
3C43 LASERS & MODERN OPTICS

Problem sheet 3 – Gaussian Beams

Question 1.

A helium-neon laser cavity consists, as shown in the figure, of a completely reflecting plane mirror placed a distance 50cm from the output mirror. The output mirror consists of a positive lens of thickness 4mm, made of glass of refractive index 1.5 with its inner surface coated to give a high reflectivity. The inner (reflecting) surface of the lens has radius of curvature 2m and outer surface a radius of curvature 75cm (both concave with respect to the laser beam propagation direction).

a)	Find the spot-size of the laser beam at the plane mirror	[4]
b)	Find the ray-transfer matrix for the output coupler-lens	[4]
c)	Show, by calculating the ray transfer matrix neglecting the term describing propagation through the lens, that the output coupler is to a good approximation a <i>thin lens</i> and hence determine its focal length.	[4]
d)	Find the location of the beam waist outside the laser cavity.	[4]
e)	State the criterion generally used to determine the distance over which a laser beam is <i>collimated</i> and determine the distance over which the beam is collimated in this case.	[4]

Question 2.

- a) State the ABCD-law of Gaussian beams.
- b) If the ray transfer matrix representing a complete round-trip of a laser cavity is $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$, show that the condition for the cavity to be a stable one is |A + D| < 2. [4]
- c) Hence show that the stability condition for a cavity composed of two concave mirrors of radii of curvature R_1 and R_2 separated by a distance L is equivalent to

$$0 < \left(1 - \frac{L}{R_1}\right) \left(1 - \frac{L}{R_2}\right) < 1$$
[6]

- d) A laser cavity of length *L* is composed of a plane-mirror and a concave mirror of radius of curvature *R*. If the spot-size on the plane-mirror, w_0 , satisfies $w_0^2 = \frac{2L\lambda}{\pi}$, with λ the wavelength, find
 - i) the value of the ratio $\frac{R}{L}$ [4]
 - ii) the value of the ratio $\frac{w_L}{w_0}$ where w_L is the spot-size on the curved mirror. [4]