Calorimetry

- One technique for measuring specific heat involves heating a material, adding it to a sample of water, and recording the final temperature
- This technique is known as **calorimetry**
 - A calorimeter is a device in which this energy transfer takes place

Calorimetry

- The system of the sample and the water is **isolated**
- Conservation of energy requires that the amount of energy that leaves the sample equals the amount of energy that enters the water

-Conservation of Energy gives a mathematical expression of this:

$$Q_{\text{cold}} = -Q_{\text{hot}}$$

Calorimetry

- The negative sign in the equation is critical for consistency with the established sign convention
- Since each $Q = mc\Delta T$, c_{sample} can be found by:

$$c_s = \frac{m_w c_w \left(T_f - T_w\right)}{m_s \left(T_s - T_f\right)}$$

NOTE: the mass and c of the container should be included, but if $m_w >> m_{\text{container}}$ it can be neglected

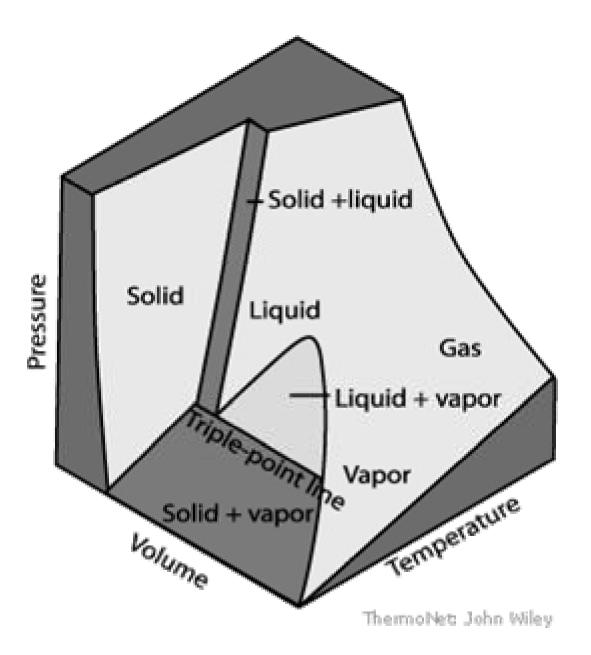
Calorimetry, Example

• An ingot of metal is heated and then dropped into a beaker of water. The equilibrium temperature is measured

$$c_{s} = \frac{m_{w}c_{w}\left(T_{f} - T_{w}\right)}{m_{s}\left(T_{s} - T_{f}\right)}$$

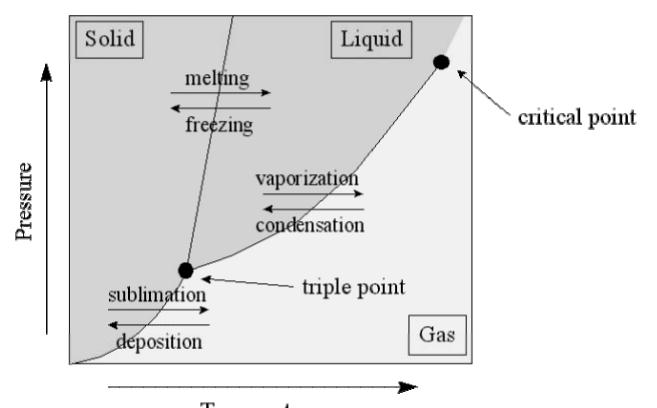
 $=\frac{(0.400 \text{kg})(4186 \text{J/kg} \cdot ^{\circ}\text{C})(22.4^{\circ}\text{C} - 20.0^{\circ}\text{C})}{(0.0500 \text{kg})(200.0^{\circ}\text{C} - 22.4^{\circ}\text{C})}$

 $= 453 \text{ J/kg} \cdot ^{\circ}\text{C}$


CALORIMETRY for high energy physics

A **calorimeter** is a device that helps scientists measure the energy of a particle. This triangular section is layered with sheets of **lead and plastic**. The lead is heavy and dense, so the particles have a hard time going through it. Scientists can tell how much energy a particle had by seeing how much lead it took to stop it.

Phase Changes


- A **phase change** is when a substance changes from one form to another
 - Two common phase changes are
 - Solid to liquid (melting)
 - Liquid to gas (boiling)
- During a phase change, there is no change in temperature of the substance

Phase Diagrams (P,T)

Equilibrium can exist not only between the **liquid and vapor** phase of a substance but also between the **solid and liquid** phases, and the **solid and gas** phases of a substance.

A **phase diagram** is a graphical way to depict the effects of pressure and temperature on the phase of a substance:

Latent Heat

- Different substances react differently to the energy added or removed during a phase change
 - Due to their different molecular arrangements
- The amount of energy also depends on the mass of the sample
- If an amount of energy Q is required to change the phase of a sample of mass m

L = Q/m or Q = mL

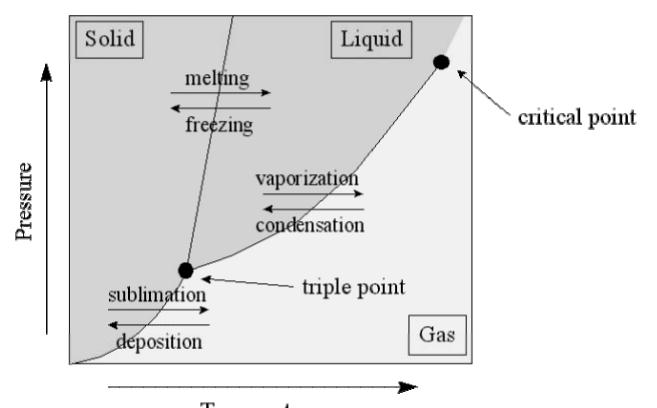
Latent Heat

- The quantity *L* is called the **latent heat** of the material
 - Latent means "hidden"
 - The value of *L* depends on the substance as well as the actual phase change
- The energy required to change the phase is Q = ± mL

Latent Heat

- The *latent heat of fusion* is used when the phase change is from solid to liquid
- The *latent heat of vaporization* is used when the phase change is from liquid to gas
- The **positive sign** is used when the energy is transferred **into** the system

– This will result in melting or boiling


 The negative sign is used when energy is transferred out of the system

– This will result in freezing or condensation

Phase Diagrams (P,T)

Equilibrium can exist not only between the **liquid and vapor** phase of a substance but also between the **solid and liquid** phases, and the **solid and gas** phases of a substance.

A **phase diagram** is a graphical way to depict the effects of pressure and temperature on the phase of a substance:

Sample Latent Heat Values

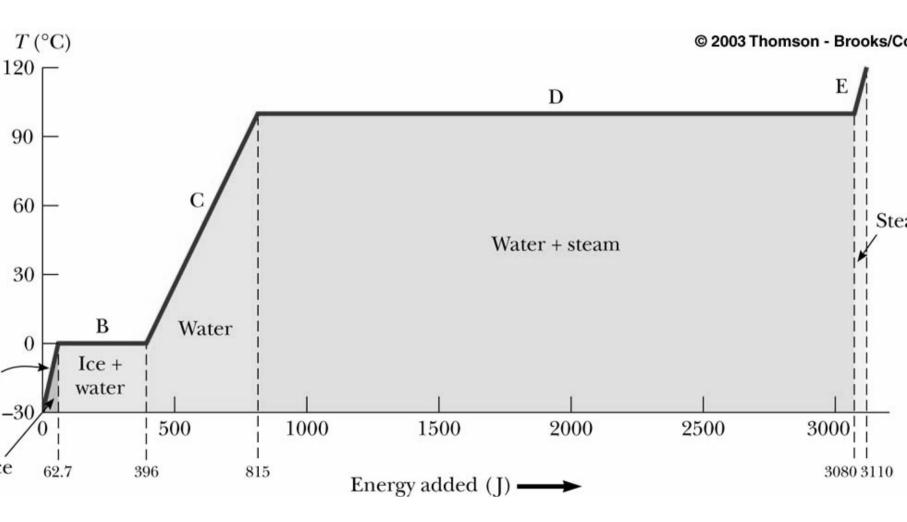
Latent Heats of Fusion and Vaporization

Substance	Melting Point (°C)	Latent Heat of Fusion (J/kg)	Boiling Point (°C)	Latent Heat of Vaporization (J/kg)
Helium	-269.65	5.23×10^{3}	-268.93	2.09×10^{4}
Nitrogen	-209.97	2.55×10^4	-195.81	2.01×10^5
Oxygen	-218.79	1.38×10^4	-182.97	2.13×10^5
Ethyl alcohol	-114	1.04×10^5	78	8.54×10^5
Water	0.00	3.33×10^5	100.00	2.26×10^6
Sulfur	119	3.81×10^4	444.60	3.26×10^5
Lead	327.3	2.45×10^4	1 750	8.70×10^5
Aluminum	660	3.97×10^5	2 450	1.14×10^7
Silver	960.80	8.82×10^4	2 193	2.33×10^6
Gold	1 063.00	6.44×10^4	2 660	1.58×10^6
Copper	1 083	1.34×10^5	1 187	5.06×10^6

SOLIDS

The particles vibrate around fixed positions.

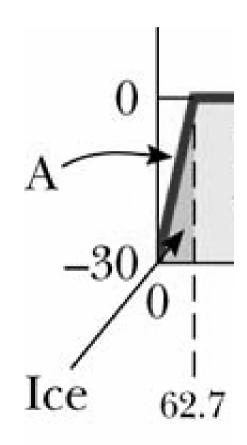
They are close together and so attract each other strongly. This is why solids maintain their shape.


LIQUIDS

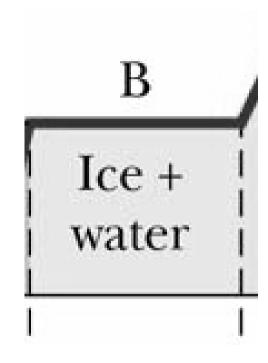
The particles are still relatively close together but now have **enough energy to "change places" with each other**. This is why liquids can flow.

GASES

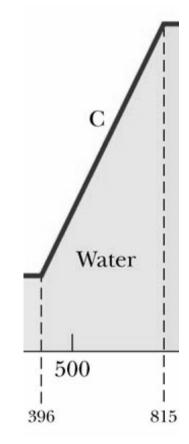
Average distance between particles typically **10 times greater** than in solids and liquids. The particles now move **freely at random**, occupying all the space available to them.


Graph of Ice to Steam

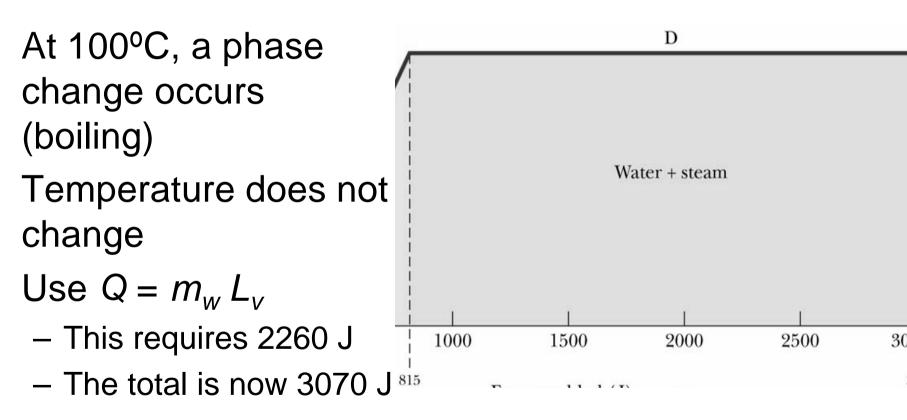
Note: all heat values are for 1 gram of water


Warming Ice, Graph Part A

- Start with one gram of ice at –30.0°C
- During phase A, the temperature of the ice changes from -30.0°C to 0°C
- Use $Q = m_i c_i ? T$
 - In this case, 62.7 J of energy are added

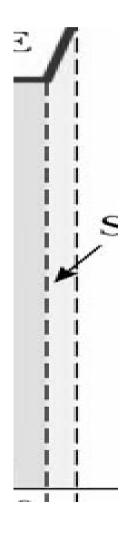

Melting Ice, Graph Part B

- Once at 0°C, the phase change (melting) starts
- The temperature stays the same although energy is still being added
- Use $Q = m_i L_f$
 - The energy required is 333 J
 - On the graph, the values move from 62.7 J to 396 J



Warming Water, Graph Part C

- Between 0°C and 100°C, the material is liquid and no phase changes take place
- Energy added increases the temperature
- Use $Q = m_w c_w ? T$
 - 419 J are added
 - The total is now 815 J



Boiling Water, Graph Part D

Heating Steam

- After all the water is converted to steam, the steam will heat up
- No phase change occurs
- The added energy goes to increasing the temperature
- Use $Q = m_s c_s ? T$
 - In this case, 40.2 J are needed
 - The temperature is going to 120° C
 - The total is now 3110 J

SOLIDS

The particles vibrate around fixed positions.

They are close together and so attract each other strongly. This is why solids maintain their shape.

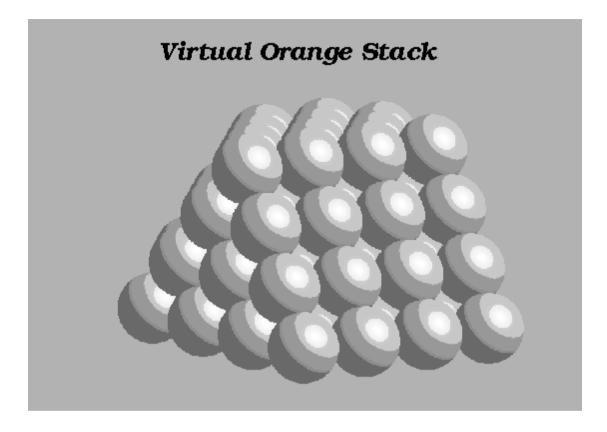
LIQUIDS

The particles are still relatively close together but now have **enough energy to "change places" with each other**. This is why liquids can flow.

GASES

Average distance between particles typically **10 times greater** than in solids and liquids. The particles now move **freely at random**, occupying all the space available to them.

Molecular View of Phase Changes


- Phase changes can be described in terms of the rearrangement of molecules (or atoms in an elementa substance)
- Liquid to Gas phase change
 - Molecules in a liquid are close together
 - The forces between them are stronger than those in a gas
 - Work must be done to separate the molecules
 - The latent heat of vaporization is the energy per unit mass needed to accomplish this separation

Molecular View of Phase Changes

- Solid to Liquid phase change
 - The addition of energy will cause the amplitude of the vibration of the molecules about their equilibrium position to increase
 - At the melting point, the amplitude is great enough to break apart bonds between the molecules
 - The molecules can move to new positions
 - The molecules in the liquid are bound together less strongly than those of the solid
 - They have less nearest neighbours
 - The latent heat of fusion is the energy per unit mass required to go from the solid-type to the liquid-type bonds

Molecular View of Phase Changes

- The latent heat of vaporization is greater than the latent heat of fusion
 - In the liquid-to-gas phase change, all bonds are broken
 - The gas molecules are essentially not bonded to each other
- It takes more energy to completely break the bonds than to change the type of bonds

Close-Packed Structures are the most efficient way to fill space with spheres

Features of Close-Packing:

- Coordination Number = 12
- 74% of space is occupied

Estimating melting and sublimation energies

There is the Avogadro number N_A of atoms in the mole of a solid.

We assume that each atom has *n* nearest neighbours and the strength of the pair-wise interaction between atoms is equal to **e**.

Then the energy required to melt one mole (latent heat of melting) is approximately equal:

 $L \gg \frac{1}{2} N_{A} e^{2} n$

where ?n is the change of the number of nearest neighbours from solid to liquid or vapour and $\frac{1}{2}$ stands to avoid the double counting.

We can then use n = 12 for a solid and $n \approx 10$ for a melt. Then

 $L_{\text{melt}} \gg \frac{1}{2} N_A Dne$, where $\Delta n = 2$,

change of the coordination number from crystal to vapour $\Delta n = 12$

Calorimetry Problem-Solving Strategy

- Units of measure must be consistent
 - For example, if your value of c is in J/kg^{.o}C, then your mass must be in kg, the temperatures in ^oC and energies in J
- Transfers of energy are given by $Q = mc \Delta T$ only when no phase change occurs
- If there is a phase change, use Q = mL

Calorimetry Problem-Solving Strategy

- Be sure to select the correct sign for all energy transfers
- Remember to use $Q_{\text{cold}} = -Q_{\text{hot}}$
- The ΔT is always $T_f T_i$