## SOLUTIONS TO HOMEWORK 2

1) Before the step, V=0 so the TISE takes the form:

For x < 0:  $\int_{2m}^{\pi} d^{2}u = E U$ Or  $\frac{d^{4}u}{dx^{2}} + K^{2}U = 0$  with  $K^{2} = \frac{2mE}{R^{2}}$ This has solutions  $e^{+iKx} \int e^{-iKx}$ . The  $e^{+iKx}$  part represents particles moving to the right (incident from the left). The  $R e^{-iKx}$  represents particles reflected by the step. [5] (a) For  $x \ge 0$ , the TISE is:  $-\frac{K^{2}}{2m} \frac{d^{4}u}{dx^{2}} + (V_{0} - E)U = 0$  or  $-\frac{K^{2}}{2m} \frac{d^{4}u}{dx^{2}} - P^{2}U = 0$  where  $P^{2} = \frac{2m}{R^{2}} (V_{0} - E)$ This has solutions  $e^{\pm Px}$ . For  $x \rightarrow +\infty$  the  $e^{+Px}$  solution diverges (we take  $e^{>0}$ ) so we must set Q = 0 and hence  $U(x) = T e^{-Px}$ . NB for  $E > V_{0}$ , the equivalent transmitted wave is  $U(x) = T e^{+iPx}$ . [5]

(b) Match  $\mathcal{U}(x)$  at x = 0.  $e^{+i^{n}\kappa x} + Re^{-i^{n}\kappa x} = T \cdot e^{-ipx}$  for x = 0  $\Rightarrow i + R = T \oplus$ Match  $\mathcal{U}(x)$  at x = 0,  $\Rightarrow i^{n}\kappa - i^{n}\kappa R = -pT \oplus$ 

Solving these simultaneous equations gives:

$$T = \frac{2k}{(ik - p)} = \frac{2k}{k + ip} \quad (3)$$
  
and 
$$R = \frac{k - ip}{(k + ip)} \quad (9)$$

(c) The current (flux) density is:  $j(x) = \frac{1}{2} \exp \left[ \psi^* \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial \psi}{\partial y} \right]$ 

Substituting  $u(x) = e^{i\pi x} + Re^{-e\pi x}$  in the expression above, we get:  $j(x) = \frac{\hbar k}{m} [1 - |\kappa|^2]$ 

From G we see that  $|\mathcal{R}|^2 = \mathcal{R} \mathcal{R}^* = |$  so  $\mathcal{J} = 0$ . We have total reflection. For x > 0, if we substitute  $\mathcal{L} = \top \mathcal{C}^{-\mathcal{P}\times}$  in the expression for the current, we easily see that the answer is zero. In fact, this must be the case since  $\mathcal{L}$  is real so  $\mathcal{L}^* \xrightarrow{\partial \mathcal{L}} = \mathcal{L}^{\partial \mathcal{L}^*}$ . [5]

[5]

2) (a) Before the barrier,  $u(x) = e^{i \kappa x} + Re^{-i \kappa x}$ after the barrier,  $u(x) = T e^{i \kappa x}$  [5] (b) Before the barrier,  $j(x) = \frac{\hbar \kappa}{m} [1 - |\kappa|^2]$ while after the barrier,  $j(x) = \frac{\hbar \kappa}{m} |T|^2$ hence, conservation of flux implies that  $|-|\kappa|^2 = |T|^2$ .

We can write 
$$\mathcal{R} = \begin{bmatrix} 1 + \frac{\alpha}{\beta} \end{bmatrix}^{-\frac{1}{2}}$$
 and  $\top = \begin{bmatrix} 1 + \frac{\beta}{\alpha} \end{bmatrix}^{-\frac{1}{2}}$   
So,  $|\mathcal{R}|^2 + |\mathcal{T}|^2 = \mathcal{R}^2 + \tau^2 = \frac{\beta}{\alpha+\beta} + \frac{\alpha}{\beta+\alpha} = 1$   
So flux is conserved. [5]

(d) There is perfect transmission if T = | ie if  $Ain^{2} \kappa a = 0$ . Hence  $\kappa a = {}^{2\pi a} A = 0, \pi, 2\pi \cdot \cdot \cdot n\pi$ . So  $\alpha = n N 2$ .

[5]

[5]

3) For the second lowest energy state (first excited state) we have  $u(x) = \frac{1}{\sqrt{\alpha}} \frac{1}{\sqrt{\alpha}} \frac{1}{\sqrt{\alpha}}$ . The probability distribution is  $P(x) = |U|^2 = \frac{1}{\sqrt{\alpha}} \int_{u}^{u} n^2 \frac{1}{\sqrt{\alpha}}$ 

(a) Particle is most likely to be found at maxima of P(x).





(b) We want:

$$\int_{a}^{a_{2}} p(x) dx = \sqrt{a} \int_{a}^{a_{2}} \int_{a} \sqrt{a} \frac{\pi x}{a} dx$$

$$= \sqrt{a} \int_{a} \sqrt{a} \left(1 - \cos \frac{2\pi x}{a}\right) dx$$

$$= \sqrt{a} \left[2x - \frac{2\pi}{a} + \sin \frac{2\pi x}{a}\right]_{a}^{a_{2}} = \sqrt{4} \quad [5]$$
(c)  $\overline{x} = \langle x \rangle = \frac{1}{a} \quad a \int_{a} \sqrt{a} \frac{\pi x}{a} x \int_{a} \frac{\pi x}{a} dx$  (an odd function so...)
$$\langle x \rangle = 0. \qquad [5]$$