3C43 LASERS & MODERN OPTICS

Problem sheet 2 – Lasers

Question 1.

- a) Explain the significance of the Einstein coefficients A_{21} , B_{21} and B_{12} for radiative transitions between an upper level 2 and a lower level 1 of an atom and state the equations defining them. [3]
- b) Show, explaining any assumptions made, that the coefficients satisfy

$$g_2 A_{21} = \frac{8\pi h v^3 g_1 B_{12}}{c^3}$$
 and $g_2 B_{21} = g_1 B_{12}$

where g_1 and g_2 are the degeneracies of the levels.

c) What is meant by the *spectral irradiance* of a beam of light?

A beam of white light propagates along the x-axis and passes through an absorbing medium composed of two-level atoms occupying the space between x=0 and x=L. If the spectral irradiance of the beam at frequency v and at position x is I_v(x) and the atomic lineshape function of the atomic medium is g(v), centred on v₀, show that

$$\frac{dI_{\nu}}{dx} = -\alpha(\nu) \cdot I_{\nu} \quad \text{where} \quad \alpha(\nu) \equiv g(\nu) \left(\frac{g_2}{g_1}N_1 - N_2\right) B_{21} \frac{nh\nu}{c}$$

and n is the refractive index of the medium

- e) Find an expression for $I_{\nu}(L)$, the spectral irradiance at frequency ν a distance L into the medium, if the spectral irradiance at the entrance to the medium is $I_{\nu}(0)$.
- f) As a result of passing through the absorbing medium, the spectrum of the light-beam has a hole in it centred on frequency v_0 . Show that if the absorption is very small, that the shape of the hole is directly proportional to g(v).

[5]

[3]

[2]

[5]

[2]

Question 2.

The gain-medium for a 3-level laser is composed of a gas of atoms with levels of energies $E_3 > E_2 > E_1$ and $g_1 = g_2 = g_3 = 1$. Atoms are pumped from level 1 to level 3 by an unspecified process at a constant rate R_3 . Spontaneous emission can occur only between levels 3 and 2 and between levels 2 and 1 with rate coefficients A_{32} and A_{21} respectively. The laser cavity is designed to support a laser-mode at a single frequency $v = (E_2 - E_1)/h$.

- a) Write down suitable rate-equations governing the time evolution of the populations of the atomic energy levels.
- b) Show that in the steady-state, the population of level 3 is $N_3 = R_3 / A_{32}$ [1]
- c) If the total number of atoms in the gain medium is a constant N, find an expression for the steady-state population-inversion $N^* \equiv N_2 N_1$ on the laser transition.
- d) What is the absolute minimum value of N^* that must be achieved by the pumping process if laser action is to be possible (assuming a loss-less laser cavity)? If this value of N^* is obtained for a pumping rate R_3^{\min} . Show that

$$R_3^{\min} = \frac{N}{2 / A_{21} + 1 / A_{32}}$$

e) Because of cavity-losses, a higher value of the population inversion than that found in d) is actually necessary for laser action to occur. If the actual value of the threshold population-inversion is N_{th}^* , which is attained at a pump rate R_3^{th} , show that

$$R_3^{th} = \left(N_{th}^* / N + 1\right) R_3^{\text{min}}$$

f) If $A_{32} >> A_{21}$ show that this leads to

$$R_3^{th} \approx \frac{A_{21}}{2} N_{th}^* + \frac{A_{21}}{2} N$$
[2]

g) How does this compare to the expression that would have been obtained for a 4-level laser?

[2]

[5]

[4]

[3]

[3]