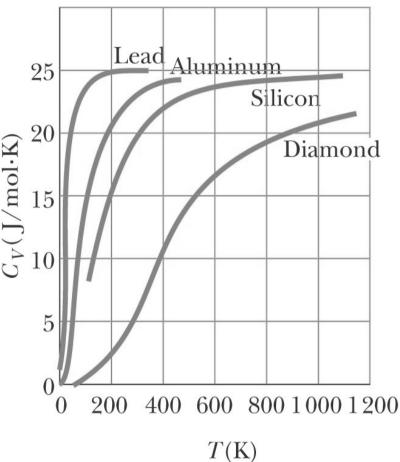
- Molar specific heats in solids also demonstrate a marked temperature dependence
- Solids have molar specific heats that generally decrease in a nonlinear manner with decreasing temperature
- It approaches zero as the temperature approaches absolute zero

DuLong-Petit Law

- At high temperatures, the molar specific heats approach the value of 3R
 - This occurs above 300 K
- The molar specific heat of a solid at high temperature can be explained by the equipartition theorem
 - Each atom of the solid has six degrees of freedom
 - The internal energy is 3 *nRT* and $C_v = 3 R$

Molar Specific Heat of Solids, Graph

- As T approaches 0, the molar specific hea approaches 0
- At high temperatures,
 C_V becomes a
 constant at ~3R



© 2004 Thomson/Brooks Cole

Boltzmann Distribution Law

- The motion of molecules is extremely chaotic
- Any individual molecule is colliding with others at an enormous rate
 - Typically at a rate of a billion times per second
- We add the **number density** $n_V(E)$
 - This is called a distribution function
 - It is defined so that $n_V(E) dE$ is the number of molecules per unit volume with energy between E and E + dE

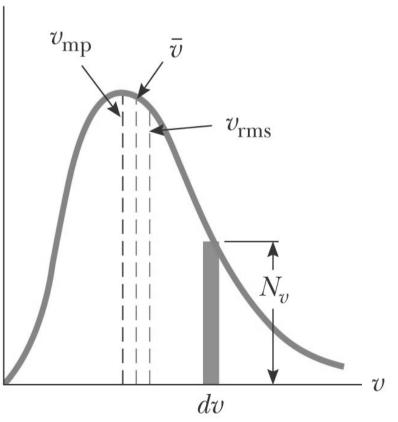
Number Density and Boltzmann Distribution Law

- From statistical mechanics, the number density is $n_V(E) = n_0 e^{-E/k_B T}$
- This equation is known as the Boltzmann distribution law
- It states that the probability of finding the molecule in a particular energy state varies exponentially as the energy divided by k_BT

Distribution of Molecular Speeds

 N_{τ}

- The observed speed distribution of gas molecules in thermal equilibrium is shown at right
- N_V is called the Maxwell-Boltzmann speed distribution function



© 2004 Thomson/Brooks Cole