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Preface

These notes stem from my own need to refresh my memory on the fundamentals of tensor
calculus, having seriously considered them last some 25 years ago in grad school. Since then,
while I have had ample opportunity to teach, use, and even program numerous ideas from
vector calculus, tensor analysis has faded from my consciousness. How much it had faded
became clear recently when I tried to program the viscosity tensor into my fluids code, and
couldn’t account for, much less derive, the myriad of “strange terms” (ultimately from the
dreaded “Christ-awful” symbols) that arise when programming a tensor quantity valid in
curvilinear coordinates.

My goal here is to reconstruct my understanding of tensor analysis enough to make the
connexion between covariant, contravariant, and physical vector components, to understand
the usual vector derivative constructs (∇, ∇·, ∇×) in terms of tensor differentiation, to put
dyads (e.g., ∇~v) into proper context, to understand how to derive certain identities involving
tensors, and finally, the true test, how to program a realistic viscous tensor to endow a fluid
with the non-isotropic stresses associated with Newtonian viscosity in curvilinear coordinates.

Inasmuch as these notes may help others, the reader is free to use, distribute, and modify
them as needed so long as they remain in the public domain and are passed on to others free
of charge.

David Clarke
Saint Mary’s University
June, 2011

Primers by David Clarke:

1. A FORTRAN Primer

2. A UNIX Primer

3. A DBX (debugger) Primer

4. A Primer on Tensor Calculus

I also give a link to David R. Wilkins’ excellent primer Getting Started with LATEX, in
which I have added a few sections on adding figures, colour, and HTML links.

ii
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A Primer on Tensor Calculus

1 Introduction

In physics, there is an overwhelming need to formulate the basic laws in a so-called invariant
form; that is, one that does not depend on the chosen coordinate system. As a start, the
freshman university physics student learns that in ordinary Cartesian coordinates, Newton’s
Second Law,

∑

i
~Fi = m~a, has the identical form regardless of which inertial frame of

reference (not accelerating with respect to the background stars) one chooses. Thus two
observers taking independent measures of the forces and accelerations would agree on each
measurement made, regardless of how rapidly one observer is moving relative to the other
so long as neither observer is accelerating.

However, the sophomore student soon learns that if one chooses to examine Newton’s
Second Law in a curvilinear coordinate system, such as right-cylindrical or spherical polar
coordinates, new terms arise that stem from the fact that the orientation of some coordinate
unit vectors change with position. Once these terms, which resemble the centrifugal and
Coriolis terms appearing in a rotating frame of reference, have been properly accounted for,
physical laws involving vector quantities can once again be made to “look” the same as they
do in Cartesian coordinates, restoring their “invariance”.

Alas, once the student reaches their junior year, the complexity of the problems has
forced the introduction of rank 2 constructs such as matrices to describe certain physical
quantities (e.g., moment of inertia, viscosity, spin) and in the senior year, Riemannian ge-
ometry and general relativity require mathematical entities of still higher rank. The tools
of vector analysis are simply incapable of allowing one to write down the governing laws in
an invariant form, and one has to adopt a different mathematics from the vector analysis
taught in the freshman and sophomore years.

Tensor calculus is that mathematics. Clues that tensor-like entities are ultimately
needed exist even in a first year physics course. Consider the task of expressing a velocity
as a vector quantity. In Cartesian coordinates, the task is rather trivial and no ambiguities
arise. Each component of the vector is given by the rate of change of the object’s coordinates
as a function of time:

~v = (ẋ, ẏ, ż) = ẋ êx + ẏ êy + ż êz, (1)

where I use the standard notation of an “over-dot” for time differentiation, and where êx is
the unit vector in the x-direction, etc. Each component has the unambiguous units of m s−1,
the unit vectors point in the same direction no matter where the object may be, and the
velocity is completely well-defined.

Ambiguities start when one wishes to express the velocity in spherical-polar coordinates,
for example. If, following equation (1), we write the velocity components as the time-
derivatives of the coordinates, we might write

~v = (ṙ, ϑ̇, ϕ̇). (2)

1
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Figure 1: (left) A differential volume in Cartesian coordinates, and (right) a differential
volume in spherical polar coordinates, both with their edge-lengths indicated.

An immediate “cause for pause” is that the three components do not share the same “units”,
and thus we cannot expand this ordered triple into a series involving the respective unit
vectors as was done in equation (1). A little reflection might lead us to examine a differential
“box” in each of the coordinate systems as shown in Fig. 1. The sides of the Cartesian box
have length dx, dy, and dz, while the spherical polar box has sides of length dr, r dϑ, and
r sinϑ dϕ. We might argue that the components of a physical velocity vector should be the
lengths of the differential box divided by dt, and thus:

~v = (ṙ, r ϑ̇, r sin ϑ ϕ̇) = ṙ êr + r ϑ̇ êϑ + r sinϑ ϕ̇ êϕ, (3)

which addresses the concern about units. So which is the “correct” form?
In the pages that follow, we shall see that a tensor may be designated as contravariant,

covariant, or mixed, and that the velocity expressed in equation (2) is in its contravariant
form. The velocity vector in equation (3) corresponds to neither the covariant nor contravari-
ant form, but is in its so-called physical form that we would measure with a speedometer.
Each form has a purpose, no form is any more fundamental than the other, and all are linked
via a very fundamental tensor called the metric. Understanding the role of the metric in
linking the various forms of tensors1 and, more importantly, in differentiating tensors is the
basis of tensor calculus, and the subject of this primer.

1Examples of tensors the reader is already familiar with include scalars (rank 0 tensors) and vectors
(rank 1 tensors).



2 Definition of a tensor

As mentioned, the need for a mathematical construct such as tensors stems from the need
to know how the functional dependence of a physical quantity on the position coordinates
changes with a change in coordinates. Further, we wish to render the fundamental laws of
physics relating these quantities invariant under coordinate transformations. Thus, while
the functional form of the acceleration vector may change from one coordinate system to
another, the functional changes to ~F and m will be such that ~F will always be equal to m~a,
and not some other function of m, ~a, and/or some other variables or constants depending
on the coordinate system chosen.

Consider two coordinate systems, xi and x̃i, in an n-dimensional space where i =
1, 2, . . . , n2. xi and x̃i could be two Cartesian coordinate systems, one moving at a con-
stant velocity relative to the other, or xi could be Cartesian coordinates and x̃i spherical
polar coordinates whose origins are coincident and in relative rest. Regardless, one should
be able, in principle, to write down the coordinate transformations in the following form:

x̃i = x̃i(x1, x2, . . . , xn), (4)

one for each i, and their inverse transformations:

xi = xi(x̃1, x̃2, . . . , x̃n). (5)

Note that which of equations (4) and (5) is referred to as the “transformation”, and which
as the “inverse” is completely arbitrary. Thus, in the first example where the Cartesian
coordinate system x̃i = (x̃, ỹ, z̃) is moving with velocity v along the +x axis of the Cartesian
coordinate system xi = (x, y, z), the transformation relations and their inverses are:

x̃ = x− vt, x = x̃+ vt,

ỹ = y, y = ỹ,

z̃ = z, z = z̃.







(6)

For the second example, the coordinate transformations and their inverses between Cartesian,
xi = (x, y, z), and spherical polar, x̃i = (r, ϑ, ϕ) coordinates are:

r =
√

x2 + y2 + z2, x = r sinϑ cosϕ,

ϑ = tan−1

(√

x2 + y2

z

)

, y = r sin ϑ sinϕ,

ϕ = tan−1
(y

x

)

, z = r cosϑ.







(7)

Now, let f be some function of the coordinates that represents a physical quantity
of interest. Consider again two generic coordinate systems, xi and x̃i, and assume their
transformation relations, equations (4) and (5), are known. If the components of the gradient

2In physics, n is normally 3 or 4 depending on whether the discussion is non-relativistic or relativistic,
though our discussion matters little on a specific value of n. Only when we are speaking of the curl and
cross-products in general will we deliberately restrict our discussion to 3-space.

3



Definition of a tensor 4

of f in xj , namely ∂f/∂xj , are known, then we can find the components of the gradient in
x̃i, namely ∂f/∂x̃i, by the chain rule:

∂f

∂x̃i
=

∂f

∂x1

∂x1

∂x̃i
+

∂f

∂x2

∂x2

∂x̃i
+ · · ·+ ∂f

∂xn

∂xn

∂x̃i
=

n∑

j=1

∂xj

∂x̃i

∂f

∂xj
. (8)

Note that the coordinate transformation information appears as partial derivatives of the
old coordinates, xj , with respect to the new coordinates, x̃i.

Next, let us ask how a differential of one of the new coordinates, dx̃i, is related to
differentials of the old coordinates, dxi. Again, an invocation of the chain rule yields:

dx̃i = dx1
∂x̃i

∂x1
+ dx2

∂x̃i

∂x2
+ · · ·+ dxn

∂x̃i

∂xn
=

n∑

j=1

∂x̃i

∂xj
dxj . (9)

This time, the coordinate transformation information appears as partial derivatives of the
new coordinates, x̃i, with respect to the old coordinates, xj , and the inverse of equation (8).

We now redefine what it means to be a vector (equally, a rank 1 tensor).

Definition 2.1. The components of a covariant vector transform like a gra-
dient and obey the transformation law:

Ãi =
n∑

j=1

∂xj

∂x̃i
Aj . (10)

Definition 2.2. The components of a contravariant vector transform like a
coordinate differential and obey the transformation law:

Ãi =
n∑

j=1

∂x̃i

∂xj
Aj . (11)

It is customary, as illustrated in equations (10) and (11), to leave the indices of covariant
tensors as subscripts, and to raise the indices of contravariant tensors to superscripts: “co-
low, contra-high”3. In this convention, dxi → dxi. As a practical modification to this rule,
because of the difference between the definitions of covariant and contravariant components
(equations 10 and 11), a contravariant index in the denominator is equivalent to a covariant
index in the numerator, and vice versa. Thus, in the construct ∂xj/∂x̃i, j is contravariant
while i is considered to be covariant.

Superscripts indicating raising a variable to some power will generally be clear by con-
text, but where there is any ambiguity, indices representing powers will be enclosed in square
brackets. Thus, A2 will normally be, from now on, the “2-component of the contravariant
vector A”, whereas A[2] will be “A-squared” when A2 could be ambiguous.

3Thanks to Rob Thacker, SMU, for this handy mnemonic.
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Finally, we shall adopt here, as is done most everywhere else, the Einstein summation
convention in which a covariant index followed by the identical contravariant index (or vice
versa) is implicitly summed over the index without the use of a summation sign, rendering
the repeated index a dummy index. On rare occasions where a sum is to be taken over two
repeated covariant or two repeated contravariant indices, a summation sign will be given
explicitly. Conversely, if properly repeated indices (e.g., one covariant, one contravariant)
are not to be summed, a note to that effect will be given. Further, any indices enclosed
in parentheses [e.g., (i)] will not be summed. Thus, AiB

i is normally summed while AiBi,
AiBi, and A(i)B

(i) are not.
To the uninitiated who may think at first blush that this convention may be fraught with

exceptions, it turns out to be remarkably robust and rarely will it pose any ambiguities. In
tensor analysis, it is rare that two properly repeated indices should not, in fact, be summed.
It is equally rare that two repeated covariant (or contravariant) indices should be summed,
and rarer still that an index appears more than twice in any given term.

As a first illustration, applying the Einstein summation convention changes equations
(10) and (11) to:

Ãi =
∂xj

∂x̃i
Aj, and Ãi =

∂x̃i

∂xj
Aj,

respectively, where summation is implicit over the index j in both cases.

Remark 2.1. While dxi is the prototypical rank 1 contravariant tensor (e.g., equation 9), xi

is not a tensor as its transformation follows neither equations (10) nor (11). Still, we will
follow the up-down convention for coordinate indices as it serves a purpose to distinguish
between covariant-like and contravariant-like coordinates. It will usually be the case anyway
that xi will appear as part of dxi or ∂/∂xi.

Tensors of higher rank4 are defined in an entirely analogous way. A tensor of dimension
m (each index varies from 1 to m) and rank n (number of indices) is an entity that, under
an arbitrary coordinate transformation, transforms as:

T̃i1...ip

k1...kq
=

∂xj1

∂x̃i1
. . .

∂xjp

∂x̃ip

∂x̃k1

∂xl1
. . .

∂x̃kq

∂xlq
Tj1...jp

l1...lq , (12)

where p + q = n, and where the indices i1, . . . , ip and j1, . . . , jp are covariant indices and
k1, . . . , kq and l1, . . . , lq are contravariant indices. Indices that appear just once in a term
(e.g., i1, . . . , ip and k1, . . . , kq in equation 12) are called free indices, while indices appearing
twice—one covariant and one contravariant—(e.g., j1, . . . , jp and l1, . . . , lq in equation 12),
are called dummy indices as they disappear after the implied sum is carried forth. In a

4There is great potential for confusion on the use of the term rank, as it is not used consistently in the
literature. In the context of matrices, if the n column vectors in an m × n matrix (with “tensor-rank” 2)
can all be expressed as a linear combination of r ≤ min(m,n) m-dimensional vectors, that matrix has a
“matrix-rank” r which, of course, need not be 2. For this reason, some authors prefer to use order rather
than rank for tensors so that a scalar is an order-0 tensor, a vector an order-1 tensor, and a matrix an
order-2 tensor. Still other authors use dimension instead of rank, although this then gets confused with the
dimension of a vector (number of linearly independent vectors that span the parent vector space).
Despite its potential for confusion, I use the term rank for the number of indices on a tensor, which is in

keeping with the most common practise.
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valid tensor relationship, each term, whether on the left or right side of the equation, must
have the same free indices each in the same position. If a certain free index is covariant
(contravariant) in one term, it must be covariant (contravariant) in all terms.

If q = 0 (p = 0), then all indices are covariant (contravariant) and the tensor is said to
be covariant (contravariant). Otherwise, if the tensor has both covariant and contravariant
indices, it is said to be mixed. In general, the order of the indices is important, and we
deliberately write the tensor as Tj1...jp

l1...lq , and not T
l1...lq
j1...jp

. However, there is no reason to
expect all contravariant indices to follow the covariant indices, nor for all covariant indices
to be listed contiguously. Thus and for example, one could have T j m

i kl if, indeed, the first,
third, and fourth indices were covariant, and the second and fifth indices were contravariant.

Remark 2.2. Rank 2 tensors of dimension m can be represented by m×m square matrices.
A matrix that is an element of a vector space is a rank 2 tensor. Rank 3 tensors of dimension
m would be represented by an m×m×m cube of values, etc.

Remark 2.3. In traditional vector analysis, one is forever moving back and forth between
considering vectors as a whole (e.g., ~v), or in terms of its components relative to some
coordinate system (e.g., vx). This, then, leads one to worry whether a given relationship is

true for all coordinate systems (e.g., vector “identities” such as: ∇ · f ~A = f∇ · ~A+ ~A · ∇f),

or whether it is true only in certain coordinate systems [e.g., ∇·( ~A~B) = (∇·Bx
~A,∇·By

~A,∇·
Bz

~A) is true in Cartesian coordinates only]. The formalism of tensor analysis eliminates both
of these concerns by writing everything down in terms of a “typical tensor component” where
all “geometric factors”, which have yet to be discussed, have been safely accounted for in
the notation. As such, all equations are written in terms of tensor components, and rarely is
a tensor written down without its indices. As we shall see, this both simplifies the notation
and renders unambiguous the invariance of certain relationships under arbitrary coordinate
transformations.

In the remainder of this section, we make a few definitions and prove a few theorems
that will be useful throughout the rest of this primer.

Theorem 2.1. The sum (or difference) of two like-tensors is a tensor of the same type.

Proof. This is a simple application of equation (12). Consider two like-tensors (i.e., identical
indices), S and T, each transforming according to equation (12). Adding the LHS and the
RHS of these transformation equations (and defining R = S+ T), one gets:

R̃i1...ip

k1...kq ≡ S̃i1...ip

k1...kq
+ T̃i1...ip

k1...kq

=
∂xj1

∂x̃i1
. . .

∂xjp

∂x̃ip

∂x̃k1

∂xl1
. . .

∂x̃kq

∂xlq
Sj1...jp

l1...lq

+
∂xj1

∂x̃i1
. . .

∂xjp

∂x̃ip

∂x̃k1

∂xl1
. . .

∂x̃kq

∂xlq
Tj1...jp

l1...lq

=
∂xj1

∂x̃i1
. . .

∂xjp

∂x̃ip

∂x̃k1

∂xl1
. . .

∂x̃kq

∂xlq
(Sj1...jp

l1...lq + Tj1...jp
l1...lq)

=
∂xj1

∂x̃i1
. . .

∂xjp

∂x̃ip

∂x̃k1

∂xl1
. . .

∂x̃kq

∂xlq
Rj1...jp

l1...lq .
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Definition 2.3. A rank 2 dyad, D, results from taking the dyadic product of two vectors
(rank 1 tensors), ~A and ~B, as follows:

Dij = AiBj , D j
i = AiB

j, Di
j = AiBj , Dij = AiBj , (13)

where the ijth component of D, namely AiBj , is just the ordinary product of the ith element

of ~A with the jth element of ~B.

The dyadic product of two covariant (contravariant) vectors yields a covariant (con-
travariant) dyad (first and fourth of equations 13), while the dyadic product of a covariant
vector and a contravariant vector yields a mixed dyad (second and third of equations 13).
Indeed, dyadic products of three or more vectors can be taken to create a dyad of rank 3 or
higher (e.g., D j

i k = AiB
jCk, etc).

Theorem 2.2. A rank 2 dyad is a rank 2 tensor.

Proof. We need only show that a rank 2 dyad transforms as equation (12). Consider a mixed
dyad, D̃ l

k = ÃkB̃
l, in a coordinate system x̃l. Since we know how the vectors transform to

a different coordinate system, xi, we can write:

D̃ l
k = ÃkB̃

l =

(
∂xi

∂x̃k
Ai

)(
∂x̃l

∂xj
Bj

)

=
∂xi

∂x̃k

∂x̃l

∂xj
AiB

j =
∂xi

∂x̃k

∂x̃l

∂xj
D j

i .

Thus, from equation (12), D transforms as a mixed tensor of rank 2. A similar argument can
be made for a purely covariant (contravariant) dyad of rank 2 and, by extension, of arbitrary
rank.

Remark 2.4. By dealing with only a typical component of a tensor (and thus a real or complex
number), all arithmetic is ordinary multiplication and addition, and everything commutes:
AiB

j = BjAi, for example. Conversely, in vector and matrix algebra when one is dealing
with the entire vector or matrix, multiplication does not follow the usual rules of scalar
multiplication and, in particular, is not commutative. In many ways, this renders tensor
algebra much simpler than vector and matrix algebra.

Definition 2.4. If Aij is a rank 2 covariant tensor and Bkl is a rank 2 contravariant tensor,
then they are each other’s inverse if:

AijB
jk = δ k

i ,

where δ k
i = 1 if i = k, 0 otherwise is the usual Kronecker delta.

In a similar vein, A j
i B

k
j = δ k

i and Ai
jB

j
k = δik are examples of inverses for mixed rank

2 tensors. One can even have “inverses” of rank 1 tensors: eie
j = δ j

i , though this property
is usually referred to as orthogonality.

Note that the concepts of invertibility and orthogonality take the place of “division” in
tensor algebra. Thus, one would never see a tensor element in the denominator of a fraction
and something like C k

i = Aij/Bjk is never written. Instead, one would write C k
i Bjk = Aij

and, if it were critical that C be isolated, one would write C k
i = Aij(Bjk)

−1 = AijD
jk if
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Djk were, in fact, the inverse of Bjk. A tensor element could appear in the numerator of a
fraction where the denominator is a scalar (e.g., Aij/2) or a physical component of a vector
(as introduced in the next section), but never in the denominator.

I note in haste that while a derivative, ∂xi/∂x̃j , may look like an exception to this rule,
it is a notational exception only. In taking a derivative, one is not really taking a fraction.
And while dxi is a tensor, ∆xi is not and thus the actual fraction ∆xi/∆x̃j is allowed in
tensor algebra since the denominator is not a tensor element.

Theorem 2.3. The derivatives ∂xi/∂x̃k and ∂x̃k/∂xj are each other’s inverse. That is,

∂xi

∂x̃k

∂x̃k

∂xj
= δij .

Proof. This is a simple application of the chain rule. Thus,

∂xi

∂x̃k

∂x̃k

∂xj
=

∂xi

∂xj
= δij, (14)

where the last equality is true by virtue of the independence of the coordinates xi.

Remark 2.5. If one considers ∂xi/∂x̃k and ∂x̃k/∂xj as, respectively, the (i, k)th and (k, j)th

elements of m×m matrices then, with the implied summation, the LHS of equation (14) is
simply following ordinary matrix multiplication, while the RHS is the (i, j)th element of the
identity matrix. It is in this way that ∂xi/∂x̃k and ∂x̃k/∂xj are each other’s inverse.

Definition 2.5. A tensor contraction occurs when one of a tensor’s free covariant indices
is set equal to one of its free contravariant indices. In this case, a sum is performed on the
now repeated indices, and the result is a tensor with two fewer free indices.

Thus, and for example, T j
ij is a contraction on the second and third indices of the rank

3 tensor T k
ij . Once the sum is performed over the repeated indices, the result is a rank 1

tensor (vector). Thus, if we use T to designate the contracted tensor as well (something we
are not obliged to do, but certainly may), we would write:

T j
ij = Ti.

Remark 2.6. Contractions are only ever done between one covariant index and one con-
travariant index, never between two covariant indices nor two contravariant indices.

Theorem 2.4. A contraction of a rank 2 tensor (its trace) is a scalar whose value is inde-
pendent of the coordinate system chosen. Such a scalar is referred to as a rank 0 tensor.

Proof. Let T = T i
i be the trace of the tensor, T. If T̃ l

k is a tensor in coordinate system x̃k,
then its trace transforms to coordinate system xi according to:

T̃ k
k =

∂xi

∂x̃k

∂x̃k

∂xj
T j
i = δijT

j
i = T i

i = T.

It is important to note the role played by the fact that T̃ l
k is a tensor, and how this

gave rise to the Kronecker delta (Theorem 2.3) which was needed in proving the invariance
of the trace (i.e., that the trace has the same value regardless of coordinate system).



3 The metric

In an arbitrary m-dimensional coordinate system, xi, the differential displacement vector is:

d~r = (h(1)dx
1, h(2)dx

2, . . . , h(m)dx
m) =

m∑

i=1

h(i)dx
iê(i), (15)

where ê(i) are the physical (not covariant) unit vectors, and where h(i) = h(i)(x
1, . . . , xm)

are scale factors (not tensors) that depend, in general, on the coordinates and endow each
component with the appropriate units of length. The subscript on the unit vector is enclosed
in parentheses since it is a vector label (to distinguish it from the other unit vectors spanning
the vector space), and not an indicator of a component of a covariant tensor. Subscripts on h
are enclosed in parentheses since they, too, do not indicate components of a covariant tensor.
In both cases, the parentheses prevent them from triggering an application of the Einstein
summation convention should they be repeated. For the three most common orthogonal
coordinate systems, the coordinates, unit vectors, and scale factors are:

system xi ê(i) (h(1), h(2), h(3))

Cartesian (x, y, z) êx, êy, êz (1, 1, 1)

cylindrical (z, ̺, ϕ) êz, ê̺, êϕ (1, 1, ̺)

spherical polar (r, ϑ, ϕ) êr, êϑ, êϕ (1, r, r sinϑ)

Table 1: Nomenclature for the most common coordinate systems.

In “vector-speak”, the length of the vector d~r, given by equation (15), is obtained by
taking the “dot product” of d~r with itself. Thus,

(dr)2 =
m∑

i=1

m∑

j=1

h(i)h(j)ê(i) · ê(j)dxidxj , (16)

where ê(i) · ê(j) ≡ cos θ(ij) are the directional cosines which are 1 when i = j. For orthogonal
coordinate systems, cos θ(ij) = 0 for i 6= j, thus eliminating the “cross terms”. For non-
orthogonal systems, the off-diagonal directional cosines are not, in general, zero and the
cross-terms remain.

Definition 3.1. The metric, gij, is given by:

gij = h(i)h(j)ê(i) · ê(j), (17)

which, by inspection, is symmetric under the interchange of its indices; gij = gji.

Remark 3.1. For an orthogonal coordinate system, the metric is given by: gij = h(i)h(j)δij ,
which reduces further to δij for Cartesian coordinates.

Thus equation (16) becomes:

(dr)2 = gijdx
idxj , (18)

where the summation on i and j is now implicit, presupposing the following theorem:

9
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Theorem 3.1. The metric is a rank 2 covariant tensor.

Proof. Because (dr)2 is the square of a distance between two physical points, it must be
invariant under coordinate transformations. Thus, consider (dr)2 in the coordinate systems
x̃k and xi:

(dr)2 = g̃kl dx̃
kdx̃l = gij dx

idxj = gij
∂xi

∂x̃k
dx̃k ∂x

j

∂x̃l
dx̃l =

∂xi

∂x̃k

∂xj

∂x̃l
gij dx̃

kdx̃l

⇒
(

g̃kl −
∂xi

∂x̃k

∂xj

∂x̃l
gij

)

dx̃kdx̃l = 0,

which must be true ∀ dx̃kdx̃l. This can be true only if,

g̃kl =
∂xi

∂x̃k

∂xj

∂x̃l
gij, (19)

and, by equation (12), gij transforms as a rank 2 covariant tensor.

Definition 3.2. The conjugate metric, gkl, is the inverse to the metric tensor, and therefore
satisfies:

gkpgip = gipg
kp = δ k

i . (20)

It is left as an exercise to show that the conjugate metric is a rank 2 contravariant
tensor. (Hint: use the invariance of the Kronecker delta.)

Definition 3.3. A conjugate tensor is the result of multiplying a tensor with the metric,
then contracting one of the indices of the metric with one of the indices of the tensor.

Thus, two examples of conjugates for the rank n tensor Ti1...ip
j1...jq , p+ q = n, include:

T
k j1...jq

i1...ir−1 ir+1...ip
= gkirT

j1...jq
i1...ip

, 1 ≤ r ≤ p; (21)

T
j1...js−1 js+1...jq

i1...ip l = gljsT
j1...jq

i1...ip
, 1 ≤ s ≤ q. (22)

An operation like equation (21) is known as raising an index (covariant index ir is replaced
with contravariant index k) while equation (22) is known as lowering an index (contravariant
index js is replaced with covariant index l). For a tensor with p covariant and q contravariant
indices, one could write down p conjugate tensors with a single index raised and q conjugate
tensors with a single index lowered. Contracting a tensor with the metric several times will
raise or lower several indices, each representing a conjugate tensor to the original. Associated
with every rank n tensor are 2n−1 conjugate tensors all with rank n.

The attempt to write equations (21) and (22) for a general rank n tensor has made them
rather opaque, so it is useful to examine the simpler and special case of raising and lowering
the index of a rank 1 tensor. Thus,

Aj = gijAi; Ai = gijA
j. (23)

Rank 2 tensors can be similarly examined. As a first example, we define the covariant
coordinate differential, dxi, to be:

dxj = gijdxi; dxi = gijdx
j.
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We can find convenient expressions for the metric components of any coordinate system,
xi, if we know how xi and Cartesian coordinates depend on each other. Thus, if χk represent
the Cartesian coordinates (x, y, z), and if we know χk = χk(xi), then using Remark 3.1 we
can write:

(dr)2 = δkldχ
kdχl = δkl

(
∂χk

∂xi
dxi

)(
∂χl

∂xj
dxj

)

=

(

δkl
∂χk

∂xi

∂χl

∂xj

)

dxidxj.

Therefore, by equations (18) and (20), the metric and its inverse are given by:

gij = δkl
∂χk

∂xi

∂χl

∂xj
and gij = δkl

∂xi

∂χk

∂xj

∂χl
. (24)

3.1 Physical components and basis vectors

Consider an m-dimensional space, Rm, spanned by an arbitrary basis of unit vectors (not
necessarily orthogonal), ê(i), i = 1, 2, . . . , m. A theorem of first-year linear algebra states

that for every ~A ∈ R
m, there is a unique set of numbers, A(i), such that:

~A =
∑

i

A(i)ê(i). (25)

Definition 3.4. The values A(i) in equation (25) are the physical components of ~A relative
to the basis set ê(i).

A physical component of a vector field has the same units as the field. Thus, a physical
component of velocity has units m s−1, electric field Vm−1, force N, etc. As it turns out, a
physical component is neither covariant nor contravariant, and thus the subscripts of physical
components are surrounded with parentheses lest they trigger an unwanted application of
the summation convention which only applies to a covariant-contravariant index pair. As
will be shown in this subsection, all three types of vector components are distinct yet related.

It is a straight-forward, if not tedious, task to find the physical components of a given
vector, ~A, with respect to a given basis set, ê(i)

5. Suppose ~Ac and êi,c are “m-tuples” of the

components of vectors ~A and ê(i) relative to “Cartesian-like6” coordinates (or any coordinate

system, for that matter). To find the m-tuple, ~Ax, of the components of ~A relative to the
new basis, ê(i), one does the following calculation:







ê1,c ê2,c . . . êm,c
~Ac

↓ ↓ . . . ↓ ↓







−→
row reduce







~Ax

↓
I






. (26)

The ith element of the m-tuple ~Ax will be A(i), the i
th component of ~A relative to ê(i), and the

coefficient for equation (25). Should ê(i) form an orthogonal basis set, the problem of finding

5See, for example, §2.7 of Bradley’s A primer of Linear Algebra; ISBN 0-13-700328-5
6I use the qualifier “like” since Cartesian coordinates are, strictly speaking, 3-D.
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A(i) is much simpler. Taking the dot product of equation (25) with ê(j), then replacing the
surviving index j with i, one gets:

A(i) = ~A · ê(i), (27)

where, as a matter of practicality, one may perform the dot product using the Cartesian-like
components of the vectors, ~Ac and êi,c. It must be emphasised that what many readers may
think as the general expression, equation (27), works only when ê(i) form an orthogonal set.
Otherwise, equation (26) must be used.

Equation (15) expresses the prototypical vector, d~r, in terms of the unit (physical) basis
vectors, ê(i), and its contravariant components, dxi [the naked differentials of the coordinates,
such as (dr, dϑ, dϕ) in spherical polar coordinates]. Thus, by analogy, we write for any vector
~A:

~A =

m∑

i=1

h(i)A
iê(i). (28)

On comparing equations (25) and (28), and given the uniqueness of the physical compo-
nents, we can immediately write down a relation between the physical and contravariant
components:

A(i) = h(i)A
i; Ai =

1

h(i)

A(i), (29)

where, as a reminder, there is no sum on i. By substituting Ai = gijAj in the first of
equations (29) and multiplying through the second equation by gij (and thus triggering a
sum on i on both sides of the equation), we get the relationship between the physical and
covariant components:

A(i) = h(i)g
ijAj; Aj =

∑

i

gij
h(i)

A(i). (30)

For orthogonal coordinates, gij = δij/h(i)h(j), gij = δijh(i)h(j), and equations (30) reduce to:

A(i) =
1

h(i)

Ai; Aj = h(j)A(j). (31)

By analogy, we can also write down the relationships between physical components of
higher rank tensors and their contravariant, mixed, and covariant forms. For rank 2 tensors,
these are:

T(ij) = h(i)h(j)T
ij = h(i)h(j)g

ikT j
k = h(i)h(j)g

jlT i
l = h(i)h(j)g

ikgjlTkl, (32)

(sums on k and l only) which, for orthogonal coordinates, reduce to:

T(ij) = h(i)h(j)T
ij =

h(j)

h(i)

T j
i =

h(i)

h(j)

T i
j =

1

h(i)h(j)

Tij. (33)

Just as there are covariant, physical, and contravariant tensor components, there are
also covariant, physical (e.g., unit), and contravariant basis vectors.
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Definition 3.5. Let ~rx be a displacement vector whose components are expressed in terms
of the coordinate system xi. Then the covariant basis vector, ei, is defined to be:

ei ≡ d~rx
dxi

.

Remark 3.2. Just like the unit basis vector ê(i), the index on ei serves to distinguish one
basis vector from another, and does not represent a single tensor element as, for example,
the subscript in the covariant vector Ai does.

It is easy to see that ei is a covariant vector, by considering its transformation to a new
coordinate system, x̃j :

ẽj =
d~rx̃
dx̃j

=
∂xi

∂x̃j

d~rx
dxi

=
∂xi

∂x̃j
ei,

confirming its covariant character.
From equation (15) and the fact that the xi are linearly independent, it follows from

definition 3.5 that:

ei = h(i)ê(i); ê(i) =
1

h(i)
ei. (34)

The contravariant basis vector, ej , is obtained by multiplying the first of equations (34) by
gij (triggering a sum over i on the LHS, and thus on the RHS as well), and replacing ei in
the second with gije

j :

gijei = e
j =

∑

i

gijh(i)ê(i); ê(i) =
gij
h(i)

e
j (35)

Remark 3.3. Only the physical basis vectors are actually unit vectors and thus unitless, and
therefore only they are designated by a “hat” (ê). The covariant basis vector, ei, has units
h(i) while the contravariant basis vector, e

j, has units 1/h(i) and are designated in bold-italic
(e).

Theorem 3.2. Regardless of whether the coordinate system is orthogonal, ei · ej = δ j
i .

Proof.

ei · ej = h(i)ê(i) ·
∑

k

gkjh(k)ê(k) =
∑

k

gkj h(i)h(k)ê(i) · ê(k)
︸ ︷︷ ︸

gik (eqn 17)

= gkjgik = δ j
i .

Remark 3.4. Note that by equation (17), ei · ej = gij and thus ei · ej = gij.

Now, substituting the first of equations (29) and the second of equations (34) into
equation (25), we find:

~A =
∑

i

A(i)ê(i) =
∑

i
✚
✚h(i)A

i 1

✚
✚h(i)

ei = Ai
ei, (36)
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where the sum on i is now implied. Similarly, by substituting the first of equations (30) and
the second of equations (35) into equation (25), we find:

~A =
∑

i

A(i)ê(i) =
∑

i
✚
✚h(i)g

ijAj
gik

✚
✚h(i)

e
k = gijgik

︸ ︷︷ ︸

δjk

Aje
k = Aje

j . (37)

Thus, we can find the ith covariant component of a vector by calculating:

~A · ei = Aj e
j · ei
︸ ︷︷ ︸

δji

= Ai. (38)

using Theorem 3.2. Because we have used the covariant and contravariant basis vectors
instead of the physical unit vectors, equation (38) is true regardless of whether the basis is
orthogonal, and thus appears to give us a simpler prescription for finding vector components
in a general basis than the algorithm outlined in equation (26). Alas, nothing is for free;
computing the covariant and contravariant basis vectors from the physical unit vectors can
consist of similar operations as row-reducing a matrix.

Finally, let us re-establish contact with the introductory remarks, and remind the reader
that equation (2) is the velocity vector in its contravariant form whereas equation (3) is in
its physical form, reproduced here for reference:

~vcon = (ṙ, ϑ̇, ϕ̇);

~vphys = (ṙ, rϑ̇, r sin ϑ ϕ̇).

Given equation (31), the covariant form of the velocity vector in spherical polar coordinates
is evidently:

~vcov = (ṙ, r2ϑ̇, r2 sin2 ϑ ϕ̇). (39)

3.2 The scalar and inner products

Definition 3.6. The covariant and contravariant scalar products of two rank 1 tensors, A
and B, are defined as gijAiBj and gijA

iBj respectively.

The covariant and contravariant scalar products actually have the same value, as seen
by:

gijAiBj = AjBj and gijA
iBj = AigijB

j = AiBi,

using equation (23). Similarly, one could show that the common value is AiB
i. Therefore,

the covariant and contravariant scalar product are referred to as simply the scalar product.
To find the scalar product in physical components, we start with equations (29) and

(30) to write:

AiBi =
∑

i

A(i)

h(i)

∑

j

gijB(j)

h(j)

=
∑

i j

A(i)B(j)
gij

h(i)h(j)
︸ ︷︷ ︸

ê(i) · ê(j)

=

(
∑

i

A(i)ê(i)

)

·
(
∑

j

B(j)ê(j)

)
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= ~A · ~B =
∑

i

AiBi (last equality for orthogonal coordinates only), (40)

using equations (17) and (25). Thus, the scalar product of two rank 1 tensors is just the
ordinary dot product between two physical vectors in vector algebra.

Remark 3.5. The scalar product of two rank 1 tensors is really the contraction of the dyadic
AiB

j and thus, from Theorem 2.4, the scalar product is invariant under coordinate trans-
formations.

Note that while both AiB
j and AiBj are rank 2 tensors (the first mixed, the second

covariant), only AiB
i is invariant. To see that

∑

i AiBi is not invariant, write:

∑

k

ÃkB̃k =
∑

k

∂xi

∂x̃k
Ai

∂xj

∂x̃k
Bj =

∑

k

∂xi

∂x̃k

∂xj

∂x̃k
AiBj 6=

∑

i

AiBi.

Unlike the proof to Theorem 2.4, ∂xi/∂x̃k and ∂xj/∂x̃k are not each other’s inverse and there
is no Kronecker delta δij to be extracted, whence the inequality. Note that the middle two
terms are actually triple sums, including the implicit sums on each of i and j.

Definition 3.7. The covariant and contravariant scalar products of two rank 2 tensors, S
and T, are defined as gikgjlSklTij and gikgjlS

ijT kl respectively.

Similar to the scalar product of two rank 1 tensors, these operations result in a scalar:

gikgjlSklTij = SijTij = Sklg
ikgjlTij = SklT

kl = gikgjlS
ijT kl.

Thus, the covariant and contravariant scalar products of two rank 2 tensors give the same
value and are collectively referred to simply as the scalar product.

In terms of the physical components, use equation 32 to write:

SijTij =
∑

i j

S(ij)

h(i)h(j)

∑

k l

gikgjlT(kl)

h(k)h(l)

=
∑

i j k l

S(ij)T(kl)
gik

h(i)h(k)
︸ ︷︷ ︸

ê(i) · ê(k)

gjl
h(j)h(l)
︸ ︷︷ ︸

ê(j) · ê(l)

(41)

≡ S : T =
∑

i j

S(ij)T(ij) (last equality for orthogonal coordinates only),

Here, I use the “colon product” notation frequently used in vector algebra. If S and T are
matrices relative to an orthogonal basis, the colon product is simply the sum of the products
of the (i, j)th element of S with the (i, j)th element of T, all “cross-terms” being zero. Note
that if S (T) is the dyadic product of rank 1 tensors A and B (C and D), and thus Sij = AiBj

(Tij = CiDj), then we can rewrite equation (41) as:

SijTij = AiBjCiDj = (AiCi)(B
jDj) = ( ~A · ~C)( ~B · ~D) = S : T,

and, in “vector-speak”, the colon product is sometimes referred to as the double dot product.
Now, scalar products are operations on two tensors of the same rank that yield a scalar.

Similar operations on tensors of unequal rank yield a tensor of non-zero rank, the simplest
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example being the contraction of a rank 2 tensor, T, with a rank 1 tensor, A (or vice versa).
In tensor notation, there are sixteen ways such a contraction can be represented: T ijAj ,
T i

jA
j , T j

i Aj, TijA
j , AiT

ij, AiT j
i , AiT

i
j , A

iTij plus eight more with the factors reversed
(e.g., T ijAj = AjT

ij). Fortunately, these can be arranged naturally in two groups:

T ijAj = T i
jA

j = gikT j
k Aj = gikTkjA

j ≡ (T · ~A)i; (42)

AiT
ij = AiT j

i = gjkAiT
i
k = gjkAiTik ≡ ( ~A · T)j. (43)

where, by example, we have defined the contravariant inner product between tensors of rank
1 and 2.

Definition 3.8. The inner product between two tensors of any rank is the contraction of
the inner indices, namely the last index of the first tensor and the first index of the last
tensor.

Thus, to know how to write AjT i
j as an inner product, one first notices that, as written,

it is the last index of the last tensor (T) that is involved in the contraction, not the first index.
By commuting the tensors to get T i

jA
j (which doesn’t change its value), the last index of the

first tensor is now contracted with the first index of the last tensor and, with the tensors now
in their “proper” order, we write down T i

jA
j = (T · ~A)i. Note that ( ~A ·T)i = AjT

ji 6= AjT
ij

unless T is symmetric. Thus, the inner product does not generally commute: ~A · T 6= T · ~A.
In vector/matrix notation, T · ~A is the right dot product of the matrix T with the vector

~A, and is equivalent to the matrix multiplication of the m × m matrix T on the left with
the m× 1 column vector ~A on the right, yielding another m× 1 column vector, call it ~B. In
“bra-ket” notation, this is represented as T|A〉 = |B〉. Conversely, the left dot product, ~A ·T,
is the matrix multiplication of the 1 ×m row vector on the left with the m ×m matrix on
the right, yielding another 1 ×m row vector. In “bra-ket” notation, this is represented as
〈A|T = 〈B|.

The inner products defined in equations (42) and (43) are rank 1 contravariant tensors.
In terms of the physical components, we have from equations (29) and (32):

T ijAj = T i
jA

j = (T · ~A)i =
1

h(i)

(T · ~A)(i) = gjkT
ikAj (44)

=
∑

jk

gjk
T(ik)

h(i)h(k)

A(j)

h(j)

=
1

h(i)

∑

jk

T(ik)A(j)
gjk

h(j)h(k)

=
1

h(i)

∑

jk

T(ik)A(j)ê(j) · ê(k)

⇒ (T · ~A)(i) =
∑

jk

T(ik)A(j)ê(j) · ê(k)
(

=
∑

j

T(ij)A(j)

)

, (45)

AjT
ji = AjT i

j = ( ~A · T)i =
1

h(i)
( ~A · T)(i) = AjgjkT

ki (46)

=
∑

jk

gjk
A(j)

h(j)

T(ki)

h(k)h(i)

=
1

h(i)

∑

jk

A(j)T(ki)
gjk

h(j)h(k)

=
1

h(i)

∑

jk

A(j)T(ki)ê(j) · ê(k)
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⇒ ( ~A · T)(i) =
∑

jk

T(ki)A(j)ê(j) · ê(k)
(

=
∑

j

T(ji)A(j)

)

, (47)

where the equalities in parentheses are true for orthogonal coordinates only. Note that the
only difference between equations (45) and (47) is the order of the indices on T.

3.3 Invariance of tensor expressions

The most important property of tensors is their ability to render an equation invariant
under coordinate transformations. As indicated after equation (12), each term in a valid
tensor expression must have the same free indices in the same positions. Thus, for example,
U k
ij = Vi is invalid since each term does not have the same number of indices, though this

equation could be rendered valid by contracting on two of the indices in U : U j
ij = Vi. As a

further example,
T j
i kl = A j

i Bkl + C mj
m Dikl, (48)

is a valid tensor expression, whereas,

S jk
i l = A j

i Bkl + C mj
m Dikl, (49)

is not valid because k is contravariant in S but covariant in the two terms on the RHS.
Given the role of metrics in raising and lowering indices, we could “rescue” equation (49) by
renaming the index k in S to n, say, and then multiplying the LHS by gkn. Thus,

gknS
jn

i l = A j
i Bkl + C mj

m Dikl, (50)

is now a valid tensor expression. And so it goes.
An immediate consequence of the rules for assembling a valid tensor expression is that it

must have the same form in every coordinate system. Thus and for example, in transforming
equation (48) from coordinate system xi to coordinate system x̃i′ , we would write:

∂x̃i′

∂xi

∂xj

∂x̃j′

∂x̃k′

∂xk

∂x̃l′

∂xl
T̃ j′

i′ k′l′ =
∂x̃i′

∂xi

∂xj

∂x̃j′
A j′

i′
∂x̃k′

∂xk

∂x̃l′

∂xl
Bk′l′

+
∂x̃m′

∂xm

∂xm

∂x̃m′

︸ ︷︷ ︸

1

∂xj

∂x̃j′
C m′j′

m′

∂x̃i′

∂xi

∂x̃k′

∂xk

∂x̃l′

∂xl
Di′k′l′

⇒ ∂x̃i′

∂xi

∂xj

∂x̃j′

∂x̃k′

∂xk

∂x̃l′

∂xl

(

T̃ j′

i′ k′l′ −A j′

i′ Bk′l′ − C m′j′

m′ Di′k′l′

)

= 0.

Since no assumptions were made of the coordinate transformation factors (the derivatives)
in front, this equation must be true for all possible factors, and thus can be true only if the
quantity in parentheses is zero. Thus,

T̃ j′

i′ k′l′ = A j′

i′ Bk′l′ + C m′j′

m′ Di′k′l′. (51)

The fact that equation (51) has the identical form as equation (48) is what is meant by a
tensor expression being invariant under coordinate transformations. Note that equation (49)
would not transform in an invariant fashion, since the LHS would have different coordinate
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transformation factors than the RHS. Note further that the invariance of a tensor expression
like equation (48) doesn’t mean that each term remains unchanged under the coordinate
transformation. Indeed, the components of most tensors will change under coordinate trans-
formations. What doesn’t change in a valid tensor expression is how the tensors are related
to each other, with the changes to each tensor “cancelling out” from each term.

Finally, courses in tensor analysis often include some mention of the quotient rule, which
has nothing to do with the quotient rule of single-variable calculus. Instead, it is an inverted
restatement, of sorts, of what it means to be an invariant tensor expression for particularly
simple expressions.

Theorem 3.3. (Quotient Rule) If A and B are tensors, and if the expression A = BT is
invariant under coordinate transformation, then T is a tensor.

Proof. Here we look at the special case:

Ai = BjT
j
i. (52)

The proof for tensors of general rank is more cumbersome and no more enlightening. Since
equation (52) is invariant under coordinate transformations, we can write:

B̃lT̃
l
k = Ãk =

∂xi

∂x̃k
Ai =

∂xi

∂x̃k
BjT

j
i =

∂xi

∂x̃k

∂x̃l

∂xj
B̃lT

j
i

⇒ B̃l

(

T̃ l
k −

∂xi

∂x̃k

∂x̃l

∂xj
T j

i

)

= 0,

which must be true ∀ B̃l. This is possible only if the contents of the parentheses is zero,
whence:

T̃ l
k =

∂xi

∂x̃k

∂x̃l

∂xj
T j

i,

and T j
i transforms as a rank 2 mixed tensor.

3.4 The permutation tensors

Definition 3.9. The Levi-Civita symbol, εijk, also known as the three-dimensional permu-
tation parameter, is given by:

εijk = εijk =







1 for i, j, k an even permutation of 1, 2, 3;

−1 for i, j, k an odd permutation of 1, 2, 3;

0 if any of i, j, k are the same.

(53)

As it turns out, εijk is not a tensor7, though its indices will still participate in Einstein
summation conventions where applicable and unless otherwise noted. As written in equation
(53), there are two “flavours” of the Levi-Civita symbol—one with covariant-like indices,
one with contravariant-like indices—which are used as convenient. Numerically, the two are
equal.

7Technically, εijk is a pseudotensor, a distinction we will not need to make in this primer.
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There are two very common uses for εijk. First, it is used to represent vector cross-
products:

Ck = ( ~A× ~B)k = εijkA
iBj. (54)

In a similar vein, we shall see in §5.5 how it, or at least the closely related permutation tensor
defined below, is used in the definition of the tensor curl.

Second, and most importantly, εijk is used to represent determinants. If A is a 3 × 3
matrix, then its determinant, A, is given by:

A = εijkA1iA2jA3k, (55)

which can be verified by direct application of equation (53). Indeed, determinants of higher
dimensioned matrices may be represented by permutation parameters of higher rank and
dimension. Thus, the determinant of an m×m matrix, B, is given by:

B = εi1i2...imB1i1B2i2 . . . Bmim ,

where both the rank and dimension of εi1i2...im is m (though the rank of matrix B is still 2).

Theorem 3.4. Consider two 3-dimensional coordinate systems8, xi and x̃i′, and let Jx,x̃ be
the Jacobian determinant, namely:

Jx,x̃ =

∣
∣
∣
∣

∂xi

∂x̃i′

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

∂x1

∂x̃1

∂x1

∂x̃2

∂x1

∂x̃3

∂x2

∂x̃1

∂x2

∂x̃2

∂x2

∂x̃3

∂x3

∂x̃1

∂x3

∂x̃2

∂x3

∂x̃3

∣
∣
∣
∣
∣
∣
∣
∣

If A and Ã are the same rank 2, 3-dimensional tensor in each of the two coordinate systems,
and if A and Ã are their respective determinants, then

Jx,x̃ =

√

Ã/A. (56)

Proof. We start with the observation that:

εpqrA = εijkApiAqjArk, (57)

is logically equivalent to equation (55). This can be verified by direct substitution of all
possible cases. Thus, if (p, q, r) is an even permutation of (1, 2, 3), εpqr = 1 on the LHS
while the matrix A on the RHS effectively undergoes an even number of row swaps, leaving
the determinant unchanged. If (p, q, r) is an odd permutation of (1, 2, 3), εpqr = −1 while A

undergoes an odd number of row swaps, negating the determinant. In both cases, equation
(57) is equivalent to equation (55). Finally, if any two of (p, q, r) are equal, εpqr = 0 and the
determinant, now of a matrix with two identical rows, would also be zero.

Rewriting equation (57) in the x̃ coordinate system, we get:

εp′q′r′Ã = εi
′j′k′Ãp′i′Ãq′j′Ãr′k′

8The extension to m dimensions is straight-forward.



The metric 20

= εi
′j′k′ ∂x

p

∂x̃p′

∂xi

∂x̃i′
Api

∂xq

∂x̃q′

∂xj

∂x̃j′
Aqj

∂xr

∂x̃r′

∂xk

∂x̃k′
Ark

= εi
′j′k′ ∂x

i

∂x̃i′

∂xj

∂x̃j′

∂xk

∂x̃k′

︸ ︷︷ ︸

εijkJx,x̃

ApiAqjArk
∂xp

∂x̃p′

∂xq

∂x̃q′

∂xr

∂x̃r′

where the under-brace is a direct application of equation (57). Continuing. . .

⇒ εp′q′r′Ã = εijkApiAqjArk
︸ ︷︷ ︸

εpqrA

∂xp

∂x̃p′

∂xq

∂x̃q′

∂xr

∂x̃r′
Jx,x̃

= εpqr
∂xp

∂x̃p′

∂xq

∂x̃q′

∂xr

∂x̃r′

︸ ︷︷ ︸

εp′q′r′Jx,x̃

Jx,x̃A

= εp′q′r′(Jx,x̃)
2A

⇒ εp′q′r′
(
Ã− (Jx,x̃)

2A
)
= 0 ⇒ Jx,x̃ =

√

Ã/A.

Theorem 3.5. If g = det gij is the determinant of the metric tensor, then the entities:

ǫijk =
1√
g
εijk; ǫijk =

√
g εijk, (58)

are rank 3 tensors. ǫijk and ǫijk are known, respectively, as the contravariant and covariant
permutation tensors.

Proof. Consider ǫ̃i
′j′k′ in the x̃i′ coordinate system. In transforming it to the xi coordinate

system, we would write:

ǫ̃i
′j′k′ ∂x

i

∂x̃i′

∂xj

∂x̃j′

∂xk

∂x̃k′
=

1√
g̃
εi

′j′k′ ∂x
i

∂x̃i′

∂xj

∂x̃j′

∂xk

∂x̃k′

︸ ︷︷ ︸

εijkJx,x̃

=
1√
g̃
εijk

√

g̃

g
=

1√
g
εijk = ǫijk,

using first equation (57), then equation (56) with Aij = gij . Thus, ǫ
ijk transforms like a rank

3 contravariant tensor. Further, its covariant conjugate is given by:

ǫpqr = gpigqjgrkǫ
ijk =

1√
g
εijkgpigqjgrk
︸ ︷︷ ︸

εpqrg

=
√
gεpqr,

and
√
gεpqr is a rank 3 covariant tensor.



4 Tensor derivatives

While the partial derivative of a scalar, ∂f/∂xi, is the prototypical covariant rank 1 tensor
(equation 8), we get into trouble as soon as we try taking the derivative of a tensor of any
higher rank. Consider the transformation of ∂Ai/∂xj from the xi coordinate system to x̃p:

∂Ãp

∂x̃q
=

∂xj

∂x̃q

∂

∂xj

(
∂x̃p

∂xi
Ai

)

=
∂xj

∂x̃q

∂x̃p

∂xi

∂Ai

∂xj
+

∂xj

∂x̃q

∂2x̃p

∂xj∂xi
Ai. (59)

Now, if ∂Ai/∂xj transformed as a tensor, we would have expected only the first term on the
RHS. The presence of the second term means that ∂Ai/∂xj is not a tensor, and we therefore
need to generalise our definition of tensor differentiation if we want equations involving tensor
derivatives to maintain their tensor invariance.

Before proceeding, however, let us consider an alternate and, as it turns out, incorrect
approach. One might be tempted to write, as was I in preparing this primer:

∂Ãp

∂x̃q
=

∂

∂x̃q

(
∂x̃p

∂xi
Ai

)

=
∂x̃p

∂xi

∂Ai

∂x̃q
+ Ai ∂

∂x̃q

∂x̃p

∂xi
=

∂x̃p

∂xi

∂xj

∂x̃q

∂Ai

∂xj
+ Ai ∂

∂xi

∂x̃p

∂x̃q
.

As written, the last term would be zero since ∂x̃p/∂x̃q = δpq, and ∂δpq/∂x
i = 0. This clearly

disagrees with the last term in equation (59), so what gives? Since x̃q and xi are not linearly
independent of each other, their order of differentiation may not be swapped, and the second
term on the RHS is bogus.

Returning to equation (59), rather than taking the derivative of a single vector compo-

nent, take instead the derivative of the full vector ~A = Ai
ei (equation 36):

∂ ~A

∂xj
=

∂(Ai
ei)

∂xj
=

∂Ai

∂xj
ei +

∂ei

∂xj
Ai. (60)

The first term accounts for the rate of change of the vector component, Ai, from point to
point, while the second term accounts for the rate of change of the basis vector, ei. Both
terms are of equal importance and thus, to make progress in differentiating a general vector,
we need to understand how to differentiate a basis vector.

4.1 “Christ-awful symbols”9

If ei is one of m covariant basis vectors spanning an m-dimensional space, then ∂ei/∂x
j is

a vector within that same m-dimensional space and therefore can be expressed as a linear
combination of the m basis vectors:

Definition 4.1. The Christoffel symbols of the second kind, Γk
ij, are the components of the

vector ∂ei/∂x
j relative to the basis ek. Thus,

∂ei

∂xj
= Γk

ijek (61)

9A tip of the hat to Professor Daniel Finley, the University of New Mexico.

21
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To get an expression for Γl
ij by itself, we take the dot product of equation (61) with e

l

(cf., equation 38) to get:
∂ei

∂xj
· el = Γk

ij ek · el

︸ ︷︷ ︸

δ l
k

= Γl
ij. (62)

Theorem 4.1. The Christoffel symbol of the second kind is symmetric in its lower indices.

Proof. Recalling definition 3.5, we write:

Γl
ij =

∂ei

∂xj
· el =

∂

∂xj

∂~rx
∂xi

· el =
∂

∂xi

∂~rx
∂xj

· el =
∂ej

∂xi
· el = Γl

ji.

Definition 4.2. The Christoffel symbols of the first kind, Γij k, are given by:

Γij k = glkΓ
l
ij; Γl

ij = glkΓij k. (63)

Remark 4.1. It is easy to show that Γij k is symmetric in its first two indices.

A note on notation. For Christoffel symbols of the first kind, most authors use [ij, k]
instead of Γij k, and for the second kind many use

{
l
ij

}
instead of Γl

ij. While the Christoffel

symbols are not tensors (as will be shown later) and thus up/down indices do not indicate
contravariance/covariance, I prefer the Γ notation because, by definition, the two kinds of
Christoffel symbols are related through the metric just like conjugate tensors. While it is
only the non-symmetric index that can be raised or lowered on a Christoffel symbol, this still
makes this notation useful. Further, we shall find it practical to allow Christoffel symbols to
participate in the Einstein summation convention (as in equations 61, 62, and 63), and thus
we do not enclose their indices in parentheses.

For the cognoscenti, it is acknowledged that the Γ notation is normally reserved for
a quantity called the affine connexion, a concept from differential geometry and manifold
theory. It plays an important role in General Relativity, where one can show that the
affine connexion, Γl

ij, is equal to the Christoffel symbol of the second kind,
{

l
ij

}
(Weinberg,

Gravitation and Cosmology, ISBN 0-471-92567-5, pp. 100–101), whence my inclination to
borrow the Γ notation for Christoffel symbols.

Using equations (62) and (63), we can write:

Γij k = glkΓ
l
ij = glke

l · ∂ei

∂xj
= ek ·

∂ei

∂xj
. (64)

Now from remark 3.4, we have gij = ei · ej , and thus,

∂gij
∂xk

= ei ·
∂ej

∂xk
+ ej ·

∂ei

∂xk
= Γjk i + Γik j, (65)

using equation (64). Permuting the indices on equation (65) twice, we get:

∂gki
∂xj

= Γij k + Γkj i; and
∂gjk
∂xi

= Γki j + Γji k. (66)
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(x1, x2, x3) Γ22 1 Γ33 1 Γ12 2 Γ21 2 Γ33 2 Γ13 3 Γ23 3 Γ31 3 Γ32 3

(z, ̺, ϕ) 0 0 0 0 −̺ 0 ̺ 0 ̺

(r, ϑ, ϕ) −r −r sin2ϑ r r −r2

2
sin 2ϑ r sin2ϑ

r2

2
sin 2ϑ r sin2ϑ

r2

2
sin 2ϑ

Γ1
22 Γ1

33 Γ2
12 Γ2

21 Γ2
33 Γ3

13 Γ3
23 Γ3

31 Γ3
32

(z, ̺, ϕ) 0 0 0 0 −̺ 0
1

̺
0

1

̺

(r, ϑ, ϕ) −r −r sin2ϑ
1

r

1

r
−1

2
sin 2ϑ

1

r
cotϑ

1

r
cotϑ

Table 2: Christoffel symbols for cylindrical and spherical polar coordinates, as given
by equation (68). All Christoffel symbols not listed are zero.

By combining equations (65) and (66), and exploiting the symmetry of the first two indices
on the Christoffel symbols, one can easily show that:

Γij k =
1

2

(
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)

⇒ Γl
ij =

glk

2

(
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)

. (67)

For a general 3-D coordinate system, there are 27 Christoffel symbols of each kind
(15 of which are independent), each with as many as nine terms, whence the title of this
subsection. However, for orthogonal coordinates where gij ∝ δij and gii = h2

(i) = 1/gii, things

get much simpler. In this case, Christoffel symbols fall into three categories as follows (no
sum convention):

Γij i = giiΓ
i
ij =

1

2

∂gii
∂xj

for i, j = 1, 2, 3 (15 components)

Γii j = gjjΓ
j
ii = −1

2

∂gii
∂xj

for i 6= j (6 components)

Γij k = gkkΓ
k
ij = 0 for i 6= j 6= k (6 components)







(68)

In this primer, our examples are restricted to the most common orthogonal coordinate
systems in 3-space, namely Cartesian, cylindrical, and spherical polar where the Christoffel
symbols aren’t so bad to deal with. For Cartesian coordinates, all Christoffel symbols are
zero, while those for cylindrical and spherical polar coordinates are given in Table 2.

To determine how Christoffel symbols transform under coordinate transformations, we
first consider how the metric derivative transforms from coordinate system xi to x̃p. Thus,

∂g̃pq
∂x̃r

=
∂

∂x̃r

(

gij
∂xi

∂x̃p

∂xj

∂x̃q

)

=
∂gij
∂xk

∂xk

∂x̃r

∂xi

∂x̃p

∂xj

∂x̃q
+ gij

∂2xi

∂x̃r∂x̃p

∂xj

∂x̃q
+ gij

∂xi

∂x̃p

∂2xj

∂x̃r∂x̃q
. (69)

Permute indices (p, q, r) → (q, r, p) → (r, p, q) and (i, j, k) → (j, k, i) → (k, i, j) to get:
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∂g̃qr
∂x̃p

=
∂gjk
∂xi

∂xi

∂x̃p

∂xj

∂x̃q

∂xk

∂x̃r
+ gjk

∂2xj

∂x̃p∂x̃q

∂xk

∂x̃r
+ gjk

∂xj

∂x̃q

∂2xk

∂x̃p∂x̃r
; (70)

∂g̃rp
∂x̃q

=
∂gki
∂xj

∂xj

∂x̃q

∂xk

∂x̃r

∂xi

∂x̃p
+ gki

∂2xk

∂x̃q∂x̃r

∂xi

∂x̃p
+ gki

∂xk

∂x̃r

∂2xi

∂x̃q∂x̃p
, (71)

Using equations (69)–(71), we construct Γpq r according to the first of equations (67) to get:

Γ̃pq r =
1

2

(
∂gjk
∂xi

∂xi

∂x̃p

∂xj

∂x̃q

∂xk

∂x̃r
+ gij

∂2xi

∂x̃p∂x̃q

∂xj

∂x̃r
+ gij

∂xi

∂x̃q

∂2xj

∂x̃p∂x̃r

+
∂gki
∂xj

∂xj

∂x̃q

∂xk

∂x̃r

∂xi

∂x̃p
+ gij

∂2xi

∂x̃q∂x̃r

∂xj

∂x̃p
+ gij

∂xi

∂x̃r

∂2xj

∂x̃q∂x̃p

− ∂gij
∂xk

∂xk

∂x̃r

∂xi

∂x̃p

∂xj

∂x̃q
− gij

∂2xi

∂x̃r∂x̃p

∂xj

∂x̃q
− gij

∂xi

∂x̃p

∂2xj

∂x̃r∂x̃q

)

,

(72)

where the indices in the terms proportional to metric derivatives have been left unaltered,
and where the dummy indices in the terms proportional to the metric have been renamed
i and j. Now, since the metric is symmetric, gij = gji, we can write the third term on the
RHS of equation (72) as:

gij
∂xi

∂x̃q

∂2xj

∂x̃p∂x̃r
= gji

∂xi

∂x̃q

∂2xj

∂x̃p∂x̃r
= gij

∂xj

∂x̃q

∂2xi

∂x̃p∂x̃r
,

where the dummy indices were once again renamed after the second equal sign. Performing
the same manipulations to the sixth and ninth terms on the RHS of equation (72), one finds
that the third and eighth terms cancel, the fifth and ninth terms cancel, and the second and
sixth terms are the same. Thus, equation (72) simplifies mercifully to:

Γ̃pq r =
1

2

(
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)
∂xi

∂x̃p

∂xj

∂x̃q

∂xk

∂x̃r
+ gij

∂xj

∂x̃r

∂2xi

∂x̃p∂x̃q

= Γij k
∂xi

∂x̃p

∂xj

∂x̃q

∂xk

∂x̃r
+ gij

∂xj

∂x̃r

∂2xi

∂x̃p∂x̃q
, (73)

and the Christoffel symbol of the first kind does not transform like a tensor because of
the second term on the right hand side. Like the ordinary derivative of a first rank tensor
(equation 59), what prevents Γij k from transforming like a tensor is a term proportional to
the second derivative of the coordinates. This important coincidence will be exploited when
we define the covariant derivative in the next subsection.

Finally, to determine how the Christoffel symbol of the second kind transforms, we need
only multiply equation (73) by:

g̃rs = gkl
∂x̃r

∂xk

∂x̃s

∂xl
,

to get:

Γ̃s
pq = Γl

ij

∂xi

∂x̃p

∂xj

∂x̃q

∂xk

∂x̃r

∂x̃r

∂xk
︸ ︷︷ ︸

1

∂x̃s

∂xl
+ gkl gij

∂xj

∂x̃r

∂x̃r

∂xk
︸ ︷︷ ︸

δjk
︸ ︷︷ ︸

gik
︸ ︷︷ ︸

δli

∂x̃s

∂xl

∂2xi

∂x̃p∂x̃q
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⇒ Γ̃s
pq = Γl

ij

∂xi

∂x̃p

∂xj

∂x̃q

∂x̃s

∂xl
+

∂x̃s

∂xl

∂2xl

∂x̃p∂x̃q
. (74)

Once again, all that stops Γl
ij from transforming like a tensor is the second term proportional

to the second derivative.

4.2 Covariant derivative

Substituting equation (61) into equation (60), we get:

∂ ~A

∂xj
=

∂Ai

∂xj
ei + Γk

ijekA
i =

(
∂Ai

∂xj
+ Γi

jkA
k

)

ei, (75)

where the names of the dummy indices i and k are swapped after the second equality.

Definition 4.3. The covariant derivative of a contravariant vector, Ai, is given by:

∇jA
i ≡ ∂Ai

∂xj
+ Γi

jkA
k, (76)

where the adjective covariant refers to the fact that the index on the differentiation operator
(j) is in the covariant (lower) position.

Thus, equation (75) becomes:

∂ ~A

∂xj
= ∇jA

i
ei. (77)

Thus, the ith contravariant component of the vector ∂ ~A/∂xj relative to the covariant basis
ei is the covariant derivative of the ith contravariant component of the vector, Ai, with
respect to the coordinate xj . In general, covariant derivatives are much more cumbersome
than partial derivatives as the covariant derivative of any one tensor component involves
all tensor components for non-zero Christoffel symbols. Only for Cartesian coordinates—
where all Christoffel symbols are zero—do covariant derivatives reduce to ordinary partial
derivatives.

Consider now the transformation of the covariant derivative of a contravariant vector
from the coordinate system xi to x̃p. Thus, using equations (59) and (74), we have:

∇̃qÃ
p =

∂Ãp

∂x̃q
+ Γ̃p

qrÃ
r

=
∂xj

∂x̃q

∂x̃p

∂xi

∂Ai

∂xj
+

∂xj

∂x̃q

∂2x̃p

∂xj∂xi
Ai +

(

Γi
jk

∂xj

∂x̃q

∂xk

∂x̃r

∂x̃p

∂xi
+

∂x̃p

∂xi

∂2xi

∂x̃q∂x̃r

)
∂x̃r

∂xl
Al

=
∂xj

∂x̃q

∂x̃p

∂xi

∂Ai

∂xj
+ Γi

jk

∂xj

∂x̃q

∂x̃p

∂xi

∂xk

∂x̃r

∂x̃r

∂xl
︸ ︷︷ ︸

δkl

Al +
∂xj

∂x̃q

∂2x̃p

∂xj∂xi
Ai +

∂x̃p

∂xi

∂2xi

∂x̃q∂x̃r

∂x̃r

∂xl
Al. (78)
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Now for some fun. Remembering we can swap the order of differentiation between linearly
independent quantities, and exploiting our freedom to rename dummy indices at whim, we
rewrite the last term of equation (78) as:

∂x̃p

∂xi

∂x̃r

∂xl

∂

∂x̃r

∂xi

∂x̃q
Al =

∂x̃p

∂xi

∂

∂xl

∂xi

∂x̃q
Al =

(
∂

∂xl

[
∂x̃p

∂xi

∂xi

∂x̃q

]

− ∂xi

∂x̃q

∂

∂xl

∂x̃p

∂xi

)

Al

=

(

✚
✚
✚
✚✚❃

0

∂

∂xl

∂x̃p

∂x̃q
− ∂xi

∂x̃q

∂2x̃p

∂xl∂xi

)

Al = −∂xj

∂x̃q

∂2x̃p

∂xj∂xi
Ai,

where the term set to zero is zero because ∂x̃p/∂x̃q = δpq whose derivative is zero. Thus, the
last two terms in equation (78) cancel, which then becomes:

∇̃qÃ
p =

∂xj

∂x̃q

∂x̃p

∂xi

(
∂Ai

∂xj
+ Γi

jkA
k

)

=
∂xj

∂x̃q

∂x̃p

∂xi
∇jA

i,

and the covariant derivative of a contravariant vector is a mixed rank 2 tensor.
Our results are for a contravariant vector because we chose to represent the vector

~A = Ai
ei in equation (60). If, instead, we chose ~A = Aie

i , we would have found that:

∂ei

∂xj
= −Γi

jke
k (79)

instead of equation (61), and this would have lead to:

Definition 4.4. The covariant derivative of a covariant vector, Ai, is given by:

∇jAi ≡ ∂Ai

∂xj
− Γk

ijAk. (80)

In the same way we proved ∇jA
i is a rank 2 mixed tensor, one can show that ∇jAi

is a rank 2 covariant tensor. Notice the minus sign in equation (80), which distinguishes
covariant derivatives of covariant vectors from covariant derivatives of contravariant vec-
tors. In principle, contravariant derivatives (∇j) can also be defined for both covariant and
contravariant vectors, though these are rarely used in practise.

A note on notation. While most branches of mathematics have managed to converge to
a prevailing nomenclature for its primary constructs, tensor calculus is not one of them. To
wit,

∇jAi = Ai;j = Ai/j = Ai|j,
are all frequently-used notations for covariant derivatives of covariant vectors. Some authors
even use Ai,j (comma, not a semi-colon), which can be very confusing since other authors
use the comma notation for partial derivatives:

∂jAi = Ai,j =
∂Ai

∂xj
.

In this primer, I shall use exclusively the nabla notation (∇jAi) for covariant derivatives,
and either the full Leibniz notation for partial derivatives (∂Ai/∂x

j) as I have been doing so
far, or the abbreviated Leibniz notation (∂jAi) when convenient. In particular, I avoid like
the plague the semi-colon (Ai;j) and comma (Ai,j) conventions.
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Theorem 4.2. The covariant derivatives of the contravariant and covariant basis vectors
are zero.

Proof. Starting with equation (76),

∇je
i = ∂je

i + Γi
jke

k = 0,

from equation (79). Similarly, starting with equation (80),

∇jei = ∂jei − Γk
ijek = 0,

from equation (61).

Covariant derivatives of higher rank tensors are often required, and are listed below
without proof. Covariant derivatives of all three types of rank 2 tensors are:

∇kT
ij = ∂kT

ij + Γi
kαT

αj + Γj
kαT

iα (T contravariant); (81)

∇kT
i
j = ∂kT

i
j + Γi

kαT
α
j − Γα

kjT
i
α (T mixed); (82)

∇kT
j

i = ∂kT
j

i − Γα
kiT

j
α + Γj

kαT
α

i (T mixed); (83)

∇kTij = ∂kTij − Γα
kiTαj − Γα

kjTiα (T covariant). (84)

More generally, the covariant derivative of a mixed tensor of rank p+ q = n is given by:

∇kT
j1...jq

i1...ip
= ∂kT

j1...jq
i1...ip

− Γα
ki1

T
j1...jq

α,i2...ip
− . . . − Γα

kip
T

j1...jq
i1...ip−1α

+ Γj1
kαT

α,j2...jq
i1...ip

+ . . . + Γ
jq
kαT

j1...jq−1α
i1...ip

.
(85)

In general, a covariant derivative of a rank n tensor with p covariant indices and q contravari-
ant indices will itself be a rank n+1 tensor with p+1 covariant indices and q contravariant
indices.

Theorem 4.3. Summation rule: If A and B are two tensors of the same rank, dimension-
ality, and type, then ∇i(A + B) = ∇iA + ∇iB, where the indices have been omitted for
generality.

Proof. The proof for a general tensor is awkward, and no more illuminating than for the
special case of two rank 1 contravariant tensors:

∇i(A
j +Bj) = ∂i(A

j +Bj) + Γj
ik(A

k +Bk) = (∂iA
j + Γj

ikA
k) + (∂iB

j + Γj
ikB

k)

= ∇iA
j +∇iB

j .

Theorem 4.4. Product rule: If A and B are two tensors of possibly different rank, dimen-
sionality, and type, then ∇i(AB) = A∇iB +B∇iA.

Proof. Consider a rank 2 contravariant tensor, Ajk and a rank 1 covariant tensor, Bl. The
product AjkBl is a mixed rank 3 tensor and its covariant derivative is given by an application
of equation (85):
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∇i(A
jkBl) = ∂i(A

jkBl) + Γj
iαA

αkBl + Γk
iαA

jαBl − Γα
ilA

jkBα

= Ajk∂iBl +Bl∂iA
jk +BlΓ

j
iαA

αk +BlΓ
k
iαA

jα −AjkΓα
ilBα

= Ajk(∂iBl − Γα
ilBα) +Bl(∂iA

jk + Γj
iαA

αk + Γk
iαA

jα)

= Ajk∇iBl +Bl∇iA
jk.

The proof for tensors of general rank follows the same lines, though is much more cumbersome
to write down.

Theorem 4.5. Ricci’s Theorem: The covariant derivative of the metric and its inverse
vanish.

Proof. From equation (84), we have:

∇kgij = ∂kgij − Γα
kigαj − Γα

kjgiα = ∂kgij − Γki j − Γkj i

= ∂kgij −
1

2
(∂kgij + ∂igjk − ∂jgki)−

1

2
(∂kgji + ∂jgik − ∂igkj) = 0,

owing to the symmetry of the metric tensor. As for its inverse, gij, we first note from equation
(83) that:

∇kδ
j
i = ∂kδ

j
i − Γα

kiδ
j

α + Γj
kαδ

α
i = 0− Γj

ki + Γj
ki = 0,

⇒ ∇k(giαg
αj) = ∇kδ

j
i = 0

= giα∇kg
αj + gαj✟✟✟✟✯

0

∇kgiα = giα∇kg
αj,

using the product rule (Theorem 4.4). We can’t conclude directly from this that ∇kg
αj =

0 since we are not allowed to “divide through” by a tensor component, particularly one
implicated in a summation. We can, however, multiply through by the tensor’s inverse to
get:

⇒ gβigiα
︸ ︷︷ ︸

δβα

∇kg
αj = gβi(0) = 0 ⇒ ∇kg

βj = 0.

This is not to say that the metric is a constant function of the coordinates. Indeed,
except for Cartesian coordinates, ∂kgij will, in general, not be zero. The covariant derivative
not only measures how functions change from point to point, it also takes into account
how the basis vectors themselves change (in magnitude, direction, or both) as a function of
position, and it is the sum of these two changes that is zero for the metric tensor.

Corollary 4.1. The metric “passes through” a covariant derivative operator. That is:

∇kT
i
j = ∇kgαjT

iα = gαj∇kT
iα.

Proof. From the product rule for covariant derivatives (Theorem 4.4),

∇kgαjT
iα = gjα∇kT

iα + T iα

✟✟✟✟✯
0

∇kgαj = gαj∇kT
iα,

as desired. The same can be shown for the metric inverse, gij.
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Now if one can take a covariant derivative once, second order and higher covariant
derivatives must also be possible. Thus and for example, taking the covariant derivative of
equation (76), we get:

∇k∇jA
i≡∇jkA

i = ∇k(∂jA
i + Γi

jαA
α) ≡ ∇kB

i
j

= ∂kB
i
j − Γβ

kjB
i

β + Γi
kβB

β
j

= ∂k∂jA
i + ∂k(Γ

i
jαA

α)− Γβ
kj(∂βA

i + Γi
βαA

α) + Γi
kβ(∂jA

β + Γβ
jαA

α)

= ∂jkA
i + Γi

jα∂kA
α − Γα

kj∂αA
i + Γi

kα∂jA
α + Aα(∂kΓ

i
jα − Γβ

kjΓ
i
βα + Γi

kβΓ
β
jα), (86)

not a pretty sight. Again, for Cartesian coordinates, all but the first term disappears. For
other coordinate systems, it can get ugly fast. Four of the seven terms are single sums,
two are double sums and there can be as many as 31 terms to calculate for every one of
27 components in 3-space! Aggravating the situation is the fact that the order of covariant
differentiation cannot, in general, be swapped. Thus, while ∂jkA

i = ∂kjA
i so long as xj and

xk are independent, ∇jkA
i 6= ∇kjA

i because the last term on the RHS of equation (86) is
not, in general, symmetric in the interchange of j and k10.

10Note, however, that all other terms are symmetric (second and fourth together), including the fifth term
which can be shown to be symmetric in j and k with the aid of equation 62.



5 Connexion to vector calculus

For many applications, it is useful to apply the ideas of tensor analysis to three-dimensional
vector analysis. For starters, this gives us another way to see how the metric factors arise in
the definitions of the gradient of a scalar, and the divergence and curl of a vector. More im-
portantly, it allows us to write down covariant expressions for more complicated derivatives,
such as the gradient of a vector, and to prove certain tensor identities.

5.1 Gradient of a scalar

The prototypical covariant tensor of rank 1, ∂if whose transformation properties are given
by equation (8), was referred to as the “gradient”, though it is not the physical gradient
we would measure. The physical gradient, ∇f , is related to the covariant gradient, ∂if , by
equation (31), namely (∇f)(i) = (∂if)/h(i) for orthogonal coordinates. Thus,

∇f =

(
1

h(1)

∂1f,
1

h(2)

∂2f,
1

h(3)

∂3f

)

. (87)

For non-orthogonal coordinates, one would use equation (30) which would yield a somewhat
more complicated expression for the gradient where each component becomes a sum.

5.2 Divergence of a vector

Consider the contraction of the covariant derivative of a contravariant vector,

∇iA
i = ∂iA

i + Γi
ijA

j . (88)

Now, from the second of equations (67),

Γi
ij = 1

2
gki(∂igjk + ∂jgki − ∂kgij) = 1

2
(gki∂igjk + gki∂jgki − gki∂kgij)

= 1
2
(gki∂igjk + gki∂jgki − gik∂igkj) (swap dummy indices in 3rd term)

= 1
2
(gki∂igjk + gki∂jgki − gki∂igjk) (symmetry of metric in 3rd term)

= 1
2
gki∂jgki.

Thus, equation (88) becomes:

∇iA
i = ∂iA

i +
Ai

2
gjk∂igjk, (89)

where the dummy indices have been renamed in the last term, which is a triple sum. We
will simplify this triple sum considerably by what may seem to be a rather circuitous route.

Theorem 5.1. (Jacobi’s Formula) Let Qij be a rank 2 covariant tensor of dimension m (and
thus can be represented by an m×m matrix), and let Q = det(Qij) be its determinant. Let

30
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Qji be the cofactor of Qij
11, and thus as a matrix, Qji is the transpose of the cofactors of

Qij
12. Then,

∂kQ = Qji∂kQij Jacobi’s formula, (90)

where the double sum yields the trace of the product of the matrices Qji and ∂kQij.

Proof. Q can be thought of as a function of the matrix elements, Qij , and thus we have by
the chain rule:

∂kQ =
∂Q

∂Qij

∂kQij , (91)

a double sum. Now, Laplace’s formula for computing the determinant is:

Q =
m∑

k=1

QikQki for any i = 1, . . . , m (no sum on i)

⇒ ∂Q

∂Qij

=
∂

∂Qij

m∑

k=1

QikQki =
m∑

k=1

(
∂Qik

∂Qij

Qki +Qik
∂Qki

∂Qij

)

. (92)

Now, ∂Qik/∂Qij = δ j
k since the matrix elements are independent of each other. Further,

∂Qki/∂Qij = 0 since the cofactorQki includes all matrix elements other than those in column
i and row k and must therefore be independent of Qij which is an element in the ith column.
Thus, equation (92) simplifies to:

∂Q

∂Qij

=
m∑

k=1

δ j
k Qki = Qji.

Substituting this result into equation (91) gives us our desired result.

Now, if Qij = gij, the metric, equation (90) becomes:

∂kg = Gji∂kgij, (93)

where g = det(gij) and Gji is the cofactor of gij. By a variation of Cramer’s rule, the inverse
of gij, let us write it as gji (equation 20), is given by:

gji =
1

g
Gji ⇒ Gji = g gij

since gij is symmetric. Substituting this into equation (93) gives us:

∂kg = g gij∂kgij ⇒ gjk∂igjk =
1

g
∂ig,

11In matrix algebra, the cofactor of the ijth matrix element is what one gets when the ith column and jth

row are struck out, and the resulting m−1×m−1 matrix is multiplied by (−1)i+j .
12Qji is known as the adjugate of Qij .
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taking the liberty once again to rename the indices. We substitute this result into equation
(89) to get:

∇iA
i = ∂iA

i + Ai 1

2g
∂ig = ∂iA

i + Ai 1√
g
∂i
√
g =

1√
g
∂i(

√
gAi). (94)

The final equality is known as the Voss-Weyl formula, and finally brings us to the purpose
of this subsection. For orthogonal coordinates only, gij is diagonal and

√
g = h(1)h(2)h(3).

Thus, with the aid of equation (29), equation (94) becomes:

∇iA
i =

1

h(1)h(2)h(3)

∂i(h(1)h(2)h(3)A
i)

=
1

h(1)h(2)h(3)

3∑

i=1

∂i

(
h(1)h(2)h(3)

h(i)

A(i)

)

= ∇ · ~A,
(95)

recovering the vector calculus definition of the vector divergence in orthogonal coordinates.

5.3 Divergence of a tensor

Definition 5.1. The divergence of a contravariant tensor, T, is the contraction of the co-
variant derivative with the first index of the tensor, and is itself a contravariant tensor of
rank one less than T. Specifically, for a rank 2 tensor, we have:

(∇ · T)j ≡ ∇iT
ij , (96)

with similar expressions applying for tensors of higher rank.13

Thus, the physical component of the tensor divergence is, by equation (29),

(∇ · T)(j) = h(j)(∇ · T)j = h(j)∇iT
ij. (97)

Now, by equation (81), we have:

∇iT
ij = ∂iT

ij + Γi
ikT

kj + Γj
ikT

ik =
1√
g
∂i(

√
gT ij) + Γj

ikT
ik, (98)

using the Voss-Weyl formula (equation 94) on the first two terms of the middle expression.
For the last term, we start by examining the j = 1 component:

Γ1
ikT

ik = Γ1
11T

11 + Γ1
12T

12 + Γ1
13T

13 + Γ1
21

︸︷︷︸

Γ1
12

T 21 + Γ1
22T

22 + Γ1
23T

23 + Γ1
31

︸︷︷︸

Γ1
13

T 31

+ Γ1
32T

32 + Γ1
33T

33

13The definition in equation (96) agrees with Weinberg (Gravitation and Cosmology, ISBN 0-471-92567-5,
page 107, equation 4.7.9) and disagrees with Stone & Norman, 1992, ApJS, vol. 80, page 788, where they
define (∇·T)i = ∇jT

ij . Thus, Weinberg contracts on the first index of T (in keeping with the ordinary rules
of matrix multiplication) while SN contract on the second, and these are the same only if T is symmetric.
Further, SN seem to have a sign error on the leading term of the second line of their equation (130), and
similarly the second/third leading term of the second line of their equation (131)/(132).
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given the symmetry of the first two indices on the Christoffel symbols. Now from equation
(32), we have T(ik) = h(i)h(k)T

ik. Further, if we assume orthogonal coordinates (as we do for
the remainder of this section), we can use equation (68) and remark 3.1 to write:

Γj
jk =

1

h(j)

∂kh(j), j, k = 1, 2, 3; Γj
kk = −h(k)

h2
(j)

∂jh(k), j 6= k; Γj
ik = 0, i 6= j 6= k.

Whence,

Γ1
ikT

ik =
∂1h(1)

h(1)

T(11)

h2
(1)

+
∂2h(1)

h(1)

T(12)

h(1)h(2)

+
∂3h(1)

h(1)

T(13)

h(1)h(3)

+
∂2h(1)

h(1)

T(21)

h(2)h(1)

− h(2)

h2
(1)

∂1h(2)

T(22)

h2
(2)

+
∂3h(1)

h(1)

T(31)

h(3)h(1)

− h(3)

h2
(1)

∂1h(3)

T(33)

h2
(3)

=
1

h2
(1)

(
T(11)

h(1)

∂1h(1) −
T(22)

h(2)

∂1h(2) −
T(33)

h(3)

∂1h(3)

+
T(12) + T(21)

h(2)

∂2h(1) +
T(13) + T(31)

h(3)

∂3h(1)

)

,

which, for any j, may be written:

Γj
ikT

ik =
∑

i

1

h2
(j)h(i)

((
T(ji) + T(ij)

)
∂ih(j) − T(ii)∂jh(i)

)

. (99)

This is identically zero if T is antisymmetric, as expected since Γj
ik is symmetric in i and k.

Note that the dummy indices i on each side of equation (99) are unrelated.
Next, in analogy to equation (95), we write:

1√
g
∂i(

√
gT ij) =

1

h(1)h(2)h(3)

∑

i

∂i

(
h(1)h(2)h(3)

h(i)h(j)

T(ij)

)

, (100)

again using equation (32). Substituting equations (99) and (100) into equation (98), and
then substituting that result into equation (97), we get our final expression for the physical
component of the divergence of a rank 2 contravariant tensor:

(∇ · T)(j) =
h(j)

h(1)h(2)h(3)

∑

i

∂i

(
h(1)h(2)h(3)

h(i)h(j)

T(ij)

)

+
∑

i

1

h(j)h(i)

((
T(ji) + T(ij)

)
∂ih(j) − T(ii)∂jh(i)

)

.

(101)

5.4 The Laplacian of a scalar

In vector notation, the Laplacian of a scalar, f , is given by:

∇2f = ∇ · ∇f,
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and thus the Laplacian is the divergence of the vector ∇f . Now, §5.2 defines the tensor
divergence as an operator acting on a contravariant vector, V i, whereas §5.1 defines the
gradient as a covariant vector, ∂if . Thus, to turn the tensor gradient into a contravariant
vector, we need to multiply it by gij, whence:

∇2f = ∇i(g
ij∂jf) =

1√
g
∂i(

√
ggij∂jf). (102)

Once again, for orthogonal coordinates, gij = h−1
(i)h

−1
(j)δ

ij and
√
g = h(1)h(2)h(3). Thus,

equation (102) becomes:

∇2f =
1

h(1)h(2)h(3)

3∑

i=1

∂i

(
h(1)h(2)h(3)

h2
(i)

∂if

)

. (103)

5.5 Curl of a vector

Consider the following difference of covariant derivatives of a covariant vector:

∇jAi −∇iAj = ∂jAi − Γk
ijAk − ∂iAj + Γk

jiAk = ∂jAi − ∂iAj,

because of the symmetry of the lower indices on the Christoffel symbol. Thus, ∂jAi − ∂iAj

forms a tensor. By contrast, note that in

∇jA
i −∇iA

j = ∂jA
i + Γi

jkA
k − ∂iA

j − Γj
ikA

k,

the Christoffel symbols do not cancel, and thus ∂jA
i − ∂iA

j does not form a tensor.
Now, while the construct ∂jAi − ∂iAj is highly reminiscent of a curl, it cannot be what

we seek since the curl is a vector (rank 1 tensor) with just one index, while ∂jAi − ∂iAj is
a rank 2 tensor with two indices. To form the tensor curl, we use the permutation tensor
(equation 58) in a similar manner to how cross products are constructed from the Levi-Civita
symbol (equation 54).

Definition 5.2. Given a rank 1 covariant tensor, Aj ,

Ck ≡ ǫijk∂iAj =
1√
g
εijk∂iAj , (104)

is the contravariant rank 1 tensor curl.

By inspection, one can easily verify that in the implied double sum, all partial derivatives
of Aj appear in differences, each being the component of a tensor by the opening argument.
Since ǫijk is a component of a rank 3 contravariant tensor, then Ck must be a tensor too.
Thus, tensor curls are rank 1 contravariant vectors created from rank 1 covariant vectors.

To get the physical curl, we use equation (29) to get Ck = C(k)/h(k) (valid for all
coordinate systems) and equation (31) to get Aj = A(j)h(j) (valid for orthogonal coordinates
only), and substitute these into equation (104) to get:

C(k) =
h(k)√
g

∑

ij

εijk∂i(h(j)A(j))
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⇒ ~C =

(
1

h(2)h(3)

(

∂2(h(3)A(3))− ∂3(h(2)A(2))
)

,

1

h(3)h(1)

(

∂3(h(1)A(1))− ∂1(h(3)A(3))
)

,

1

h(1)h(2)

(

∂1(h(2)A(2))− ∂2(h(1)A(1))
))

= ∇× ~A,

(105)

the vector calculus definition of the curl for orthogonal coordinates.

5.6 The Laplacian of a vector

The Laplacian of a vector, ∇2 ~A, can be most easily written down in invariant form by using
the identity:

∇2 ~A = ∇(∇ · ~A)−∇× (∇× ~A), (106)

and using the invariant expansions for each of the gradient of a scalar (equation 87), diver-
gence of a vector (equation 95), and the curl (equation 105).

5.7 Gradient of a vector

The covariant derivative of a covariant vector, known in vector calculus as the vector gradient,
is given by equation (80), reproduced below for convenience:

∇iAj = ∂iAj − Γk
ijAk ≡ Gij ,

where Gij is a rank 2 covariant tensor. To express this in terms of physical components, we
restrict ourselves once again to orthogonal coordinates, where equation (31) ⇒ Aj = h(j)A(j)

and equation (33) ⇒ Gij = h(i)h(j)G(ij). Substituting these into equation (80), we have:

G(ij) =
1

h(i)h(j)

(

∂i(h(j)A(j))−
∑

k

Γk
ijh(k)A(k)

)

≡ (∇ ~A)(ij). (107)

Now, for orthogonal coordinates, the Christoffel symbols simplify considerably. Substituting
the results of equation (68) into equation (107), we get for the (11) component:

(∇ ~A)(11) =
1

h2
(1)

(
∂1(h(1)A(1))− Γ1

11h(1)A(1) − Γ2
11h(2)A(2) − Γ3

11h(3)A(3)

)

=
1

h2
(1)

(

h(1)∂1A(1) + A(1)∂1h(1)

− A(1)h(1)
1

2g11
∂1g11 + A(2)h(2)

1

2g22
∂2g11 + A(3)h(3)

1

2g33
∂3g11

)

=
1

h2
(1)

(

h(1)∂1A(1) + A(1)∂1h(1) −A(1)∂1h(1) + A(2)

h(1)

h(2)
∂2h(1) + A(3)

h(1)

h(3)
∂3h(1)

)

=
h(1)∂1A(1) −A(1)∂1h(1)

h2
(1)

+
1

h(1)

(
A(1)

h(1)

∂1h(1) +
A(2)

h(2)

∂2h(1) +
A(3)

h(3)

∂3h(1)

)



Connexion to vector calculus 36

= ∂1

(
A(1)

h(1)

)

+
1

h(1)

~A · ∇h(1).

For the (12) component, we get:

(∇ ~A)(12) =
1

h(1)h(2)

(
∂1(h(2)A(2))− Γ1

12h(1)A(1) − Γ2
12h(2)A(2) − Γ3

12h(3)A(3)

)

=
1

h(1)h(2)

(

h(2)∂1A(2) + A(2)∂1h(2) − A(1)h(1)
1

2g11
∂2g11 −A(2)h(2)

1

2g22
∂1g22

)

=
1

h(1)h(2)

(
h(2)∂1A(2) +✘✘✘✘✘✘A(2)∂1h(2) −A(1)∂2h(1) −✘✘✘✘✘✘A(2)∂1h(2)

)

=
1

h(1)

(

∂1A(2) −
A(1)

h(2)

∂2h(1)

)

,

Evidently, all components of ∇ ~A may be written as:

(∇ ~A)(ij) =







∂i

(
A(i)

h(i)

)

+
1

h(i)

~A · ∇h(i), i = j;

1

h(i)

(

∂iA(j) −
A(i)

h(j)

∂jh(i)

)

, i 6= j.

(108)

5.8 Summary

For ease of reference, the main results of this section are gathered with their equation num-
bers. If f , ~A, and T are arbitrary scalar, vector, and contravariant rank 2 tensor functions
of the orthogonal coordinates, we have found:

∇f =

(
1

h(1)

∂1f,
1

h(2)

∂2f,
1

h(3)

∂3f

)

; (87)

∇2f =
1

h(1)h(2)h(3)

∑

i

∂i

(
h(1)h(2)h(3)

h2
(i)

∂if

)

; (103)

∇ · ~A =
1

h(1)h(2)h(3)

∑

i

∂i

(
h(1)h(2)h(3)

h(i)

A(i)

)

; (95)

∇× ~A =

(
1

h(2)h(3)

(

∂2(h(3)A(3))− ∂3(h(2)A(2))
)

,
1

h(3)h(1)

(

∂3(h(1)A(1))− ∂1(h(3)A(3))
)

,

1

h(1)h(2)

(

∂1(h(2)A(2))− ∂2(h(1)A(1))
))

; (105)

(∇ ~A)(ij) =







∂i

(
A(i)

h(i)

)

+
1

h(i)

~A · ∇h(i), i = j,

1

h(i)

(

∂iA(j) −
A(i)

h(j)

∂jh(i)

)

, i 6= j;

(108)
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(∇ · T)(j) =
h(j)

h(1)h(2)h(3)

∑

i

∂i

(
h(1)h(2)h(3)

h(i)h(j)

T(ij)

)

+
∑

i

1

h(j)h(i)

((
T(ji) + T(ij)

)
∂ih(j) − T(ii)∂jh(i)

)

.

(101)

For non-orthogonal coordinates, these expressions become rather more cumbersome.

5.9 A tensor-vector identity

A useful relation in vector calculus, particularly for extending the ideal fluid equations to
include viscous stresses, is the following:

Theorem 5.2. If T is a rank 2 tensor and ~A is a vector (rank 1 tensor), then, in terms of
their physical components:

∇ · (T · ~A) = T : ∇ ~A+ (∇ · T) · ~A. (109)

Implicit in this identity are the definitions of the “dot” product between two vectors, the
“dot” product between a vector and a rank 2 tensor, and the “colon” product between two
rank 2 tensors (§3.2). With these in hand, the proof of the theorem is a simple matter of
bringing together the relevant bits from this primer.

Proof. Start with Theorem 4.4, the product rule for covariant differentiation. Thus, if Bi =
T ijAj , then,

∇iB
i = ∇i(T

ijAj) = T ij∇iAj + Aj∇iT
ij. (110)

Now, from equation (95), ∇iB
i = ∇· ~B, where ~B is the ordered triple of physical components.

From equation (42), we have Bi = T ijAj = (T · ~A)i (the right dot product), and thus:

∇iB
i = ∇ · (T · ~A). (111)

Next, T ij is a rank 2 contravariant tensor, ∇iAj is a rank 2 covariant tensor and, according
to equation (41),

T ij(∇iAj) = T : ∇ ~A. (112)

Finally, according to equation (96), ∇iT
ij = (∇ · T )j and, by equation (40), Aj(∇ · T )j =

~A · (∇ · T). Thus,
Aj∇iT

ij = ~A · (∇ · T). (113)

Note the right hand sides of equations (111), (112), and (113) are all in terms of physical
components. Substituting these equations into equation (110) proves the theorem.

For orthogonal coordinates, we can confirm this identity directly using the results from
§5.8. Start with the LHS of equation (109) by substituting equation (45) into equation (95):

∇ · (T · ~A) =
1

h1h2h3

∑

i

∂i

(
h1h2h3

hi

∑

j

TijAj

)

=
1

h1h2h3

∑

ij

∂i

(
h1h2h3

hi
TijAj

)

. (114)
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With the understanding that all components are physical components, we drop the paren-
theses on the subscripts for convenience.

Now, using equation (41) we write:

T : ∇ ~A =
∑

ij

Tij(∇ ~A)ij =
∑

i

Tii(∇ ~A)ii +
∑

i 6=j

Tij(∇ ~A)ij

=
∑

i

(

Tii∂i

(
Ai

hi

)

+
Tii

hi

∑

j

Aj

hj
∂jhi

)

+
∑

i 6=j

(
Tij

hi
∂iAj −

TijAi

hihj
∂jhi

)

,

using equation (108). Then, from equation (101) we have:

(∇ · T) · ~A =
∑

j

Ajhj

h1h2h3

∑

i

∂i

(
h1h2h3

hihj
Tij

)

+
∑

ij

Aj

hjhi

((
Tji + Tij

)
∂ihj − Tii∂jhi

)

.

Thus, the RHS of equation (109) becomes:

T : ∇ ~A+ (∇ · T) · ~A =
∑

i

Tii

hi
∂iAi −

∑

i

TiiAi

h2
i

∂ihi +

✟✟✟✟✟✟✟✟∑

ij

TiiAj

hihj
∂jhi +

∑

i 6=j

Tij

hi
∂iAj

−
∑

i 6=j

TijAi

hihj

∂jhi +
∑

ij

Ajhj

h1h2h3

∂i

(
h1h2h3

hihj

Tij

)

+
∑

ij

AjTji

hjhi

∂ihj

︸ ︷︷ ︸

swap i and j
+
∑

ij

AjTij

hjhi
∂ihj −

✟✟✟✟✟✟✟✟∑

ij

AjTii

hjhi
∂jhi

=
∑

i

Tii

hi
∂iAi +

∑

i 6=j

Tij

hi
∂iAj

︸ ︷︷ ︸
∑

ij

Tij

hi
∂iAj

−
∑

i

TiiAi

h2
i

∂ihi −
∑

i 6=j

TijAi

hihj
∂jhi

︸ ︷︷ ︸

−
✟✟✟✟✟✟✟✟∑

ij

TijAi

hihj
∂jhi

+
∑

ij

Ajhj

h1h2h3
∂i

(
h1h2h3

hihj
Tij

)

+

✟✟✟✟✟✟✟✟∑

ij

AiTij

hihj
∂jhi +

∑

ij

AjTij

hjhi
∂ihj

=
∑

ij

[
Ajhj

h1h2h3
∂i

(
h1h2h3

hihj
Tij

)

+
Tij

hi
∂iAj +

AjTij

hjhi
∂ihj

︸ ︷︷ ︸

Tij

hihj
∂i(Ajhj)

]

=
1

h1h2h3

∑

ij

[

Ajhj∂i

(
h1h2h3

hihj

Tij

)

+
h1h2h3

hihj

Tij ∂i(Ajhj)

]

=
1

h1h2h3

∑

ij

∂i

(
h1h2h3

hi��hj
TijAj��hj

)

= LHS (equation 114).



6 Cartesian, cylindrical, spherical polar coordinates

Table 1 in the beginning of §3 gives the scale factors, h(i), for each of Cartesian, (x, y, z),
cylindrical, (z, ̺, ϕ), and spherical polar, (r, ϑ, ϕ), coordinates. Restricted to these coordi-
nate systems, h3 is a separable function of its arguments, and we can write h3(x1, x2) ≡
h31(x1)h32(x2), dropping the parentheses from all subscripts now that everything is being
expressed in terms of the physical components. The scaling factors then become:

h1 = 1, all;

h2(x1) = h31(x1) =

{

1, Cartesian and cylindrical,

x1 = r, spherical polar;

h32(x2) =







1, Cartesian,

x2 = ̺, cylindrical,

sin x2 = sinϑ, spherical polar.

With this, the six tensor constructs in §5.8 can then be written in their full gory detail as:

∇f =

(

∂1f,
1

h2

∂2f,
1

h3

∂3f

)

; (115)

∇2f =
1

h2h31
∂1(h2h31∂1f) +

1

h2
2h32

∂2(h32∂2f) +
1

h2
3

∂2
3f ; (116)

∇ · ~A =
1

h2h31
∂1(h2h31A1) +

1

h2h32
∂2(h32A2) +

1

h3
∂3A3; (117)

∇× ~A =

(
1

h2h32
∂2(h32A3)−

1

h3
∂3A2,

1

h3
∂3A1−

1

h31
∂1(h31A3),

1

h2

(
∂1(h2A2)−∂2A1

)
)

; (118)

∇ ~A =










∂1A1 ∂1A2 ∂1A3

1

h2

(
∂2A1−A2∂1h2

) 1

h2

(
∂2A2+A1∂1h2

) 1

h2
∂2A3

1

h3
∂3A1−

A3

h31
∂1h31

1

h3
∂3A2−

A3

h2h32
∂2h32

1

h3
∂3A3+

A1

h31
∂1h31+

A2

h2h32
∂2h32










; (119)

∇ · T =

(
1

h2h31
∂1(h2h31T11) +

1

h2h32
∂2(h32T21) +

1

h3
∂3T31 −

T22

h2
∂1h2 −

T33

h31
∂1h31,

1

h31
∂1(h31T12) +

1

h2h32
∂2(h32T22) +

1

h3
∂3T32 +

T21 + T12

h2
∂1h2 −

T33

h2h32
∂2h32,

1

h2
∂1(h2T13) +

1

h2
∂2T23 +

1

h3
∂3T33 +

T31 + T13

h31
∂1h31 +

T32 + T23

h2h32
∂2h32

)

.

(120)

39



Cartesian, cylindrical, spherical polar coordinates 40

6.1 Cartesian coordinates

In Cartesian coordinates, equations (115) – (120) become:

∇f =
(
∂xf, ∂yf, ∂zf

)
;

∇2f = ∂2
xf + ∂2

yf + ∂2
zf ;

∇ · ~A = ∂xAx + ∂yAy + ∂zAz;

∇× ~A =
(
∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx

)
;

∇ ~A =






∂xAx ∂xAy ∂xAz

∂yAx ∂yAy ∂yAz

∂zAx ∂zAy ∂zAz




 ;

∇ · T =
(
∂xTxx + ∂yTyx + ∂zTzx, ∂xTxy + ∂yTyy + ∂zTzy, ∂xTxz + ∂yTyz + ∂zTzz

)
.

6.2 Cylindrical coordinates

In cylindrical coordinates, equations (115) – (120) become:

∇f =

(

∂zf, ∂̺f,
1

̺
∂ϕf

)

;

∇2f = ∂2
zf +

1

̺
∂̺(̺∂̺f) +

1

̺2
∂2
ϕf ;

∇ · ~A = ∂zAz +
1

̺
∂̺(̺A̺) +

1

̺
∂ϕAϕ;

∇× ~A =

(
1

̺

(
∂̺(̺Aϕ)− ∂ϕA̺

)
,
1

̺
∂ϕAz − ∂zAϕ, ∂zA̺ − ∂̺Az

)

;

∇ ~A =







∂zAz ∂zA̺ ∂zAϕ

∂̺Az ∂̺A̺ ∂̺Aϕ

1

̺
∂ϕAz

1

̺

(
∂ϕA̺ − Aϕ

) 1

̺

(
∂ϕAϕ + A̺

)






;

∇ · T =

(

∂zTzz +
1

̺
∂̺(̺T̺z) +

1

̺
∂ϕTϕz, ∂zTz̺ +

1

̺
∂̺(̺T̺̺) +

1

̺
∂ϕTϕ̺ −

Tϕϕ

̺
,

∂zTzϕ + ∂̺T̺ϕ +
1

̺
∂ϕTϕϕ +

Tϕ̺ + T̺ϕ

̺

)

.
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6.3 Spherical polar coordinates

In spherical polar coordinates, equations (115) – (120) become:

∇f =

(

∂rf,
1

r
∂ϑf,

1

r sin ϑ
∂ϕf

)

;

∇2f =
1

r2
∂r(r

2∂rf) +
1

r2 sin ϑ
∂ϑ(sinϑ ∂ϑf) +

1

r2 sin2ϑ
∂2
ϕf ;

∇ · ~A =
1

r2
∂r(r

2Ar) +
1

r sin ϑ
∂ϑ(sinϑAϑ) +

1

r sin ϑ
∂ϕAϕ;

∇× ~A =

(
1

r sinϑ

(
∂ϑ(sinϑAϕ)− ∂ϕAϑ

)
,

1

r sinϑ
∂ϕAr −

1

r
∂r(rAϕ),

1

r

(
∂r(rAϑ)− ∂ϑAr

)

;

∇ ~A =









∂rAr ∂rAϑ ∂rAϕ

1

r

(
∂ϑAr −Aϑ

) 1

r

(
∂ϑAϑ + Ar

) 1

r
∂ϑAϕ

1

r sinϑ
∂ϕAr −

Aϕ

r

1

r sin ϑ
∂ϕAϑ −

Aϕ

r tanϑ

1

r sinϑ
∂ϕAϕ +

Ar

r
+

Aϑ

r tanϑ









;

∇ · T =

(
1

r2
∂r(r

2Trr) +
1

r sinϑ
∂ϑ(sin ϑTϑr) +

1

r sin ϑ
∂ϕTϕr −

Tϑϑ + Tϕϕ

r
,

1

r
∂r(rTrϑ) +

1

r sin ϑ
∂ϑ(sinϑTϑϑ) +

1

r sinϑ
∂ϕTϕϑ +

Tϑr + Trϑ

r
− Tϕϕ

r tanϑ
,

1

r
∂r(rTrϕ) +

1

r
∂ϑTϑϕ +

1

r sin ϑ
∂ϕTϕϕ +

Tϕr + Trϕ

r
+

Tϕϑ + Tϑϕ

r tanϑ

)

=

(

∂rTrr +
1

r
∂ϑTϑr +

1

r sin ϑ
∂ϕTϕr +

2Trr − Tϑϑ − Tϕϕ

r
+

Tϑr

r tanϑ
,

∂rTrϑ +
1

r
∂ϑTϑϑ +

1

r sinϑ
∂ϕTϕϑ +

2Trϑ + Tϑr

r
+

Tϑϑ − Tϕϕ

r tanϑ
,

∂rTrϕ +
1

r
∂ϑTϑϕ +

1

r sinϑ
∂ϕTϕϕ +

2Trϕ + Tϕr

r
+

Tϑϕ + Tϕϑ

r tanϑ

)

.



7 An application to viscosity

The equations of viscid hydrodynamics may be written as:

∂ρ

∂t
+∇ · (ρ~v) = 0; continuity

∂~s

∂t
+∇ · (~s~v) = −∇p+∇ · T; momentum equation

∂~v

∂t
+ (~v · ∇)~v =

1

ρ

(
−∇p+∇ · T

)
; Euler equation

∂eT
∂t

+∇ ·
(
(eT + p)~v

)
= ∇ · (T · ~v); total energy equation

∂e

∂t
+∇ · (e~v) = −p∇ · ~v + T : ∇~v, internal energy equation













(121)

where one uses one of the momentum and Euler equations, and one of the total and internal
energy equations. Here, ρ is the density, ~v is the velocity, ~s = ρ~v is the momentum density
(and ~s~v is the dyadic product of ~s and ~v; definition 2.3, equation 13), e is the internal energy
density, p = (γ − 1)e (ideal equation of state) is the thermal pressure, and eT = 1

2
ρv2 + e

is the total energy density. See equation (41) for a reminder of the “double dot” or “colon”
product convention (e.g., last term in the internal energy equation).

As for the viscid variables, T is the viscous stress tensor (units Nm−2), given by:

T = (µ+ µl + µq) S; S = ∇~v + (∇~v)T − 2
3
∇ · ~v I, (122)

where S is the shear tensor (units s−1), I is the identity tensor, the superscript T indicates
the transpose, and µ is the coefficient of shear viscosity (units Nm−2 s), a physical property
of the fluid. As defined, S and therefore T are symmetric.

For numerical applications in which the fluid variables are resolved on a discrete grid of
small but not infinitesimal zones, most (M)HD codes are designed with an artificial viscosity,
which helps stabilise the flow in stagnant regions and at discontinuities (shocks). These are
respectively mediated by the linear and quadratic coefficients µl and µq given by:

µl = q1lρcs; µq = −q2l
2ρmin

(
0,∇ · ~v

)
, (123)

where q1 and q2 (corresponding to 1
2
qlin and 1

2
qcon in ZEUS

14) are unitless parameters
(typically 0.1 and 1 respectively), l is the zone size (maximum of the three dimensions), and
cs =

√

γp/ρ is the adiabatic sound speed. Note that the “min” function means µq is positive
and that the quadratic viscosity is applied only in regions of compression (e.g., shocks).

This form of the artificial viscosity (identical to the physical viscosity other than the
coefficients) is called the tensor artificial viscosity and is due to W.-M. Tscharnuter & K.-H.
Winkler (1979, Comput. Phys. Comm., 18, 171; TW). It differs from the more often-followed

14ZEUS and, in particular, ZEUS-3D is an astrophysical computational fluid dynamics code that I and
others developed in the late 80s and early 90s, and which I have continued to develop since. The latest
version and full documentation is freely available for download and use at http://www.ica.smu.ca/zeus3d.
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approach by J. von Neumann & R. D. Richtmyer (1950, J. Appl. Phys., 21, 232; vNR) who
set S = ∇~v, ignore all off-diagonal terms, and replace ∇ · ~v with ∂ivi in the i-direction for
µq (equation 123).

Beginning with equation (119), the diagonal elements for ∇~v in Cartesian, cylindrical,
or spherical polar coordinates, are:

(∇~v)11 = ∂1v1;

(∇~v)22 =
1

h2
∂2v2 +

v1
h2

∂1h2;

(∇~v)33 =
1

h3
∂3v3 +

v1
h31

∂1h31 +
v2

h2h32
∂2h32.







(124)

Note that:

3∑

i=1

(∇~v)ii = ∂1v1 +
v1
h2

∂1h2 +
v1
h31

∂1h31

︸ ︷︷ ︸

1

h2h31
∂1(h2h31v1)

+
1

h2
∂2v2 +

v2
h2h32

∂2h32

︸ ︷︷ ︸

1

h2h32
∂2(h32v2)

+
1

h3
∂3v3 = ∇ · ~v, (125)

where this is a general result, true for any orthogonal coordinate system. Then, from equation
(122), the diagonal elements of S are given by:

Sii = 2

(

(∇~v)ii −
1

3
∇ · ~v

)

, i = 1, 2, 3. (126)

Thus,

Tr(S) =

3∑

i=1

Sii = 2

3∑

i=1

(

(∇~v)ii −
1

3
∇ · ~v

)

= 2

3∑

i=1

(∇~v)ii − 2

3∑

i=1

1

3
∇ · ~v = 0, (127)

because of equation (125), and both S and T are traceless.

Aside: Numerical considerations

In a numerical scheme, Tr(S) is identically zero so long as equation (125) is valid to ma-
chine round-off error, which does not necessarily follow from the fact that equation (125)
is an algebraic identity. For those not used to the vagaries of numerical arithmetic, this
inconvenient fact can come as a rude surprise.

For equation (125) to be valid numerically, expressions like:

1

h2h31
∂1(h2h31v1) = ∂1v1 +

v1
h2

∂1h2 +
v1
h31

∂1h31,

as indicated by the first under-brace must be accurate to machine round-off error. In polar
coordinates where x1 = r and h2(r) = h31(r) = r, this means that:

1

r2
∂r(r

2vr) = ∂rvr + 2
vr
r
. (128)

Now, on the numerical grid in Fig. 2, derivatives like ∂rvr are evaluated with finite differences :
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δθ

i, j)ρ

v (i+1, j) 1.8=r

(i, j) =1.1vθ

vr(i, j) =1.2

(i, j+1) 1.5=θv

θ

r
20o

22o

rδ

1.1

1.0

(

Figure 2: A single 2-D zone
on a polar computational grid.

∂rvr =
vr(i+ 1, j)− vr(i, j)

δr
,

which is zone-centred if vr is face-centred. Quan-
tities such as vr in vr/r that aren’t differentiated
are zone-centred by taking a two-point average:

〈vr〉 =
vr(i+ 1, j) + vr(i, j)

2
.

Thus, with the exemplary values in Fig. 2, the LHS
and RHS of equation (128) are evaluated as follows:

LHS =
1

〈r〉2∂r(r
2vr)

=
1

(1.05)2
(1.1)2(1.8)− (1.0)2(1.2)

0.1
= 8.8707

RHS = ∂rvr + 2
〈vr〉
〈r〉 =

1.8− 1.2

0.1
+ 2

1.5

1.05
= 8.8571 6= LHS!

Close, but no cigar! Similarly, equation (125) requires:

1

h2h32
∂2(h32v2) =

1

h2
∂2v2 +

v2
h2h32

∂2h32

⇒ 1

sin〈θ〉∂θ(vθ sin θ) = ∂θvθ +
〈vθ〉
sin〈θ〉 cos〈θ〉, (129)

since x2 = θ and h32(θ) = sin θ. Evaluating the LHS and RHS of equation (129), we get:

LHS =
1

sin 21

1.5 sin 22− 1.1 sin 20

2π/180
= 14.8439

RHS =
1.5− 1.1

2π/180
+

1.5 + 1.1

2
cot 21 = 14.8458 6= LHS.

So how do we achieve a traceless shear tensor to machine round-off error?
Start by noting the following algebraic identities:

v1
h2

∂1h2 =
1

h2

∂1(h2v1)− ∂1v1;

v1
h31

∂1h31 =
1

h2h31

∂1(h2h31v1)−
1

h2

∂1(h2v1);

v2
h32

∂2h32 =
1

h32

∂2(h32v2)− ∂2v2.







(130)
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Substitute equations (130) into equations (124) as appropriate, to get:

(∇~v)11 = ∂1v1;

(∇~v)22 =
1

h2

∂2v2 +
1

h2

∂1(h2v1)− ∂1v1;

(∇~v)33 =
1

h3

∂3v3 +
1

h2h31

∂1(h2h31v1)−
1

h2

∂1(h2v1) +
1

h2h32

∂2(h32v2)−
1

h2

∂2v2,







(131)

giving us algebraically identical, but numerically only similar expressions to equations (124).
However, this time using equations (131), we get:

3∑

i=1

(∇~v)ii = ✟✟✟∂1v1 +
✚
✚
✚
✚1

h2
∂2v2 +

✟✟✟✟✟✟1

h2
∂1(h2v1)−✟✟✟∂1v1 +

1

h3
∂3v3 +

1

h2h31
∂1(h2h31v1)

−
✟✟✟✟✟✟1

h2
∂1(h2v1) +

1

h2h32
∂2(h32v2)−

✚
✚
✚
✚1

h2
∂2v2 = ∇ · ~v,

to machine round off error, without having to rely on expressions (128) and (129). Note fur-
ther that given face-centred velocities (as they are in a staggered mesh scheme like ZEUS),
every term in equations (131) is naturally zone-centred without the need for two-point aver-
ages that are required if equations (124) are used. Two-point averages can be diffusive and,
as we’ve seen, can lead to truncation errors much larger than the machine round-off limit.

This is a common strategy taken in numerics. Equations (131), which give slightly differ-
ent estimates of (∇~v)ii than equations (124), are used so that identities such as

∑

i(∇~v)ii =
∇ ·~v are honoured to machine roundoff error. After all, who is to say whether the estimates
of (∇~v)ii afforded by equations (124) are any better or worse than those of equations (131)?
Both are differenced estimates of differential quantities and both converge at the same rate to
the differential quantity as δr and δθ → 0. The fact that equations (131) give a numerically
traceless S whereas equations (124) do not is the discriminating factor, and makes equations
(131) the more desirable of the two to be used in equation (126).

In terms of the numerical grid discussed in the aside, Sii are zone-centred quantities.
Meanwhile, the off-diagonal components, given by:

S12 = S21 = (∇~v)12 + (∇~v)21 = ∂1v2 −
v2
h2

∂1h2 +
1

h2

∂2v1

= h2 ∂1

(
v2
h2

)

+
1

h2

∂2v1; (132)

S13 = S31 = (∇~v)13 + (∇~v)31 = h31 ∂1

(
v3
h31

)

+
1

h3
∂3v1; (133)

S23 = S32 = (∇~v)23 + (∇~v)32 =
h32

h2

∂2

(
v3
h32

)

+
1

h3

∂3v2, (134)

are naturally edge-centred, with Sij located on the k-edge (i 6= j 6= k).
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We now write down covariant expressions for the physical components of the vector
constructs in equations (121) involving T. First, evaluate (∇ · T)1 using equation (101) and
the fact that T is symmetric (e.g., T21 = T12). Thus,

(∇ · T)1 =
1

h2h3

[

∂1

(
h2h3

h1
T11

)

+ ∂2(h3T12) + ∂3(h2T13)

]

+
1

h2
1

(

✁2T11∂1h1 −✘✘✘✘✘T11∂1h1

)

+
1

h1h2

(
2T12∂2h1 − T22∂1h2

)
+

1

h1h3

(
2T13∂3h1 − T33∂1h3

)
(135)

Now, a little algebra will show that:

1

h2h3
∂1

(
h2h3

h1
T11

)

+
T11

h2
1

∂1h1 =
1

h1h2h3
∂1(h2h3T11);

1

h2h3
∂2(h3T12) +

2T12

h1h2
∂2h1 =

1

h2
1h2h3

∂2(h
2
1h3T12); and

1

h2h3
∂3(h2T13) +

2T13

h1h3
∂3h1 =

1

h2
1h2h3

∂3(h
2
1h2T13),

and equation (135) simplifies to:

(∇ · T)1 =
1

h1h2h3

[

∂1(h2h3T11) +
1

h1
∂2(h

2
1h3T12) +

1

h1
∂3(h

2
1h2T13)

− h3T22∂1h2 − h2T33∂1h3

]

.

(136)

Next, since T is traceless (T11 = −T22 − T33), we can write:

∂1(h2h3T11)− h3T22∂1h2 − h2T33∂1h3

= −∂1(h2h3T22)− h3T22∂1h2 − ∂1(h2h3T33)− h2T33∂1h3

= −h2∂1(h3T22)− 2h3T22∂1h2 − h3∂1(h2T33)− 2h2T33∂1h3

= − 1

h2
∂1(h

2
2h3T22)−

1

h3
∂1(h2h

2
3T33),

and equation (136) further reduces to:

(∇·T)1 =
1

h1h2h3

[

− 1

h2

∂1(h
2
2h3T22)−

1

h3

∂1(h2h
2
3T33)+

1

h1

∂2(h
2
1h3T12)+

1

h1

∂3(h
2
1h2T13)

]

. (137)

Permuting the indices, we get for the 2- and 3-components:

(∇·T)2 =
1

h1h2h3

[

− 1

h3
∂2(h

2
3h1T33)−

1

h1
∂2(h3h

2
1T11)+

1

h2
∂3(h

2
2h1T23)+

1

h2
∂1(h

2
2h3T12)

]

; (138)

(∇·T)3 =
1

h1h2h3

[

− 1

h1
∂3(h

2
1h2T11)−

1

h2
∂3(h1h

2
2T22)+

1

h3
∂1(h

2
3h2T13)+

1

h3
∂2(h

2
3h1T23)

]

. (139)
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For Cartesian, cylindrical, or spherical polar coordinates, h1 = 1, h2 = h2(x1), and h3 =
h31(x1)h32(x2), so that equations (137), (138), and (139) become:

(∇ · T)1 = − 1

h2
2h31

∂1(h
2
2h31T22)−

1

h2h
2
31

∂1(h2h
2
31T33) +

1

h2h32

∂2(h32T12) +
1

h3

∂3T13; (140)

(∇ · T)2 = − 1

h2h2
32

∂2(h
2
32T33)−

1

h2h32
∂2(h32T11) +

1

h3
∂3T23 +

1

h2h31
∂1(h

2
2h31T12); (141)

(∇ · T)3 = − 1

h3
∂3(T11)−

1

h3
∂3(T22)

︸ ︷︷ ︸

h−1
3 ∂3T33

+
1

h2h2
31

∂1(h2h
2
31T13) +

1

h2h2
32

∂2(h
2
32T23). (142)

Thinking in terms of a staggered numerical grid once again, since Tij ∝ Sij , Tii are zone-
centred and Tij are k-edge centred (i 6= j 6= k). Thus, with a little examination, one can see
that every term in (∇ · T)i is naturally centred at the i-face without the need for two-point
averaging, exactly where they are needed to accelerate the i-face centred vi. This is the
principle strength of a properly staggered mesh: vector components often naturally land
where the equations need them to be, without the need of averaging.

Next, from equation (41), we have:

T : ∇~v =
∑

i j

Tij(∇~v)ij

= T11∇1v1 + T22∇2v2 + T33∇3v3

+ T12(∇1v2 +∇2v1) + T13(∇1v3 +∇3v1) + T23(∇2v3 +∇3v2)

= T11
1
2
S11 + T22

1
2
S22 + T33

1
2
S33 +

1
3

(
T11 + T22 + T33
︸ ︷︷ ︸

= Tr(T) = 0

)
∇ · ~v

+ T12S12 + T13S13 + T23S23,

exploiting the symmetry of T and using equations (126), (132), (133) and (134). Thus,

T : ∇~v =
1

2

∑

ij

TijSij =
µ∗

2

∑

ij

S2
ij, (143)

where µ∗ ≡ µ+ µl + µq. Alternately, we can write:

T : ∇~v =
∑

i j

Tij(∇~v)ij = µ∗
∑

i

Sii∇ivi + µ∗
∑

i 6=j

Sij∇ivj

= µ∗
∑

i

(
2∇ivi − 2

3
∇ · ~v

)
∇ivi + µ∗

∑

i 6=j

(
∇ivj +∇jvi

)
∇ivj

= 2µ∗
∑

i

(∇ivi)
2 − 2µ∗

3
∇ · ~v
︸ ︷︷ ︸
∑

j∇jvj

∑

i

∇ivi +
µ∗

2

∑

i 6=j

(
∇ivj +∇jvi

)2

=
2µ∗

3

(

3(∇1v1)
2 + 3(∇2v2)

2 + 3(∇3v3)
2 − (∇1v1)

2 − (∇2v2)
2 − (∇3v3)

2
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− 2∇1v1∇2v2 − 2∇2v2∇3v3 − 2∇3v3∇1v1

)

+
µ∗

2

∑

i 6=j

(
∇ivj +∇jvi

)2

=
2µ∗

3

(

(∇1v1)
2 − 2∇1v1∇2v2 + (∇2v2)

2 + (∇2v2)
2 − 2∇2v2∇3v3 + (∇3v3)

2

+ (∇3v3)
2 − 2∇3v3∇1v1 + (∇1v1)

2
)

+
µ∗

2

∑

i 6=j

(
∇ivj +∇jvi

)2

⇒ T : ∇~v =
2µ∗

3

((
∇1v1 −∇2v2

)2
+
(
∇2v2 −∇3v3

)2
+
(
∇3v3 −∇1v1

)2
)

+ µ∗
((

∇1v2 +∇2v1
)2

+
(
∇2v3 +∇3v2

)2
+
(
∇3v1 +∇1v3

)2
) (144)

Stone and Norman (1992, ApJS, 80, p. 789) state that TW claim that in the context of
a numerical algorithm, representing the viscous energy generation term as a sum of squares
as in equation (144) is an absolute necessity, because all other formulations eventually lead
to instabilities. Since equations (143) and (144) differ only in the order in which terms are
added, they must yield results identical to machine round-off error, and I cannot understand
why such a claim would be made. Indeed, equation (143) should have the same stability
properties as equation (144).

Finally, from equation (114), we have:

∇ · (T · ~v) =
1

h2h31

∂1

(

h2h31

(
T11v1+T12v2+T13v3

))

+
1

h2h32
∂2

(

h32

(
T12v1+T22v2+T23v3

))

+
1

h3
∂3
(
T13v1+T23v2+T33v3

)
.

(145)

Centring equation (145) is awkward since Tij is zone centred for i = j and edge-centred
for i 6= j, while vj are face-centred. This is an example where the staggered mesh does not
seem to help, and numerous and seemingly unnatural 2- and 4-point averages are necessary
to evaluate all products in ∇· (T ·~v) using equation (145). Still, it is this form that the term
is a perfect divergence and thus most useful in representing the total energy equation in a
conservative fashion.

Alternately, using the identity:

∇ · (T · ~v) = T : ∇~v + (∇ · T) · ~v, (146)

(Theorem 5.2, §5.9) factors in each product are now co-spatial, though 2- and 4-point av-
erages are still needed to bring some—not all—of the terms to the zone centres. While the
centring of the RHS of equation (146) may seem more natural than the LHS, the RHS is
not in conservative form, and this deficit may trump the centring advantage. This can be
determined only by direct experimentation.

Last point. Note that in Cartesian coordinates, ignoring all diagonal components, drop-
ping the ∇ · ~v terms in equation (126), and letting ∇ · ~v in equation (123) → ∂ivi in the i
direction, equations (137)–(139) reduce to:

∇ · T = 2
(
∂x(µ

∗∂xvx), ∂y(µ
∗∂yvy), ∂z(µ

∗∂zvz)
)
, (147)
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equation (145) reduces to:

∇ · (T · ~v) = 2
(
∂x(vxµ

∗∂xvx) + ∂y(vyµ
∗∂yvy) + ∂z(vzµ

∗∂zvz)
)
, (148)

while equation (143) reduces to:

T : ∇~v = 2µ∗
(
(∂xvx)

2 + (∂yvy)
2 + (∂zvz)

2
)
. (149)

Equations (147)–(149) are the vNR expressions for the artificial viscosity in the subroutine
viscous in ZEUS, when µ = 0 and µ∗ is taken to be (equation 123):

µl + µq = 2q1
︸︷︷︸

qlin

lρcs − 2q2
︸︷︷︸

qcon

l2ρmin
(
0, ∂ivi

)
.

∼
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