ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32)

This handout covers:

- Motional emf and the electric generator
- Electromagnetic Induction and Faraday's Law
- Lenz's Law
- Induced electric field
- Inductance
- Magnetic energy

The Electric and magnetic fields are inter-related

The electric and magnetic fields are not independent. In fact:

- A changing magnetic field induces an electric field
- The reverse is also true: a changing electric field induces a magnetic field

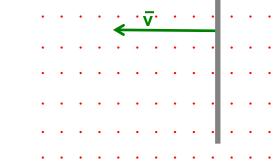
To see how this occurs, we first consider MOTIONAL emf

Motional emf

Consider a wire moving with velocity \mathbf{v} in a magnetic field $\overline{\mathbf{B}}$.

Assume for simplicity that $\overline{\bm{v}}$ and $\overline{\bm{B}}$ are perpendicular

The electrons in the wire experience a force

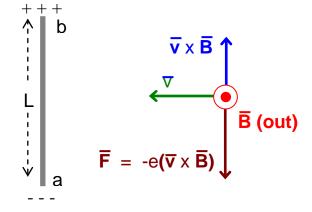


B (out of page)

 $\overline{\mathbf{F}} = -\mathbf{e}(\overline{\mathbf{v}} \times \overline{\mathbf{B}})$

This produces a separation of charge with an excess of negative charge at one end and positive charge at the other.

There is therefore an INDUCED emf between the two ends.



Induced emf \mathcal{E} = work done to move a unit positive charge from a to b against the magnetic force

F = QvB = vB

Work done = (Force)(Distance) \Rightarrow $\mathcal{E} = vBL$ MOTIONAL emf

The electric generator

Assume that the ends of the wire are connected up through some external circuit (which we represent here by a simple resistor).

Current I flows and dissipates electrical power in R.

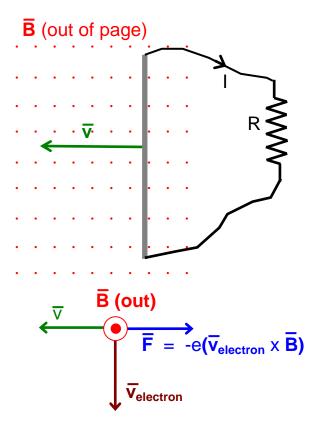
Where does this power come from?

The current is due to electrons moving in the wire with some drift velocity $\mathbf{v}_{electron}$.

The electrons therefore experience a magnetic force

 $\overline{\mathbf{F}} = - \, \mathbf{e} (\overline{\mathbf{V}}_{\text{electron}} \times \overline{\mathbf{B}})$

This force **OPPOSES** the motion of the wire through the field.



The overall force on the wire is $F_{mag} = \Sigma F$ for all the electrons.

Recall: Force on a current-carrying wire in a magnetic field is

 $F_{mag} = BIL.$

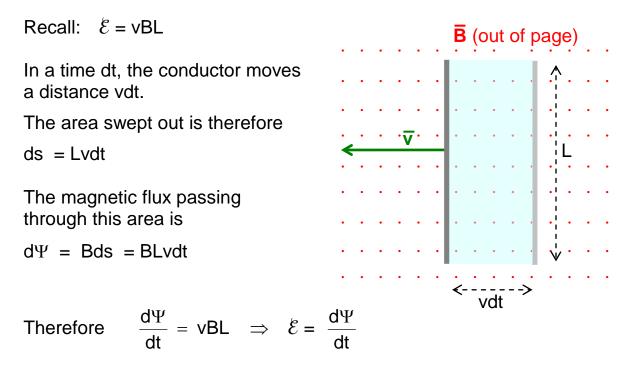
So, the power delivered to the circuit comes from the effort needed to PUSH the wire through the magnetic field against this force.

The magnetic field thus acts as a mediator in the conversion of MECHANICAL ENERGY into ELECTRICAL ENERGY.

This is the principle of the ELECTRIC GENERATOR.

Exercise: Show that the power needed to move the wire through the magnetic field is equal to the power dissipated in the resistor.

Motional emf and magnetic flux



The induced emf is equal to the rate of sweeping out of magnetic flux

Note: 1. This applies to ANY shape of conductor in ANY magnetic field.

2. The same equation applies to a stationary conductor in a changing magnetic field.

Faraday's law of induction

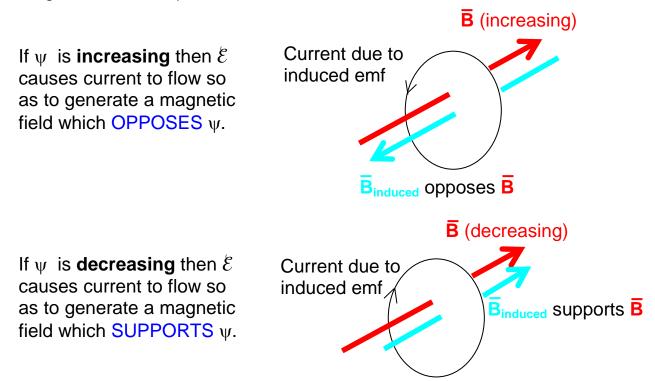
The induced emf around any closed path in a magnetic field is equal to minus the rate of change of the magnetic flux intercepted by the path:

$$\mathcal{E} = -\frac{\mathrm{d}\Psi}{\mathrm{d}t}$$
 Why the negative sign?

Lenz's law

This is represented by the negative sign in the above equation for the induced emf.

The induced emf is in such a direction as to OPPOSE the change in magnetic field that produces it.



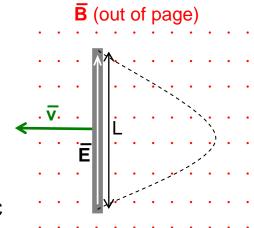
Induced electric field

Consider again a wire moving in a magnetic field.

Look at the situation from the point of view of someone who moves along with the wire:

 $v = 0 \implies$ there is no magnetic force

Therefore, this observer interprets the force acting on the electrons in the wire as being due to an INDUCED ELECTRIC FIELD.



⇒
$$\oint \overline{\mathbf{E}} \cdot d\overline{\mathbf{L}}$$
 around the closed path shown ≠ 0.

 \Rightarrow The induced electric field is not conservative.

Faraday's Law is usually written in this form:

$$\oint \overline{\mathbf{E}} \cdot d\overline{\mathbf{L}} = -\frac{d\Psi}{dt}$$
FARADAY'S LAW
MAXWELL'S 3rd EQUATION

In words: The line integral of the electric field around a closed path is equal to minus the rate of change of magnetic flux through the path

Mutual inductance

Faraday's Law \Rightarrow a changing $\overline{\mathbf{B}} \rightarrow$ induced emf

Consider two nearby circuits:

Changing current in Circuit 1

Changing magnetic field through Circuit 2

Induced emf in Circuit 2

Current flows in Circuit 2

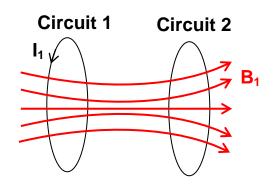
Let $I_1(t)$ create magnetic field $B_1(t)$. Let ψ_{21} be the flux through circuit 2 due to I_1

Clearly, $B_1 \propto I_1$, so $\psi_{21} \propto I_1$

DEFINITION: The constant of proportionality between ψ_{21} and I_1 is called the MUTUAL INDUCTANCE:

 $M_{21} = \frac{\Psi_{21}}{I_1} \qquad \qquad \frac{\text{Magnetic flux through circuit 2}}{(\text{due to}) \text{ Current in circuit 1}}$

From Faraday's Law, the induced emf is given by $\mathcal{E}_{21} = -M_{21} \frac{dI_1}{dt}$



Note:

- M_{21} depends on the shape, size, numbers of turns and relative positions of the two circuits
- $M_{21} = M_{12}$ so we need only use M as the symbol for mutual inductance
- Ohanian uses L for mutual inductance
- In the SI system, inductance is measured in Henrys (H)

1 H = Inductance that produces an emf of 1 Volt for a rate of change of current of 1 A s⁻¹

 $1 H \equiv 1 V s A^{-1}$

• The usual unit for μ_o is H m⁻¹

Self inductance

Even a single circuit produces a magnetic field that passes through the circuit itself.

So, if I changes $\rightarrow \overline{\mathbf{B}}$ changes $\rightarrow \Psi$ changes \rightarrow induced emf

Definition: SELF INDUCTANCE

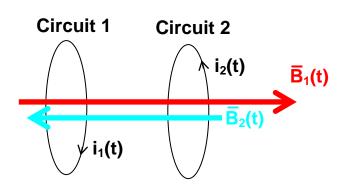
 $L = \frac{\Psi}{I}$ Magnetic flux through a circuit (due to) Current in the circuit itself

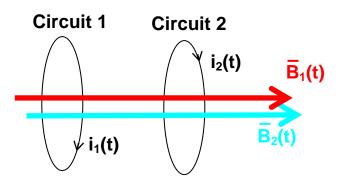
Inductance and Lenz's law

 $\mathsf{M} \text{ or } \mathsf{L} = \frac{\Psi}{\mathsf{I}} \qquad \qquad \mathcal{E}_{21} = \mathsf{-M} \frac{\mathsf{d}\mathsf{I}_1}{\mathsf{d}t} \text{ or } \mathsf{-L} \frac{\mathsf{d}\mathsf{I}}{\mathsf{d}t}$

Recall: The negative sign represents Lenz's Law: the emf causes current to flow so as to oppose the change in flux that produces it.

If ψ is $\left\{ \begin{array}{l} \text{INCREASING} \\ \text{DECREASING} \end{array} \right\}$ then \mathcal{E} will cause current to flow so as to create a magnetic field that $\left\{ \begin{array}{l} \text{OPPOSES} \\ \text{SUPPORTS} \end{array} \right\} \psi$.





- i₁(t) increases
- ψ₂₁ increases
- Induced emf in circuit 2 drives current i₂(t)
- $I_2(t)$ generates $\overline{B}_2(t)$ which OPPOSES $\overline{B}_1(t)$
 - i₁(t) decreases
 - ψ₂₁ decreases
- Induced emf in circuit 2 drives current i₂(t)
- $I_2(t)$ generates $\overline{B}_2(t)$ which SUPPORTS $\overline{B}_1(t)$

Procedure for finding inductance

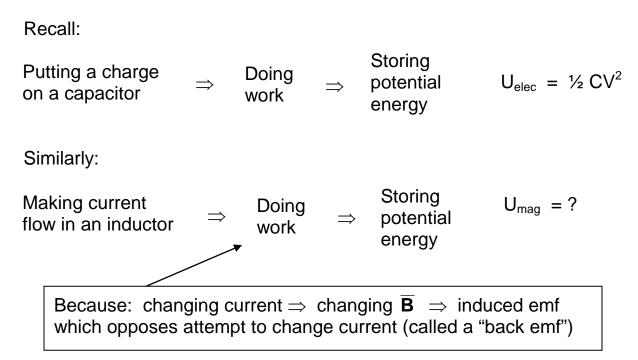
- 1. Assume that a current I flows in (one of the) circuit(s)
- 2. Find the magnetic field (e.g., use Ampere's Law)
- 3. Find the magnetic flux linked
- 4. Put M or L equal to ψ/I

Examples:

- 1. Mutual inductance of two long coaxial solenoids
- 2. Self inductance of a long solenoid

See lecture notes

Energy storage in inductors



To find the energy stored in an inductor:

Let current in the inductor i = 0 initially

Apply external emf \Rightarrow current increases at rate $\frac{di}{dt}$

This leads to a back emf

To make current flow, the required external emf is

The externally applied power is therefore

$$\mathcal{E}_{ext} = L \frac{di}{dt}$$

P = $\mathcal{E}_{ext}i = Li \frac{di}{dt}$

 $\mathcal{E}_{b} = -L\frac{di}{dt}$

The work done to increase the current from 0 to I is therefore

$$U = \int_0^t P dt = \int_0^t Li di \qquad \Rightarrow \qquad U = \frac{1}{2} Ll^2$$

Energy stored in an inductor "charged" with current I Where is the stored energy? It is in the MAGNETIC FIELD.

Recall: For a solenoid of length a, radius R, n turns per unit length:

$$L = \pi R^2 \mu_0 n^2 a \qquad B = \mu_0 n I$$

$$U = \frac{1}{2} LI^{2} = \frac{1}{2} \left[\pi R^{2} \mu_{0} n^{2} a \left[\frac{B}{\mu_{0} n} \right]^{2} = \frac{1}{2} \left[\frac{B^{2}}{\mu_{0}} \right] \left[\pi R^{2} a \right]$$

Therefore U =
$$\frac{1}{2} \left[\frac{B^2}{\mu_0} \right]$$
 [Volume of the solenoid]

The ENERGY DENSITY OF THE MAGNETIC FIELD is therefore

$$u = \frac{1}{2} \left[\frac{B^2}{\mu_0} \right]$$
 This holds generally, for any magnetic field.