Molar Specific Heat

- Several processes can change the temperature of an ideal gas
- Since ΔT is the same for each process, ΔE_{int} is also the same
- The heat is different for the different paths
- The heat associated with a particular change in temperature is **not** unique

Molar Specific Heat

- We define specific heats for two processes that frequently occur:
 - Changes with **constant pressure**
 - Changes with constant volume
- Using the number of moles, n, we can define molar specific heats for these processes

Molar Specific Heat

- Molar specific heats:
 - $-Q = nC_V \Delta T$ for constant-volume processes

 $-Q = nC_P \Delta T$ for constant-pressure processes

- Q (constant pressure) must account for both the increase in internal energy and the transfer of energy out of the system by work
- $Q_{\text{constant }P} > Q_{\text{constant }V}$ for given values of nand ΔT

Ideal Monatomic Gas

- A monatomic gas contains one atom per molecule
- When energy is added to a monatomic gas in a container with a fixed volume, all of the energy goes into increasing the translational kinetic energy of the gas
 - There is no other way to store energy in such a gas

Ideal Monatomic Gas

- Therefore, $\Delta E_{int} = 3/2 \ nR\Delta T$ ΔE is a function of ΔT only
- In general, the internal energy of an ideal gas is a function of *T* only
 - The exact relationship depends on the type of gas
- At constant volume, $Q = \Delta E_{int} = nC_V \Delta T$
 - This applies to all ideal gases, not just monatomic ones

Monatomic Gases

- Solving for C_V gives $C_V = 3/2 R = 12.5 \text{ J/mol} \cdot \text{K}$
 - For all monatomic gases
 - This is in good agreement with experimental results for monatomic gases
- In a constant-pressure process, $\Delta E_{int} = Q W$ and

$$C_P - C_V = R$$

- This also applies to any ideal gas
- $C_{\rm P} = 5/2 R = 20.8 \text{ J/mol} \cdot \text{K}$

Ratio of Molar Specific Heats

• We can also define

$$\gamma = \frac{C_P}{C_V} = \frac{5R/2}{3R/2} = 1.67$$

- Theoretical values of C_V , C_P , and g are in excellent agreement for monatomic gases
- But they are in serious disagreement with the values for more complex molecules
 - Not surprising since the analysis was for monatomic gases

Adiabatic Processes for an Ideal Gas

- Assume an ideal gas is in an equilibrium state and so PV = nRT is valid
- The pressure and volume of an ideal gas at any time during an adiabatic process are related by

PV^g = constant

$g = C_P / C_V$ is assumed to be constant during the process

• All three variables in the ideal gas law (*P*, *V*, *T*) can change during an adiabatic process

Values of Molar Specific Heats

Molar Specific Heats of Various Gases Molar Specific Heat (J/mol·K) ^a				
Monat	omic Gase:	\$		
He	20.8	12.5	8.33	1.67
Ar	20.8	12.5	8.33	1.67
Ne	20.8	12.7	8.12	1.64
Kr	20.8	12.3	8.49	1.69
Diaton	nic Gases			
H_2	28.8	20.4	8.33	1.41
N_2	29.1	20.8	8.33	1.40
O_2	29.4	21.1	8.33	1.40
СО	29.3	21.0	8.33	1.40
Cl_2	34.7	25.7	8.96	1.35
Polyate	omic Gases			
CO_2	37.0	28.5	8.50	1.30
SO_2	40.4	31.4	9.00	1.29
H_2O	35.4	27.0	8.37	1.30
CH_4	35.5	27.1	8.41	1.31