RELATIVITY MTH6132 PROBLEM SET 4

HAND IN ONLY THE STARRED QUESTIONS.

1) A stationary particle of rest mass M decays into two particles that both move along the x-axis. One has a rest-mass m_1 and a speed u_1 and the other has a rest-mass m_2 and a speed u_2 . Prove that

$$M^{2} = m_{1}^{2} + m_{2}^{2} + 2m_{2}^{2} \frac{u_{2}}{1 - u_{2}^{2}} \left(\frac{1}{u_{1}} + u_{2}\right)$$

2*) An atom of rest mass m_0 at rest in a laboratory absorbs a photon of frequency ν . Use the conservation law of 4-momentum to find the velocity and rest mass of the resulting particle.

3) A particle of rest mass m_1 moving with velocity u_1 along the x-axis collides with a stationary particle of rest mass m_2 stationary along the x-axis. If subsequently the particle with rest mass m_1 moves in the direction making an angle of 60° relative to the x-axis (in the x - y plane), show that

$$E_{1}E_{1}'(u_{1}u_{1}'-2) = 2m_{2}(E_{1}'-E_{1}) - 2m_{1}^{2},$$

where E_1 and E_1' are the total energies of the particle m_1 before and after the collision respectively and u_1' is its speed after the collision. [The total energy E of a particle of rest mass m and 3-velocity \underline{v} is $m\gamma(v)$.]

4*) A particle moving along the *x*-axis with speed *v* disintegrates into two photons (particles with zero rest mass) moving in directions making angles α and β with the *x*-axis and on opposite sides of it. Show that

$$v = \frac{\sin\beta\cos\alpha + \sin\alpha\cos\beta}{\sin\alpha + \sin\beta}$$

[General hint: Proceed by writing down the 4-momenta for the particles and photons before and after and using the conservation law of of 4-momentum. See notes.]

To be placed in the BLUE BOX on 2nd floor of the Maths building by Wednesday 2nd November, 6:00 pm.

Dr. Juan A. Valiente Kroon (G56)