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Sequences

A sequence is a list of numbers in a given order:
a1,02,A3,...,0p,y... .

Each of the ai, as, etc. represents a number; these are the terms of the sequence. For
example

2,4,6,8,...,2n,...
has first term a; = 2, second term as; = 4 and nth term a,, = 2n. The integer n is called
the indez of a,, and denotes where a,, occurs in the list.
We can consider the sequence ay, as,as, ..., a,,... as a function that sends 1 to ay, 2 to as,
etc. and in general sends the positive integer n to the nth term a,,.

DEFINITION  Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive
integers.

Sequences can be described by rules or by listing terms. For example,
ay = NG {an}:{ﬁ,\/i,\/ﬁ,...,\/ﬁ,...}
11 1 1

b, = (=1)""(1/n) {bn} = {1, 33T (="t = }

n

1 2 3 n—1
n — _]- n — P A PRI
c (n )/n {cn} {0234 - }

d, = (—1)n+t {d.,} ={1,-1,1,-1,..., (=) ...}

Sequences can be illustrated graphically either as points on a real axis or as the graph of a
function defining the sequence:
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Consider the following sequences:

111 1
1, =, =,—,...,—,... terms approach 0 as n gets large
2°3°4 n
123 1
N B T terms approach 1 as n gets large
2 34 n
{\/I, V2,V3,V4, ..., \/n, } terms get larger than any number as n increases
{1, —1,1,—1,..., (=)™, } terms oscillate between 1 and —1,

never converging to a single value

This leads to the definition of convergence, divergence and a limit:

DEFINITIONS  Converges, Diverges, Limit
The sequence {a,} converges to the number L if to every positive number e there
corresponds an integer N such that for all n,

n>=>N = |a, — L] < e.

If no such number L exists, we say that {a,} diverges.
If {a, } converges to L, we write limy— a, = L, or simply @, — L, and call
L the limit of the sequence

The concept of a limit is illustrated in the following figure:

L—¢ L L+e
I - I—I—.—.—EI—.-.-I—H—
0 d,t, 4 ay " a,
da,
-~
L+e
LR e (n,a)-2-5——-
o
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°
L1 1 | - -
Of 1 2 3 N n

Here a,, — L if y = L is a horizontal asymptote of the sequence of points {(n,a,)}.

We will now consider two examples of the application of the definitions.



Example:

We want to prove that

o1
lim — =0.
n—oo M

Let € > 0 be given. We need to find an integer N such that for all n,

n>N =
n

1
——0'<6.

This condition will be satisfied provided 1/n < €, which means n > 1/e. Therefore if N is any
integer greater than 1/¢, the implication will hold for all n > N. Hence lim,,_,.(1/n) = 0.
For example, suppose we take ¢ = 0.01 then the condition is just n > 100.

Example:
We want to prove that the sequence

{1,-1,1,-1,..., (=)', ...} diverges.

proof by contradiction: Assume that the sequence converges to some number L. Choose
€= % in the definition of the limit and so all terms a,, of the sequence with n larger than

some N must lie within ¢ = % of L:

1
n>N = \an—L\<§.

Since 1 is in every other term of the sequence, 1 must lie within € of L. Hence

1 1 3
1—L|=|L—1] <= Sorp<?,
| | = | |<2 or 5 <L<g

Then —1 is also in every other term and so we must have

1 3 1
L—-—(-1)|<=- oo —-<L<—=.
However, this is a contradiction: Both conditions cannot be satisfied simultaneously. There-
fore no such limit exists and so the sequence diverges.

There is a second type of divergence:

DEFINITION  Diverges to Infinity
The sequence {a,} diverges to infinity if for every number M there is an integer
N such that for all n larger than N, a, > M. If this condition holds we write
lim g, = o© or a, —> 00,
n—oo
Similarly if for every number m there is an integer N such that forall » > N we
have a, < m, then we say {a,} diverges to negative infinity and write

lim a, = —o¢ or gy = 0%y
n—0

Example:
lim n =00 (proof?)

n—oo



note: The sequence {1,—-2,3,—4,5,...} also diverges, but not to co or —oo.

Sequences are functions with domain restricted to n € N, hence:

THEOREM 1

Let {a,} and {b,} be sequences of real numbers and let 4 and B be real numbers.
The following rules hold if lim,—~ @, = 4 and limy—oc b, = B.

1.  Sum Rule: limy—oola, + b,) =4 + B

2. Difference Rule: limy»o(a, — by) = A — B

3. Product Rule: limy—oclay=b,) = A+ B

4. Constant Multiple Rule: lim,—oo(k*b,) = kB (Any number k)
5. Quotient Rule: limysoo 32 = % B # 0

We can use these rules to help us to calculate limits of sequences.

Example:
Find lim 2

n—00 n

im P i (1—1): Bm 1 — lim S —1-0=1.

n—00 n n—00 n n— oo n—oo M,

Example:
Find lim %
n—oo N,
1 1
lim %:5' lim — - lim —=5-0-0=0.
n—oo M n—oo 1, n—oo N,

The Sandwich Theorem for Sequences provides another method for finding the limits
of sequences:

THEOREM 2  The Sandwich Theorem for Sequences

Let {a,}, {b,}, and {c,} be sequences of real numbers. If a, = b, = ¢, holds
for all n beyond some index N, and if lim, o a, = lim, - ¢, = L, then
lim,—sc b, = L also.

Note that if |b,| < ¢, and ¢, — 0 as n — oo, then b, — 0 also, because —¢,, < b, < ¢,.

Example:

. . sinn
Find lim
n—oo

n
By the properties of the sine function we have —1 < sinn < 1 for all n. Therefore

sinn . sinn
= lim =0

n—oo N

<

<

S|
S|

n

because of lim,, . (—1/n) = lim, . (1/n) = 0 and the use of the Sandwich Theorem.



Example:
1
Find lim .
1/2" must always lie between 0 and 1/n (e.g. 53 < 1,7 < 3,5 < 3,75 < 7....). Therefore
1 1 1
0<—<-— = lim — =0.
= = n=o0 21

The limits of sequences can also be determined by using the following theorem:

THEOREM 3 The Continuous Function Theorem for Sequences

Let {a,} be a sequence of real numbers. If ¢, — L and if f is a function that is
continuous at L and defined at all a,,, then f(a,) — f(L).

Example:

Determine the limit of the sequence {21/ "} as n — 00.

We already know that the sequence {1} converges to 0 as n — co. Let a, = 1/n, f(z) =27
and L = 0 in the continuous function theorem for sequences. This gives

oUm — f(1/n) — f(L)=2"=1 as n— oco.
Hence the sequence {21/ "} converges to 1.

We can also make use of I’'Hopital’s Rule to find the limits of sequences. To do so we need
to make use of the following theorem:

THEOREM 4
Suppose that f(x) is a function defined for all x = ng and that {a,} is a sequence
of real numbers such that @, = f(n) forn = ng. Then

lim f(x) =L = lim @, = L.
A=—e0 =20
Example:
1
Show that nll_{& % = 0.
Inn 1/n

lim — = lim ————
oo Jm | nieo (1/2)n- 172
(using 'Hopital’s Rule by treating n as a continuous real variable)
n'/? 1
= lim2-— =2 Ilim —= =0.

n—oo n n—oo n1/2

Example:
Does the sequence whose nth term is a,, = ((n+1)/(n—1))" converge? If so, find lim,, . a,.



If we just take the straightforward limit we get the indeterminate form 1°°. Typically with
questions of this type we take the logarithm. This gives:

n+1\" n+1
Ina, =1In =nln .
n—1 n—1

Hence

~ lim In(n+1) —In(n —1)
n—00 1/n
—2/(n?>—-1
= 7}1_{20 —/—(Ib/nQ ) (using I’'Hopital’s Rule)
. 2n?
= lim =

n=oon?—1
Let b, = Ina, Then lim, .. b, = 2 and since f(z) = €*
continuous function theorem for sequences

is continuous we have by the

a, = e =¢ehn 2 as n— 0.

Therefore the sequence {a,} converges to €.
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The following Theorem summarizes some common results for the limits of sequences:

THEOREM 5
The following six sequences converge to the limits listed below:
N |
L lim 55 =0
2. lim V=1
00
3. limx"=1 (x>0
=00
4. lim x" = (x| < 1)

n
5. lim (l + %) =g (any x)

=00
6. lim ~ =0 (any x)

In Formulas (3) through (6), x remains fixed as # — 0.

The first result can be proved using I’Hopital’s rule. The second and third results can be
proved using logarithms and applying the previous theorems. Proofs of the remaining results
are given in Appendix 5 of Thomas’ Calculus.

Example:
Show that lim,, .., Vn? = 1.

lim Vn2 = lim n?" = lim (nl/")2 = (1)2 =1.

n—oo n—oo n—oo

For bounded, monotonic sequences there is the following theorem:

THEOREM 6—The Monotonic Sequence Theorem If a sequence {a,} is both
bounded and monotonic, then the sequence converges.

For example, look at a bounded, monotonically increasing function:

y
A
=M
M ¥
¥ &
L ........
3 > X
Example:

lim (1 — l) =1.
n—oo n



Infinite series

An infinite series is the sum of an infinite sequence of numbers

a1+ ag+az—+ -+ a, +---.

Example:

I 1n71+
2 4 2

DEFINITIONS  Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers {a,}, an expression of the form

ﬂ|+ﬂz+ﬂ3+"'+ﬂn+"'

is an infinite series. The number «, is the ath term of the series. The sequence
{sn} defined by

8 = dy

s1=a; + a2

f
s,,=a1+az+---+a,,=2ak
=

is the sequence of partial sums of the series, the number s, being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

oo
s tay+ oo taptoo=Yay=L.
n=1

If the sequence of partial sums of the series does not converge, we say that the
series diverges.

A geometric series has the form
o0 oo
a+ar+ar2+---+a,r"_1+---zg ar"‘lzg ar™
n=1 n=0

where a and r are fixed real numbers and a # 0. The quantity r is called the ratio of the
geometric series and can be positive or negative.
In the special case where r = 1 the nth partial sum is

sp=a+a-1+a- 1>+ ---+a-1""=na

and the series diverges because lim,, ., s, = 00 depending on the sign of a. If r = —1 the
series diverges because either s, = a or s,, = 0 depending on the value of n.



Now consider the case of a geometric series with |r| # 1. We have

Sn = a+ar+ar’+---+ar"?
rs, = ar—+ar’4---4+ar™t+ar”
Sp =TS, = a—ar" or s,(1—r)=a(l—1")
a(l —7r")
= n = _— ]. .
s T @ #1)

Therefore, if |r| < 1 then ™ — 0 as n — oo and hence s, — a/(1 —r). If |r| > 1 then
|| — oo and the series diverges. So we have

Zar"‘l =% for Ir| <1
1—r

n=1

and the geometric series converges.
For example,

1 1 1 =1 /1\"! (1/9) 1
St R i - =1/9. r=1/3
TS Z9(3) =3 6 (eTUer=13)
and
5 5 5 = (—1)"5 5
1716 61" HZ:O 1+ (1/4) (a=5r=—-1/4)
Example:
Find the sum of the series
>t
nzln(n—i-l)

Note that we can use partial fractions to write

1 1 1

nn+1) n n+1l

Hence the sum of the first & terms is
k

k
1 1 1
> =2 ()
and so the kth partial sum is

n= n=1
(1 1 N 1 1 N 1 1 R 1 1
=12 23 34 Eokt1
1 . 1 L 1 n 1 L 1 P 1 n 1 1
1 2 2 33 kok) k+1
Hence s — 1 as £ — oo and so the series converges giving

= 1
RS T

n=1




Suppose the series >  a, converges to a sum S and the nth partial sum of the series is
Sp = ay+as+---+a,. When n is large, both s, and s,,_; are close to S and therefore their
difference a,, is close to zero. Using the Difference Rule for sequences we have

ap =8, —Sp-1 — S—85=0 as n— 0.

Hence:

THEOREM 7

£
If Z a, converges, then a, — 0.

n=1

This, in turn, leads to

The nth-Term Test for Divergence
E a, diverges if lim a, fails to exist or is different from zero,
n=1 n—>0

Example:

oo
g n? diverges because n? — 0o
n=1

o

n+1 i n—+1
Z diverges because — 1
n n

n=1

Z(—l)”+1 diverges because  lim (—1)""' does not exist

—1 n—oo

= -n . . —-n 1
Z diverges because lim =——#0.
:12n+5 n—oo 2N + 5 2

Note that the converse of the above theorem is false: If a,, — 0 this does not imply that
the series Y 7 | a, converges.

Example:
Consider the unusual case of a series where a,, — 0 but the series itself diverges:
1+1+1+1+1+1+1+ +1—|—1+ —l—l—i-
2 2 4 4 4 4 2n 2 2n
where there are two terms of 1/2, four terms of 1/4, ..., 2" terms of 1/2", etc. In this case
each grouping of terms adds up to 1 so the partial sums must increase without bound and
so the series diverges, even though the terms of the series form a sequence that converges to 0.

If we have two convergent series, we can add them term by term, subtract them term by
term, or multiply them by constants to make new convergent series:



THEOREM 8

If 2a, = A and 2 b, = B are convergent series, then

1.  Swum Rule: 2la, + b)) = Za, + 2b,=A+ B

2. Difference Rule: Slap— by) = Za, — Zby=A— B

3. Constant Multiple Rule: 2ka, = k2a, = k4 ( Any number k).
Example:

Find 3%, (371 — 1)/671.

& g1 _1 e 1 1 > 1 > 1
S - Y(eee) XX
n=1 n=1 n=1 n=1

1 1 " txic series)
= — WO geometric series
1—(1/2)  1-(1/6) &
_ o 0 d
55

We can add a finite number of terms or delete a finite number of terms without altering the
convergence or divergence of a series but if the series is convergent this will usually alter the
sum. Consider the series

Zan:a1+a2+---+ak_1+2an.
n=1 n==k

If >, a, converges, then >, a, converges for any k& > 1. Conversely, if > >, a,
converges for any k > 1, then » 7  a, converges.

Note that re-indexing a series (e.g. changing the starting value of the index) does not alter
its convergence, provided the order of the terms is preserved.

For example, raise the starting value of the index A units:

o0 o0

n=k—h: Zan:Zak_h:a1+a2+a3+...'
n=1 k=1+h

Lower the starting value of the index h units:

0 0
n=k+h: Zan:Zak+h:a1+a2+a3+..._
n=1 k=1—-h

The Integral Test

For a given series Y a,, we want to know: (1) Does it converge? (2) If it converges, what is
its sum?

A corollary of the Monotonic Sequence Theorem is that the series Y, a,, of non-negative
terms converges if and only if (why?) its partial sums are bounded from above.



Example:

Consider the harmonic series:
=1 1 1 1
Z_:1+__|___|_...+__|_...
—~n 2 3 n

This series is actually divergent even though the nth term 1/n — 0 as n — oo, cf. the n-th
term test seen before. However, the series has no upper bound for its partial sums. We can
see this by writing the series as

l-l—l—f— 1+1 + 1+1+1+1 + 1+1+ +1 +
2 3 4 5 6 7 8 9 10 16 '

1,1 2 _ 1 1,1 .1 .1 4 1 1,1 1 8 1
NOW§+Z>Z_§’ g+g+7+§>§—§, §+E+---+1—6>E—§andso
on. Therefore the sum of the 2" terms ending with 1/2"*1 is > 2"/2"*! = 1/2. Therefore
the sequence of partial sums is not bounded from above, and so the harmonic series diverges.

Now consider the series,

o0

21—1+1+1+1+ T Ly

24916 n?

Does it converge or diverge? To answer this question we will consider a new approach
involving the use of integration. What we need to do is to compare the series Y -  1/n?

with the integral [~ 1/2* dx.

.
(1, (1)
I |
Graph of flx) = =
, -
LI\ e
| _
L 1
3? (3.03) -
1 - (n, fin)
22 T~ 42
X
0 1 2 3 4 ... n=1n...
1 1 1 1
Sp = ﬁ+§+§+...+ﬁ

= S 1+ f(2)- 1+ fB3) -1+ f(n) -1
< f(1)+/ xidx lower sum

2

|
1 x



Therefore

Thus s,, < 2 for all n, the partial sums are bounded from above (by 2) and therefore (why?)
the series converges. Note that the series and the integral need not have the same value in
the convergent case.

The approach we have just taken leads us to

THEOREM 9  The Integral Test

Let {a,} be a sequence of positive terms. Suppose that @, = f(n), where f is a
continuous, positive, decreasing function of x for all x = N (N a positive inte-
ger). Then the series - v a, and the integral fJ .:?o f(x) dx both converge or both
diverge.

We will consider the proof for the case N = 1 and we start with the asumption that f is a
decreasing function with f(n) = a, for every n.

.

o . y = flx)

]

i)
ay

In part (a) of the above figure, the areas of the rectangles aq, as, ..., a, enclose more area
than that under the curve y = f(x) between x = 1 and = n + 1. Therefore we can write

n+1
/ fl@)de <ay+as+ -+ ay.
1



Now consider the rectangles as shown in part (b) above. If we ignore the first rectangle we
can write

CL2+CL3+' /f

Adding the area a; to each side gives
a+as+as+---+a, §a1+/ f(z)dx
1

Combining the two inequalities gives

n+1 n
/ f($)d$§ai+a2+-"+an§ai+/ f(r)dz
1 1

These inequalities will hold as n — oo.
Therefore, if fl x)dx is ﬁnite the right-hand part of the inequality shows that > a, is

also finite. Similarly, if f "H () dzx is infinite, then ) a, is infinite by the left-hand part
of the inequality.

The Integral Test can be used to show that the p-series > -, 1/n” converges if p > 1 and
diverges if p < 1.1

Example:
Show that the series >>° 1/(n* + 1) converges by the integral test.
The function f(z) = 1/(2? + 1) is positive, continuous and decreasing for z > 1. Also

<1
/ 5 dz = lim [arctanz]} = lim [arctanb — arctan 1]
1 xe+1 b—oo b0
I
2 4 4

and so the series converges (but we do not know its sum).

!See the Thomas’ Calculus Section 10.3, p.555 for a proof.
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The Ratio Test

THEOREM 12—The Ratio Test Let X a, be a series with positive terms and
suppose that

Ap+1
P

lim
n—00

Then (a) the series converges if p < 1, (b) the series divergesif p > 1 or p is in-
finite, (c) the test is inconclusive if p = 1.

A proof of the above results is given in the textbook.
The two series we looked at in the last section are good examples of cases where p = 1 and
the test is inconclusive:

Zl : an+1:1/<n—|—1): n —1 (n— o)
n ap 1/n n+1
L g Y10 N
Zﬁ ’ a,  1/m2 \n+1 =l (r—eo).

In each case p = 1 (i.e. the test is inconclusive) and yet we know that > 1/n diverges
whereas Y 1/n? converges.

Example:
Use the Ratio Test to investigate the convergence of the following series:
2"+ 5 = (2n)! = nl
(a) Z n (b> Z W ’ (C) ﬁ :
n=1 n=1 n=1
(a)
2n + 5 2n+1 + 5
Ay = 3TL s an—‘rl - W;
Api1 (27! 4 5) /3 tt 1 ntl 4 5 1 /24527
a,  (2n+5)/3» 3 245  3\1+5.-2n
1 2 2 .
— 313 < 1 as n — oo and the series converges.
(b)
(2n)! (2(n+1))!
Ap = ) Up41 = ;
(n!)? ((n+1)!)2
any1 (2 +2)! nln! (2n+2)2n+1)

an  (n+Dn+1D! @20 (n+1)(n+1)
dn+2  4+2/n

T 1T n — 4 > 1 and the series diverges.




n! (n+1)!
ap = —; Upp1 = ————;

nm +1 (n/+_1)n+1
aner  (n+D)In"  (n+41)n"

an (n+1D)rtinl — (n4+1)2(n+1)

n" n \" 1 " 1<1
p— pr— pr— — H_
(n+1)" n+1 1+1/n e

and the series converges.

As we can see, the Ratio Test is often useful when the terms of a series contain factorials
involving n or expressions raised to the power involving n.

Power Series

A power series is like an “infinite polynomial”, i.e., it is an infinite series in powers of
some variable, usually x:

DEFINITIONS  Power Series, Center, Coefficients
A power series about x = 0 is a series of the form

o0
Yo" =g+ cx F eax? + o g+ (1)

n=f}

A power series about x = g is a series of the form

oo

Selx—al'=c+alxr—a) +elx—a)P +-+clx —a) + - (2)
n=0

in which the center « and the coefficients ¢y, ¢, 3, ..., ¢,, ... are constants.

If they converge, such series can be added, subtracted, multiplied, differentiated and inte-
grated to give new power series.

Example:

Consider the case where the coefficients in (1) in the definition above are all unity.:

icnx”:ix":1+x+x2+-~+x”+~-
n=0

n=0

This is just a geometric series with first term 1 and ratio = (a = 1,7 = ). We know from
the properties of geometric series that it converges to 1/(1 — ) for |z| < 1. Hence

=144+ 2"+, —-l<z<l.

11—z



We can think of the right-hand side of this equation as a sequence of partial sums which are
polynomials P,(x) that approzimate the function on the left:

1
f(x) = . i Po(x) =1=y (horizontal line)
-
Pi(x) =l+x=uy (straight line, slope 1)
Py(z) =1+a+2>=1y (quadratic curve [parabolal)
etc.
}l
! o
8 -
TF

ys=l4x+x2+ 0 +x 4+ x5+ 00+ 47 428

5
4
3
2
1

yo=1
?’” I
1 0

Example:

Consider the power series

1—%(x—2)+i(a:—2)2—-~+<—%>n(x—2)”+---.

This matches the form of (2) in the former definition with a = 2, ¢, = (—=1/2)". It is a
geometric series with the first term 1 and ratio r = —(x — 2)/2. The series converges for
|(x —2)/2| <1lor0<x<4. The sum is

Hence

2 1\’ .
—1— + —t =) z=2)"+-, O<z<4.



Again we can consider the series as a sequence of partial sums which are polynomials P,(x)
that approximate 2/x:

2
f(x):;; P(z) = 1=y

1 T

Pi(x) = 1—5@—2): —5 =0
1 1 3r a2

Pr) = 1-5(@=2)+ (-2 =3-"F+—"=u

2 4
etc.

A series Y a,, converges absolutely if the corresponding series of absolute values, > |a,/,
converges. Most importantly, it can be shown that if a series converges absolutely, then it
converges.! This enables us to apply the ratio test and the integral test, which only test the
convergence of series of positive terms.

A series that converges but does not converge absolutely converges conditionally.

THEOREM 138 The Convergence Theorem for Power Series

20

If the power series Zanx" =ap + ajx + ax® + -+ converges for

n=0
x = ¢ # 0, then it converges absolutely for all x with |x| < |¢|. If the series
diverges for x = d, then it diverges for all x with [x| > |d|.

1See Section 10.6 for a short, clever proof.



COROLLARY TO THEOREM 18

The convergence of the series > c,(x — a)" is described by one of the following

three possibilities:

1. There is a positive number R such that the series diverges for x with
|x — a| = R but converges absolutely for x with |[x — a| < R. The series
may or may not converge at either of the endpoints x = ¢ — R and
x=a+R.

2. The series converges absolutely for every x (R = 00),

The series converges at x = g and diverges elsewhere (R = 0).

Here R is called the radius of convergence and the interval of radius R centred at z = a
is called the interval of convergence.

Example:

Find the values of z for which the series
>y
n=0

converges absolutely, specifying both the radius and interval of convergence.

This is a geometric series with first term a = 1 and ratio r = 2z. It converges absolutely
for |r| < 1, that is, [22] < 1 or —1/2 < x < 1/2, and diverges elsewhere. Hence, the radius
of convergence is R = 1/2 and the interval of convergences —1/2 < z < 1/2.

When studying the convergence of power series such as these, alternating series frequently
arise. Here we can make use of an additional test. The Alternating Series Test (or
Leibniz’s Test) states that the series

oo

Z(—l)”“un = Uy — Uy + U — Ug + U5 — - - -

n=1
converges if all three of the following conditions hold:

1. The u, are all positive,
2. Uy > upyq for all n > N, for some integer N and

3. u, — 0 as n — oo.

Example:
The alternating harmonic series

[e.9]

1 1 1 1
B I
Z( ) n 2+3 4jL

n=1
satisfies all of the above three requirements with NV = 1 and hence converges. But it does

not converge absolutely, as we have shown before, hence it converges conditionally.
We can test a power series for convergence using several methods:



1. Use a test such as the ratio test to find the interval where the series converges abso-
lutely.

2. If the interval of absolute convergence is finite, test for convergence or divergence at
each endpoint using a test such as the integral test or the alternating sequences test.

3. If the interval of absolute convergence is a — R < x < a + R, the series diverges for

|z —a| > R.

Example:
Use the ratio test to determine the convergence of

e 2n—1 3 5
x x x
Z( ) 2n —1 3 5)
n=1
We have
Upt1 "t on — 1| 2n—-1, 5
= = - — .
Uy, 2n + 1 z2n-1 2n +1
Therefore the series converges absolutely for 2 < 1 and diverges for 22 > 1. At x = 1 the
series is 1 — % + % - % + - -+ which converges by the alternating sequences test. The series
also converges at x = —1, as can be shown by the alternating sequences test.

Taylor and Maclaurin Series

Assume that the function f(z) can be represented as a power series

f(ZE)ZZan(x—a)”:a0+a1(x_a)+...+an($_a)n+.,_

which converges for a — R < x < a+ R with R > 0. Can we calculate the coefficients a,, in
terms of f(z)?

It can be shown? that f(z) has derivatives of all orders inside this interval by differentiating
the power series term by term:

f’(l’) = a1+2a2($—a)—|—..._|_nan(x_a)n—1+_”
Fl(z) = 1-2a+2 3az(z —a)+ - +nn—Dan(z —a)" 2+

f™(z) = nla,+ asum of terms with (z — a) as a factor.
Therefore
flla)=ay, f"(a)=1-2ay, f"(a)=1-2-3as, ..., f"(a) =nla,.
This gives us a formula for the coefficients in the power series:
f™(a)
ool

2This is a theorem, which can be proved. Likewise, it can be proved that f(z) can be integrated term by
term; see Thomas’ Calculus, end of Section 10.7. for details.



It also suggests that if f has a power series representation then it must be

f(x):f(a)—i—f,(a)(m—a)—l—%@@_a)2+...+

leading us to the following definition:

DEFINITIONS Taylor Series, Maclaurin Series
Let f be a function with derivatives of all orders throughout some interval con-
taining « as an interior point. Then the Taylor series generated by fatx = a is

0o glk) i
> H = = f@) + @ = o) + 5P - ap

tn)
et L nfa) s Sl S
The Maclaurin series generated by f is
0o f!H(O) ; y £(0) flu!({]) '

the Taylor series generated by f atx = 0.

Example:

Find the Taylor series generated by f(x) = 1/x at © = 2. Where, if anywhere, does the
series converge to 1/x7

n! 2ntl
The Taylor series is
"(9 (n) 2
f(2)—|—f’(2)(x—2)+f2—(l)(x—2)2+~-~+ / n'( )(a:—2)"+~--
This is a geometric series with first term 1/2 and ratio r = —(z — 2)/2. It converges
absolutely for |z — 2| < 2, or 0 < z < 4 with sum
1/2 1 1

S

T 14 (@-2)/2 2+(x-2)

Related to the Taylor series is the Taylor polynomial of order n:



DEFINITION  Taylor Polynomial of Order n

Let f be a function with derivatives of order k for k = 1, 2,..., N in some inter-
val containing & as an interior point. Then for any integer n from 0 through N, the
Taylor polynomial of order n generated by f at x = ¢ is the polynomial

PAx) = fla) + fla)s = a) + = af 4

k) =
'y kia_] (x—a)f+--+ ! H{!a) b —ay.

There is a similar definition for Maclaurin polynomials.
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Example:
Find the Taylor polynomials of order 0, 2 and 4 for the function f(z) = cosz at = = 0.
We have

f(x)=cosx, f'(z)=—sinz, f"(z)=—cosxz, [f"(z)=sinz, fP(z)=cosz
and
f0)y=1, f(0)=0, f'0)=-1, f"(0)=0, fH0)=1.
By using the previous definition, the first three Taylor polynomials of f(x) = cosx about
x =0 are

PQ(ZL‘) = 1
2
X
z?2 2t

The following figure shows how successive Taylor polynomials provide better and better
approximations to the function as n — oo:

¥
2 -
P.‘ 'FIj. F!: Plﬁ
Py
l _—
_ /‘\\(\;EWSI
1 I 1 1 I i 1 I E g
0 1 3] g
kL
P LT Piy \Pg
9k

Below we give the Taylor series expansions for a variety of functions about x = 0 and x = 1.
These can all be derived using the methods in this section.
Taylor series about x = 0:

2 3 gl
e = 1+5E+§+§+Z+"'
A
sma::x—a—i—a—ﬁ—i—---
_ 2?2 xt af
cosr = —§+J—a—|—---
he — 1 2?2 xt af
Db — x> ad al
smx—x%—a—l—g%—ﬁ—kn-.
Taylor series about x = 1:
1 1 1
Inz = (x—l)—§($—1)2+§(:c—1)3—Z(x—1)4+---

VT = 1+%(a:—1)—é(x—1)2+1—16(x—1)3—---.



Convergence of Taylor Series and Error Estimates

There are still two unanswered questions about Taylor series:
1. When does a Taylor series converge to the function that generated it?

2. How accurately do a function’s Taylor polynomials approximate the function on
a given interval?

To answer these questions we need to make use of Taylor’s Formula:

Taylor's Formula
If f has derivatives of all orders in an open interval / containing «, then for each
positive integer n and for each x in 7,

f"(a)

flx) = fla) + frla)x — a) + 3 (x —a)y +---
nl
+ f{”l;a} (,_r o a)fi + RH{IJ. (1)
where
{n+1} 11
Rulx) = % (x — a)"*! for some ¢ between g and x. (2)

This formula is a special case of Taylor’s Theorem, which in addition requires differentiability
at the end points /. This theorem can in turn be understood as a generalization of the Mean
Value Theorem (set n = 0 in the above formula).

The quantity R,(x) in Taylor’s Formula is called the remainder of order n or the error
term for the approximation of f by P,(x) over I. If R,(x) — 0 asn — oo for all z € I, we
say that the Taylor series converges to f on I and we write

% k),
) =3 L@ gy

k!
k=0

Finally we can use the Remainder Estimation Theorem to provide an estimate of the
error:

THEOREM 23 The Remainder Estimation Theorem

If there is a positive constant M such that | f"*"(1)| = M for all 1 between x and
a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the in-
equality

fa== a|"Jrl

If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).




The usefulness of this theorem is demonstrated by the following example:

Example:
Show that the Taylor series for sinx at x = 0 converges for all x.
We have

f(x)=sinz, f(r)=cosx, [f"(z)=—sinz,...

and, in general,
() = (<) sine,  fA (@) = (<1)F cosa

Therefore, evaluating at = 0 gives f(0) = 0 and f@*+1(0) = (—1)*. Hence the Taylor
series for sinz at x = 0 is

) :133 $5 (—1)k$2k+1
Slnmzx—a—i-a—"'—f-m—f—}%%—&-l(x).

Applying the Remainder Estimation Theorem with M = 1 gives

’:L’|2k+2

m%()ask%ooforallx.

| Ropia ()] < 1-

(cf. the list of sequences and their limits discussed in Week 1) Therefore Rog.1(2) — 0 and
the Maclaurin series for sinz converges to sinx for every .

Applications of Power Series
Binomial series

The Taylor series generated by f(z) = (1 + )™ (around = = 0) where m is a constant is

flz) = 1+m:v+m(n;!_1)x2+m(m_:l)j(m_z)x%---
m(m—1)(m—2)...(m—k+1
(=i =2)... ),

This is called the binomial series.

If m > 0is an integer, the series stops after (m+1) terms because coefficients from k& = m+1
onwards are zero.

If m is not a positive integer the series is infinite. From the Ratio Test for absolute conver-
gence it follows that this series converges absolutely for |z| < 1. It can also be shown that
the series converges to (1 + x)™.!

We can define this series conveniently as follows:

lsee Thomas’ Calculus Section 10.10 for details



The Binomial Series
For—1 <x <1,

1+x)"=1+ i (m)xk,
=1 \k

where we define

and

fork = 3.

(m) ~mlm — 1)(m —2)---(m —k+1)
k) k!

Note that m € R. In the case of m € N we recover the familiar binomial coefficients. Note
also the relation between the binomial series and the binomial formula.

In the case where m = —1,
-1\ -1\ =1\ _
()= ()1 () =cor
For example,
1fx2 = o+
—1)(-2 —1)(—2)(—
— o 1ma CUL CUCACY )

= z(l—a*+a"—a%+--+)

= o—r*+2° 2"+

which is a geometric series.

Reading assignment: Work yourself through the following two examples.
(cf. Examples 3 and 7 in Thomas’ Calculus, Section 10.10)

Evaluation of non-elementary integrals

We can use the term-by-term integration property of power series to allow us to do non-
elementary integrals.

Example:
Express [ sina? dz as a power series.

Recall that

x>

smx:x—a—l-a—---



Hence
26 210

Sjnx2:x2__+__...

3! 5!

3 7 11

. 2 X X x

do — T .
/Slnx x C—i—S 7'3!4—11‘5!

and so

where C' is a constant of integration.

Evaluating indeterminate forms

Power series also provide an alternative to L’Hopital’s rule for evaluating indeterminate
forms.

Example:
Find

lim [ — —— .
z—0 \sinz =«

We can write

.7:3 :C5
1 I a:—smx_x_(x 5T T >
sint x  xsinz w(q;_ﬂé_? 92_?_ )
PlE-ge) Gog)
PG g )

Hence

1 2
(324
lim( ! —l)zhm PR G —0.

sinz x 7—0 (1_x3_f+...)

Functions of Several Variables

Reminder: What is a function?
In Calculus 1 and in Mathematical Structures you have learned the following:

Definition
A function from a set D (domain) to a set Y (codomain) is a rule that assigns a unique
(single) element y € Y to each element x € D.

So far you have dealt with functions of a single variable, such as

fR=R | xz—y=f(r)

with, for example, f(z) = 2°.

Functions of several variables are defined in complete analogy to functions of one variable
in terms of uniqueness, domain, codomain, range, etc. (without involving complex numbers):



DEFINITIONS Suppose D is a set of n-tuples of real numbers (x|, x2, . .., x,).
A real-valued function f on D is a rule that assigns a unique (single) real
number

w = flx,x2,...,%,)

to each element in D. The set D is the function’s domain. The set of w-values
taken on by f is the function’s range. The symbol w is the dependent variable
of f, and f is said to be a function of the » independent variables x; to x,. We
also call the x;’s the function’s input variables and call w the function’s output
variable.

In the following we will focus on functions of two variables.
Examples:

V = V(r,h) =7r*h (volume of cylinder, radius r, height h)

4
M = M(r,p) = §7r7“3,0 (mass of sphere, radius r, density p)

In the case of V' the quantities r and h are the input (independent) variables and V' is the
unique output (dependent) variable.

If f is a function of two independent variables, x and y, the domain of f is a region in the
-y plane.

Example:

(Natural) domains and ranges for function of two variables

Function Domain Range
w=Vy—x* y=x? [0, 00)
w=$ xv # () (—co, 0)U (0, c0)
w = sinxy Entire plane [—1,1]

Interior points, boundary points, open and closed sets are defined in higher dimensions in
analogy to dealing with intervals on the real line.?

Example:
Describe the domain of the function f(z,y) = \/y — 22.

Since f is defined only where y — 22 > 0, the domain is the closed (the set contains all
boundary points), unbounded (why?) region shown below (shaded). The parabola y = x? is
the boundary of the domain. The points above the parabola make up the domain’s interior.

2If you are not satisfied with this statement, please check out Thomas’ Calculus p.749 for details.



}!
+ Interior points,
where v — X2 =0
Outside, The parabola
y—x2<0 1+ y—x2=0
is the boundary.
I I > x
-1 0 1

There are two ways to visualise a function f(z,y):

1. Sketch the graph, or surface z = f(x,y) in space.

2. Draw and label level curves in the domain on which f has a constant value.

As an example for 1., we will consider the function

fla,y) =2 +y*.

To visualise the surface, consider the nature of f for a fixed value of y, say y = a. In this
case z = 22 + a® and z = z(x). The equation z = 22 + a? defines a parabola in the plane
y = a, perpendicular to the y-axis. Each different value of a gives a different parabola.
For example, for y = a = 0 we have z = 22. Therefore the required surface is made up of
parabolas and forms a paraboloid as shown below.

—+2 4 42
T, AZ z=x+t+a

Examples of other surfaces are shown in the following figure. It displays the three dimen-
sional surfaces defined by the functions (a) f(z,y) = 2> + %, (b) f(z,y) = —2* — y?, (c)
flz,y) =2*+y* +5and (d) f(z,y) =y* — 2.



(© (d

The set of points in the x-y plane where a function f(z,y) has a constant value f(x,y) = ¢
is called a level curve of f (cf. what is plotted in geographic maps). Accordingly, the set
of points (z,y, z) in space where a function f(x,y, z) = ¢ is called a level surface of f.

Example:

Graph the function f(x,y) = 100 —2?—y? and plot the level curves f(z,y) =0, f(z,y) = 51
and f(z,y) = 75 in the domain of f in the plane.

The domain is the entire z-y plane and the range is the set of real numbers < 100. The
graph is the paraboloid given by z = 100 — 2% — y*

When f(z,y) = 0, we have 100 — 22 — y? = 0 or 2% 4+ 3* = 100. This corresponds to a circle
of radius 10.

When f(x,y) = 51, we have 100 — 2% — y? = 51 or 22 + y* = 49. This corresponds to a
circle of radius 7.

When f(x,y) = 75, we have 100 — 2% — y? = 75 or 22 + y> = 25. This corresponds to a
circle of radius 5.



2

pﬂo
flxy) =175

The surface
z=fxy)

=100 — x* — y?
is the graph of f.

flx,y) =51
(a typical
level curve in
the function’s
domain)
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‘I'he curve in space i which the plane z = ¢ cuts a surface z = f(z,y) 1s called the contour

curve f(z,y) = c¢. The following figure shows the contour curve produced where the plane

z = 75 intersects the surface z = f(z,y) = 100 — 2% — ¢*.

The contour curve f(x, y) = 100 — x*> — y* =175
is the circle x2 4+ y2 = 25 in the plane z = 75.

| 100[

7= 100 — x* — y?

Plane z = 75

The level curve f(x, y) = 100 — x* — y2 =75
is the circle x> + y2 = 25 in the xy-plane.

Limits and Continuity in Higher Dimensions

Reminder: Limits
For functions of one variable we say that f(x) approaches the limit L whenever f(z) is
arbitrarily close to L for all x sufficiently close to a, written as

lll)nf(x) =L.

Example: y
liy(2e 1) = {R—
Upper bound:
y==5
9 T
To satisfy i
this th o Val
5 |
: : Lower bound:
| | y=3
[
(T
L g | » X
of 345
| e
Restrict

to this



Analogously, if the values of f(x,y) lie arbitrarily close to a fixed real number L for all
points (z,y) sufficiently close to a point (zg,yo), we say that f approaches the limit L as
(z,) approaches (g, o). More rigorously:!

DEFINITION Limit of a Function of Two Variables
We say that a function f(x, ) approaches the limit L as (x, y) approaches (X, vo),
and write

lim xy) =1L
(. ¥)—(xp, ¥a) f( :!")

if, for every number e > 0, there exists a corresponding number 8 > 0 such that
for all (x, v) in the domain of f,

[f('x:y) - LI < € whenever 0 < '\/(_x - xujz + (J i yu}z < &.

It can be shown that this definition leads to the following properties (you have seen an
analogous theorem for functions of one variable in Calculus 1):

Theorem  Properties of limits of functions of two variables
If L,M,keR, lim  f(z,y) = L and ( lim  g(z,y) = M then

(x,y)ﬂ(xo,yo) Ivy)*’(‘TO’yO)

L. lim  (f(z,y) £ g9(z,y) =L+ M

(x,y)—»(mg 7y0)

(@,y)—(z0,0)
3. lim  (kf(x,y)) =kL
(x7y)_>(x07y0)
L
4. lim f(x’y):_7M7go
(@y)—(zomo) g(x,y) M

5. If r and s are integers with no common factors, and s # 0, then
lim  (f(x,y))’* = L"* provided L'/* is a real number.

(x,y)—(x0,y0)

For polynomials and rational functions the limit as (x,y) — (zo,%0) can be calculated by
evaluating the function at (zq,yo) (provided the rational function is defined at (zo,yo)).

Examples:
(1)
=-3.

lim r—xy+3 0—(0)(1)+3
(@y)—(0.1) 2y + 5xy —y*  (0)2(1) +5(0)(1) — (1)3
(2) Find

) 22 — xy
lim

(2.9)—(00)* 2y /T — /Y

'see the footnote on p.9 of the week 3 lecture notes of Calculus 1 - you need to have read Thomas’
Calculus Section 2.3 to fully appreciate this definition!




We need to avoid the whole path to the limit where x = y, hence the condition = # y.
Accordingly, there is a problem with just setting x = y = 0 because /x — \/y — 0 as
(x,y) — (0,0). However, we can write

- a? — ay : P —xy TSy
lim _— = lim .
(@)= 0.0+ 22y /T — /Y (29)—(0.0) "2y VT — /T T+
_ b 9 VE V)
(ac,y)—>(0,0)+,ac7éy (l’ — y)

= lim (v +y) =0.

(J?,y)—>(0,0)+ TEY

Now we use limits to define continuity for a function of two variables.
Reminder: Continuity

For functions of one variable f(z) is continuous at z = a whenever f(a) is defined,
lim, ., f(x) exists and the limit L equals f(a), that is, lim, ., f(z) = f(a). Analogously:

DEFINITION Continuous Function of Two Variables
A function f(x, v) is continuous at the point (xg, yo) if

1. fis defined at (xq, yo).
Z. lim jf(x,y) exists,

e v)—(xy, v
3. lim  flx,y) = flxo, y0).
(%, ¥)—*{x0, yo)
A function is continuous if it is continuous at every point of its domain.

It follows from the previous Theorem that polynomials and rational functions of two vari-
ables are continuous on their domains.

Recall that for functions of one variable both the left- and the right-sided limits had to have
the same value for a limit to exist at a point. For functions of two (or more) variables, this
translates into the Two-Path Test for Nonexistence of a Limit: It states that if a
function f(z,y) has different limits along two different paths as (z,y) — (xo, yo), then

lim x,
(z,y)—(20,Y0) J(@y)
does not exist.

The following figure illustrates this concept for paths approaching a point in radial and
tangential directions:



(b)

To have a limit at a point we have to have the same limit as the point is approached from
all directions, including (a) radial directions and (b) tangential directions.

Example:

Show that the function

22y
T4 + yz

f(z,y)

has no limit as (z,y) — (0,0).

We cannot use substitution as it leads to 0/0. However, we can consider what happens as
we approach (0,0) along a family of different curves. Remember, the choice of curves is
up to us as the Two-Path Test does not specify what the path should be. You may wish
to check, as an exercise, what happens for the family of paths y = mx as (z,y) — (0,0).
Here we consider the next more complicated case, which is the family of parabolas given by
y = kaz? (x #0). Along these curves the function is

222 (kx?) 2kt 2k

oot (ka?2)?2 at k2t 1+ k2

20y
zt + y?

f(l’, y)|y:kx2 =

y=kx?2
Therefore, as we approach (0,0) along any curve y = kx?, we have

2k

lim [f(l',yﬂy:kxz} TR

(z,y)—(0,0)

Consequently, the actual limit depends on which path of approach we take (i.e. which
parabola we are on which is determined by the value of k). By the Two-Path Test there
is hence no limit as (z,y) — (0,0). This is illustrated by looking at the surface of this
function:



Sometimes it is useful to use polar coordinates.

Reminder (or perhaps not?): Polar coordinates
As an alternative to Cartesian coordinates (z,y), we can describe a point P in the plane
by using polar coordinates:

Pir, 8)
r
Origin (pole)
#
o — > X
[nitial ray
Polar Coordinates
P(r, 6)
Directed distance Directed angle from
from O to P initial ray to OP

These coordinates are particularly useful if a function, or a problem, has some circular
symmetry. Typically, we restrict ourselves to 0 < r and 0 < 0 < 27 (why?). Polar and
Cartesian coordinates can be converted into each other:



P(x, y) = P(r, 8)

o
.}I

"0 ] B=0,r=0 L.

X Initial ray

For the direction polar to Cartesian coordinates we easily derive
xr=rcosf, y=rsinf

That is, given (r,0), we can compute (z,y). The direction Cartesian to polar coordinates is
left to you as an exercise.?

Example:
Determine the continuity of the function defined by

20 if (2, ) £ (0,0)

e =15 oo

In polar coordinates, i.e., by using x = rcosf, y = rsin 6, the function can be written as

22 1
£(r,0) = r“ cosfsin 6 — sin 20

72(cos? § + sin? )

provided we are not at the origin (i.e. provided r # 0). Therefore, as r — 0, the outcome
depends on the angle §. For example, along § = /4, f = sin20 = sinw/2 = 1 everywhere
along the line. Therefore the function is not continuous.

Partial Derivatives

Reminder: Derivative
For functions of one variable, y = f(x), the derivative at a point is the gradient of the
tangent to the curve at that point.

But for functions of two variables, z = f(z,y), an infinite number of tangents exist at a
point. However, if we fix y = yo in f(x,y) and let x vary, then f(z,yo) depends only on z:

2If you have not encountered polar coordinates before in sufficient detail, I highly recommend that you
familiarize yourself with Thomas’ Calculus, Section 11.3.



A Vertical axis in
~the plane y = y,

P(x()v )’o»f(xos yO))

iz :f(xa J’)
The curve z = f(x, yo)

in the plane y = y,

Tangent line

Yo

(xg + h, ¥o)
Horizontal axis in the plane y = y,,

That is, we can reduce the problem of the many-variable derivative effectively to the one-
variable case by holding all but one of the independent variables constant.

Definition
The partial derivative of f(x,y) with respect to x at the point (xq,yo) is

h — 0
_ hii% f(zo + ,yol)l f(xo, yo) = fu(z0,90) = 8—£(:E0,y0)

provided the limit exists.

In complete analogy, the partial derivative of f(x,y) with respect to y at the point (zo, yo)

1S
()7 X +h) — f(x (9’
—y = ]lziIIOI f( 0 %0 ZL ( 0 y0> fy(an yO) - 9y (an yO)

(anyO)

provided the limit exists.
For example, if f(z,y) = 2® 4+ y? then f, = 2z, f, = 2y.
Note how we treat the other variables as constants when we do partial differentiation!

We can extend this to three (or more) dimensions. For example, if f(z,y,2) = zy*2® then
fx = y22,’3, fy - nyzga fz = 3$y222'

Example:
Find df/0x and df /0y at the point (4, —5) for the function f(z,y) = 2* + 3xy +y — 1.



or _ g(:c2+3xy+y—1):2x+3y

Oz Ox
0 0
a—i = a—y(a:2+3:z:y+y—1):3x+1.

At the point (4, —5) we have

/I T/
97|45 Y | (4,-s5)

Example:
Find 0z/0x if the equation yz — In z = = + y (implicitly) defines z = z(z,y).

0 0
—(yz —1 = — .
5y e —Inz) = (@ +y)
Hence 5 L 8
z z
22140
Yor ~ zoz *
This gives
1\ 0z 0z z
y—— |- =1; .
z ) Ox or yz—1
We can also obtain higher order derivatives.
Example:
If f(x,y) =xcosy+ ye®, find
0*f 0*f o f 0*f
T T A 9 T 7 Ao = =5 d oy — -
/ Ox2 Ty 0x0y T 02 and - fay Oyox
The first step is to find the first partial derivatives:
0
8_£ = cosy+ye’
o7 siny + e*
— = —xsin e’.
Jy Y

Now we take the partial derivatives of the first partial derivatives. This gives:

O*f .
P
2
(‘fy(‘;; = —siny+¢€°
2
(;jzzgy = —siny+e”
O*f

= —ICosy.

ay?



This illustrates the following Theorem:

Theorem  Mized Derivative Theorem
If f(z,y) and its partial derivatives f,, f,, fuy and f,, are defined throughout an open region
containing a point (a,b) and are all continuous at (a,b) then

fxy(a’ b) = fyx<a7 b) .

(An example where f,,(a,b) # fy.(a,b) is provided by the function discussed on p.5/6 of
the lecture notes of this week 5.)
The theorem can be extended to higher orders, provided the derivatives are continuous.
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Reminder:
For functions of a single variable it holds that if y = f(x) is differentiable at © = z;, then
the change in the value of f that results from changing = from xg to zo + Ax is given by

the differential approximation
Ay = f'(xo)Az + eAx

in which ¢ — 0 as Az — 0 (see Thomas’ Calculus Section 3.9). For functions of two
variables, the analogous property yields the definition of differentiability:

DEFINITION Differentiable Function

A function z = f(x, y) is differentiable at (xg, yo) if f.{xq, yo) and f,(xo. y0)
exist and Az satisfies an equation of the form

Az = filxo, yo)Ax + filxp, yo)Ay + €Ax + €Ay,

in which each of €, e, — 0 as both Ax, Ay — 0. We call f differentiable if it is
differentiable at every point in its domain.

Note in particular that for z = f(z,y), differentiability is more than the ezistence of the
partial derivatives, as becomes also clear from the following statement:

If f, and f, are continuous throughout an open region R, then f is differentiable at every
point of R.

It also holds, in analogy to functions of a single variable:

If a function f(x,y) is differentiable at a point (z¢,yo) then f is continuous at (xq, yo).

If you are interested in the details underlying the above statements, like the Increment
Theorem, please check out Thomas’ Calculus p.771/772.

The Chain Rule

Reminder: Chain Rule for Functions of One Variable
If w= f(z) is a differentiable function of z and = = ¢(¢) is a differentiable function of ¢,

then
dw dwdx

At dedt”
Similarly:

Theorem: Chain Rule for Functions of Two Variables
If w= f(z,y) is differentiable and if x = z(t), y = y(t) are differentiable functions of ¢, then
w = f(z(t),y(t)) is a differentiable function of ¢ and

dw 8wdx+8wdy
dt — Oz dt Oy dt’

This straightforwardly follows from the above definition of differentiability.
We can easily extend this theorem to functions w = f(z,y, z) of three variables:

do _gwdr  dwdy  Owds
dt Oz dt oOydt 09zdt’



We can use tree diagrams to illustrate the application of the Chain Rule:

(a) (b)
w=f(x,y)  Dependent w = f(x,y.2) Dependent
variable variable
aw \ aw \
dx / ‘\\a_\‘ dx /aw ‘\\(rJZ
] \ ~ Intermediate ) \ _Intermediate
X N . X L B 2 .
/\. variables : /\. variables
/ dy /
dx N\ /’/ﬁ dx\ df //ﬂ
dt \\\ / dt dt \\\ / dt
¥4 Independent \V'g Independent
f variable r variable
dw _dwdx 3w dy dw _adwdx dwdy  ow dz
de  ax dr  dy dt dt — dx dr o Oy dr o oz dt

(a) To find dw/dt, start at w and read down each route to ¢, multiplying derivatives along
the way; then add the products. (b) For functions of three variables there are three routes
from w to t instead of two, but finding dw/d¢ is still the same: read down each route,
multiplying derivatives along the way; then add.

Example:
Use the Chain Rule to find the derivative of w = xy with respect to ¢t along the path
T = cost, y =sint.

dw B ow dx
dt Oz dt

owd
a—Zd—gZ = y(—sint) + z(cost) = —sin*t + cos®t = cos 2t .

Note that we could have done this more directly by noting that

dw

1
Ty = §~20082t:C082t.

1
w =1y = costsint = Esin2t;

If w= f(x,y) where x = g(r,s) and y = h(r, s) then

8w@ and ow B 8w%

8_y07’ s Oz Os

ow_owo
or  Ox Or

0wy
dy Os

and in analogy for functions w = f(z,y, z). Also, if w = f(x) and z = g(r, s) then

ow dwozx ow dw oz
— and = —

Os  dr O0s’

or  dx or

Example:
For u = w(z,y, ), express Ow/0r and Ow/Js in terms of r and s if
z=2r.

r
w=zr+2y+2>, r=-, y=r’+Ins,
s



We have
ou _ wds  dwdy | Owo:
or  OxOr Oyor 0zO0r
1 1
= (1) (E) + (2)(2r) + (22)(2) = B + 12r
and
o _ wdr  dwdy | Ouwd:
ds  Oxds Oyds 0z 0s
—r 1 2 r
= (1) <?) + (2) <§> + (22)(0) = ST

Suppose that w = F(z,y) is differentiable and that F(x,y) = 0 defines y (implicitly) as a
differentiable function of x. Then

dw dx dy dy
0O=—=F,—+F,—=F,+F,—.
dx dx + Ydx + Ydx
Hence, at any point where F} # 0,
dy = F
de  F,’

This is the Formula for Implicit Differentiation.

Example:
Find dy/dx if y*> — 2% — sinzy = 0.

2

F(r,y) = y*—2° —sinay
dy  F,  (—2r—ycosxy) 2x+ycosxy
de. ~  F,  (2y—wmxcosmy) 2y—axcosay

You may wish to compare this method with the one that you have learned in Calculus 1,
i.e., differentiating the whole equation with respect to = and then solving for dy/dz.

Directional Derivatives and Gradient Vectors

We now investigate the derivative of a function f(z,y) at a point in a particular direction:

DEFINITION Directional Derivative

The derivative of f at Py(xy, yg) in the direction of the unit vector u = u,i +
I3j is the number

(df) _ flxo + supyo + suz) — flxo. vo)
e = lim 3 2 (1)
d“ u Py

5=

provided the limit exists.

It is also denoted by (D,f) p, as the derivative of f at the point Fy in the direction of the
unit vector u. The meaning is illustrated in the following figure:



(xg + suy,yg + suy)
Py(xg, yo) u=ui+uj
We can develop a more efficient formula for the directional derivative by considering the line
T = Xg+ Suy, Y = Yo + Sus

through the point Py(zo, yo), parametrised with the arc length parameter s increasing in the
direction of the unit vector u = w1i + usj. Then

(%) - (g—£> j—‘z + (%) % (via the Chain Rule)
u, Py Py Po
_(of af
B <%>Po o (a_y> Po "
— [(%) i+ (g_£> j] < Jugd 4 ugj]
Py Py

DEFINITION Gradient Vector
The gradient vector (gradient) of f(x, ) at a point Py(xp, vo) is the vector

of,  of,
'5;]4--&')—}

v =

obtained by evaluating the partial derivatives of f at Py .

Note that for a function f(z,y, z) we have

The expression V f = grad f is called “grad f”, “gradient of f”, “del f” or “nabla f”.



We can now write the directional derivative using the gradient:

Theorem: Directional Derivative
If f(x,y) is differentiable in an open region containing Fy(xo, yo) then

df B
(@)= o

which is the scalar product of grad f at P, and u.

Example:
Find the derivative of f(z,y) = x eV4cos(zy) at the point (2,0) in the direction of v = 3i—4j.
The unit vector is

v v 3. 4.
1i=————=-1— —1.
v~ V®y2 5 5
Now
f2(2,0) = (ey—ysin(xy))l(m)260—021
fy(2,0) = (a:ey—xsin(:vy))\@o):260—2-0:2.
Hence
and so ; . . g
Dy =V u=(1+2j)-(=i—=j)]==—==-1.
f|(2,0) f|(2,0) u = (i+2j) (51 5.]) -
Note that

Duf=Vf-u=|Vf|cost
where 6 is the angle between the vectors V f and u. This implies the following:

1. f increases most rapidly when cos = 1 (i.e. u is parallel to V f)
2. f decreases most rapidly when cos = —1 (i.e. u is in opposite direction to V f)
3. f has zero change when cosf = 0 (i.e. u is orthogonal to V f).

Point 1 implies (why?): V f points in the direction of mazimal increase of f.

Point 3 implies (why?): At every point (xg,yo) in the domain of a differentiable function
f(z,y) the gradient of f is normal to the level curve through (zo, y).

The level curve f(x, y) = flxg, yy)




Tangent lines to level curves are always normal to the gradient. If (x,y) is a point on the
tangent line through the point P(zy,yo) then

T=(z—z0)i+ (y—y)i,
is a vector parallel to it. The equation of the tangent is then

Vf-T= folxo,y0)(x — z0) + fy(z0.%0)(y — 10) = 0.

Tangent Planes and Differentials

DEFINITIONS  Tangent Plane, Normal Line

The tangent plane at the point Py(xy, v, zo) on the level surface f(x, y,z) = ¢
of a differentiable function f is the plane through Py normal to Vf|pz,.

The normal line of the surface at Py is the line through Py parallel to V| p,.

It follows! that the equation of the tangent plane is
VSl PoP = fo(Po)(x = x0) + [,(Po)(y — yo) + f-(Po)(z — 20) = 0
and the equation of the normal line is
r=x0+ [(Po)t, y =10+ fy(FPo)t, z =20+ [.(Po)t.
Example:
Find the tangent plane and normal line of the surface
flay,2) =2+ 9> +2-9=0
(a circular paraboloid) at the point Py(1,2,4)

<

The surface
x4 yi4z-9=0
Pﬂ(]szx 4)

Normal line

\— Tangent plane

1See Section 12.5 in Thomas’ Calculus for details if you are in trouble with this.



Vf’PO = (2zi+2y]j +k)(1,2,4) =2i+4j+k

where at the point Py we have f,(Fy) = 2, f,(Fo) = 4 and f.(Fy) = 1. Therefore the
equation of the tangent plane is

2@ —-1)+4y—2)+(z—4)=0

which simplifies to
2c +4y + 2z = 14.

The normal line to the surface at I is

r=142t, y=2-+4t, z=4+t.
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We remark that the gradient has the following algebraic properties:

V(kf) = kEVf for any number k
V(f£g9) = Vf+£Vy
V(fg) = fVg+gVf
V<i> _ gVf—-FfVyg
2
g g

(the proof is straightforward and is left as an exercise)
Before we linearise a function of two variables, recall that a function z = f(x,y) is differen-
tiable at (xo, o) if

Az = f(x,y) — f(zo,90) = fu(20,Y0) Az + f (@0, y0) Ay + e1Az + e2Ay

with €1, €2 — 0 (Az, Ay — 0). Solve for f(z,y) and approximate:

DEFINITIONS Linearization, Standard Linear Approximation

The linearization of a function f(x, ) at a point (xg, ¥g) where f is differentiable
is the function

L(x, ) = flxo, o) + folxg, yo)(x — x0) + filxo, ¥o)(¥ — »o)- (5)
The approximation

flx,y) = Lx,»)

is the standard linear approximation of f at (xo, vo).

Example:
Find the linearisation of

1
f(z,y) =$2—xy+§y2+3

at the point (3,2).
We first evaluate f, f, and f, at the point (z¢,v0) = (3,2):

1
f(3,2) = (:c2—:1:y—|——y2+3) =38
2 (3.2)
f.(3,2) = 2(azz—acy+1yQ+3> = (22 —y)|3q9 =4
z\9 or 9 52) (3,2)
) 1
F3.2 = (ot g s)| = oty =1
Yy (3,2)

giving

L<x7y) = f(a:o,yo)+fx(xo,yo)(:v—xo)+fy(x0,y0)(y—y0)
= 84+W)(x—-3)+(-)y—2)=4c—y—2.

Hence the linearisation of f at (3,2) is L(z,y) = 4z —y — 2.



Optional reading assignment:
Work yourself through the definition and example about the total
differential (cf. p.796/797 of the little section in Thomas’ Calculus).

Recall that for y = f(x) we have defined the differential dy = f'(x)dz.

DEFINITION Total Differential
If we move from (xg, vp) to a point (xq + dx, yo + dv) nearby, the resulting change

df = ﬁr{xﬂ'yﬂ}dx + f_v{xﬂ'yﬂ} dy

in the linearization of f is called the total differential of f.

Example:

The volume V = mr?h of a cylinder is to be calculated from measured values of 7 (the
radius) and h (the height). Suppose that r is measured with an error of no more than 2%
and h with an error of no more than 0.5%. Estimate the resulting possible percentage error
in the calculation of V.

First note that

ﬁ100'§2, ‘g0.5.
-
Then

dV =V, dr + Vi, dh = 2rxrhdr + mr* dh
and so

v 2rnrhdr +mr?dh  2dr +%

Vo mr2h o h '
Hence o J i

7_2—T+ ‘ ’ < 2(0.02) + 0.005 = 0.045.

Therefore the error is no more than 4.5%.
Extreme Values and Saddle Points

When we investigated extreme values for functions of one variable we looked for points
where the graph had a horizontal tangent line. For functions of two variables we look for
points where the surface defined by z = f(z,y) has a horizontal tangent plane. This leads
to the following definition:

DEFINITIONS Local Maximum, Local Minimum

Let f(x, v) be defined on a region R containing the point (a, /). Then

1. f(a, b) is a local maximum value of f if f(a, b) = f(x, y) for all domain
points (x, ¥) in an open disk centered at (a, b).

2.  f(a, b) is a local minimum value of f if f(a, b) = f(x, y) for all domain
points (x, v) in an open disk centered at (a, b).




Local maxima correspond to “mountain peaks” on the surface z = f(z,y) and local minima
correspond to “valley bottoms”:

Local maxima
(no greater value of fnearby)
\

>
—_—

—

Local minimum —*

(no smaller value
of f nearby)

Not too hard to show:

THEOREM 10—First Derivative Test for Local Extreme Values  If f(x, y) has a
local maximum or minimum value at an interior point (a, b) of its domain and if
the first partial derivatives exist there, then f.(a, b) = 0 and f,(a, b) = 0.

Define an important object:

DEFINITION Critical Point

An interior point of the domain of a function f(x, y) where both f, and f, are zero
or where one or both of f, and f, do not exist is a critical point of f.

Therefore local maxima and minima are critical points (why?) but critical points can also
include saddle points:

DEFINITION Saddle Point

A differentiable function f(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there arc domain points (x, v) where
flx,¥) = fla, b) and domain points (x, y) where f(x,y) < f(a, b). The corre-
sponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a saddle point of
the surface (Figure 14.40).




An example of a saddle point is the origin in the following surface:

Therefore, finding critical points of a function is not sufficient to identify the type of critical
point (local maximum, local minimum or saddle point). To do this we need to make use of
second partial derivatives.

THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that

f(x, y) and its first and second partial derivatives are continuous throughout a
disk centered at (@, b) and that fi(a, b) = f,(a,b) = 0.Then

i) f has alocal maximum at (a, b) if fr, < 0 and fi. f,, — fo° > Oat(a, b).
ii) f has a local minimum at (a, b) if f,, > O and f,.f,, — fxy2 > 0 at (a, b).
iii) f has a saddle point at (@, b) if f,. f,,, — fxy2 < 0 at (a, b).

iv) the test is inconclusive at (a, b) if f.f,, — fxy2 = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).

The quantity fiufyy — gfy is called the discriminant or Hessian of the function f. Note
that
2 fxa: fxy
Feebo = F = | By
i.e., the Hessian is the determinant (cf. Geometry 1) of the matrix of the second partial
derivatives.!

)

Example:

Find the local extreme values of f(z,y) = 2y — 2* — y* — 22 — 2y + 4 and determine the
nature of each.

f(z,y) is defined and differentiable for all points in its domain. Hence, at extreme values
[z and f, are simultaneously zero. This gives the two equations

fo=y—20—-2=0; fy=2—-2y—2=0.

'If you want to know why: check out Thomas’ Calculus Section 14.9.



The solution of these equations is x = y = —2. Hence (—2, —2) is the only point where f
may take an extreme value. Now take the second derivatives:

foo =—2<0, foy =2, foy =1.
At the point (-2, —2),
faczfyy - iy = (—2>(—2) — 12 =3>0.

S0 fre <0 and foofyy — fy > (. Therefore f has a local maximum at (—2, —2). The value
of f at this point is f(—2,—2) = 8.

In general the situation can be slightly more complicated:

Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

i. boundary peints of the domain of f

ii. critical points (interior points where f, = f, = 0 or points where f, or f,
fail to exist).

If the first- and second-order partial derivatives of f are continuous throughout a
disk centered at a point (@, b) and f.(a, b) = fy(a, b) = 0, the nature of f(a, b)
can be tested with the Second Derivative Test:

i. fo<Oandf.f, — fu° > 0at(a,b) = local maximum

ii. foo > 0and f.f),y — fxyz > 0at(a, ) = local minimum
iii. fufy — fof < Oat(a,b) = saddle point

iv. fufw — fo’ =0at(a,b) = testisinconclusive.

Lagrange Multipliers

We now consider the problem to find extrema of a function f(z,y, z) whose domain is con-
strained by another function g(z,y, z) = 0 to lie within some subset.

Suppose that f(x,y,z) and g(z,y, z) are differentiable and Vg # 0 when g¢(z,y,z) = 0.
To find the local maximum and minimum values of f subject to the constraint
g(z,y,2) = 0,2 we need to find the values of z, y, z and A\ that simultaneously satisfy the
equations

Vf=AVyg and g(x,y,z) =0.

This is the Method of Lagrange Multipliers. For functions of two variables the condi-
tion is similar but without the variable z.

2If these exist - there is a small subtlety here, cf. Thomas’ Calculus p.815.



We will see how the method works by considering two examples.?

Example:
Find the greatest and smallest values that the function f(z,y) = zy takes on the ellipse

1.2 y2
—+==1.
8 + 2
v
£
= Xy
V2 et 5=l
* X
0 22

We need to find the extreme values of f(z,y) = zy subject to the constraint

22y
=—4+=—-1=0.
First, find the values of z, y and A for which

Vf=AVyg and g(z,y) =0.

Vi = fil+ fyi=yi+aj
Vg = gi+gj=—-1+yj.

4
Hence
LA .
yi+zj = le—{—)\yj.
Comparing components gives
A
y=7% r=M\y.
Therefore \ \2
y=50y) =7y

Hence y = 0 or A = £2 and there are two cases to consider.

3A detailed motivation and a sketch of the proof are provided in Thomas’ Calculus, beginning of Section
14.8.



1. If y =0, then z = y = 0. But (0,0) does not lie on the ellipse, hence y # 0.

2. If y # 0, then A = +2 and = = £+2y. Substituting in g(z,y) = 0 gives

=1 = dy® +4y* =8 =y==l.

+92 2 2
(£29)° v
8 2

Therefore f(z,y) has its extreme values on the ellipse at the four points (£2,1), (£2, —1).
The extreme values are xy = 2 and zy = —2.

The level curves of f(x,y) = xy are the hyperbolas zy = ¢. The extreme values are the
points on the ellipse when V f (red) is a scalar multiple of Vg (blue):

Example:
Find the maximum and minimum values of the function f(z,y) = 3z + 4y on the circle
2 +y? =1
flo,y) =3c+4y,  gloy)=2"+y" -1,
The Lagrange multiplier condition states that Vf = A Vg, hence

3 2
3i+4j = 2A\zi + 2)\yj :>:v:ﬁ, y=5 (A #0; why?).
Therefore x and y have the same sign.
The condition g(x,y) = 0 gives
4y —1=0

and this gives

@) () e



This gives
9 4
— 4+ —==1 16 = 4)\?
4)\2+)\2 =9+ 16
Hence 5 5 5
- = — 4= -z
YT T s YT

Therefore the function f(z,y) = 3z + 4y has extreme values at (x,y) = +(3/5,4/5).

=4-.

=>A=+—.

The level curves of f(x,y) = 3x + 4y are the lines 3x + 4y = ¢. The further the lines lie
from the origin, the larger the absolute value of f:

Double Integrals

Consider a function f(z,y) defined on a rectangular region R : a < z < b, ¢

partitioned into small rectangles Ay:

EJr |
R
/
I':‘-_.‘-!'JI: f""‘(.’fk. ‘!'k)
:fL'l}

"_' —

|
0 i

The area of a small rectangle with sides Az, and Ay is

<

Y

<

d



Choose a point (xy, yx) in the (suitably numbered) kth rectangle with function value f(zy, yx).
We can consider z = f(x,y) as defining the height z at the point (z,y). The product
f(zk, yr) AAyg is then the volume of a solid with base area AAj and height f(zg,yx) (for
which we assume that f(zg, yx) > 0):

r
i

fix, ¥

(g i) AAy

The Riemann sum S,, of these solids over R is

Sp =Y [z yp) AA.

k=1
Now consider what happens as AA;, — 0 (as n — o0), i.e., we refine the partitioning. When
the limit of these sums exists the function f is said to be integrable and the limit is called
the double integral of f over R, written as

/R [fanaa o /R [ @) azay

The volume of the portion of the solid directly above the base AAy is f(zx, yx) AAg. Hence
the total volume above the region R is

Volume = lim Sn://f(x,y) dA
R

n—0o0o

where AA, — 0 as n — oco. The following figure shows how the Riemann sum approxima-
tions of the volume become more accurate as the number n of boxes increases:

{a)n = 16 (byn = 64 (c)n = 256
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Consider the calculation of the volume under the plane z = 4 —  — y over the rectangular
region R: 0 <z <2and 0 <y <1 in the -y plane.
First consider a slice perpendicular to the z-axis:

z=4-x-—y

y =1

X A(x) :Jﬂ (4 —x = y)dy
y=0

The volume under the plane is

/m ;2 A(z) da

where A(x) is the cross-sectional area at x. For each value of x we may calculate A(x) as
the integral

y=1

Aw) = [ -z =gy
y=0

which is the area under the curve z = 4 — x — y in the plane of the cross-section at x.

In calculating A(x), x is held fixed and the integration takes place with respect to y.
Combining the above two equations we have

r=2
Volume = / A(x)dx

=0

r=2 y=1
= / </ (4—x—y)dy)dx
=0 y=0
=2 27y=1 =2
= / {4y—xy—y—} dx:/ <Z—x) dx
x=0 2 y=0 x=0 2

3L G-



We can write -
Volume = / / (4—z—y)dyde.
0Jo

This is an iterated or repeated integral. The expression states that we can get the
volume under the plane by (i) integrating 4 — z — y with respect to y from y =0 to y = 1,
holding x fixed, and then (ii) integrating the resulting expression in x from z = 0 to z = 2.
In other words, first do the dy integral and then do the dx integral.

Now consider the plane perpendicular to the y-axis:

i,

z=4—x—y

x=2
X Aly) = f (4 —x—wv)dx

Yx=10

We have

The volume is then
y=1 y=1 1
Volume = / Aly)dy = / (6 —2y)dy = [69 - yQ]o =5
y=0 Y

as before.
This illustrates

THEOREM 1  Fubini’s Theorem (First Form)
If f(x, y) is continuous throughout the rectangular region R:a = x = b,
¢ =y = d,then

J “d b B
// flx,v)dA = / flx, v) dxdy =/ / flx, v) dy dx.
ol e SO a Jco
R




Example:
Calculate the volume V under z = f(z,y) = 2%y over the rectangle R defined by 1 < z < 2,

—3<y<4
=2 y=4
V = //.7: ydA = / (/ :U2ydy) dx
=3
r=2 7,2 27Yy=4 =2 37 =2
L e [ )
=1 2 y=—3 x=1 6 r=1 6
Changing the order gives the same result:
=4 =2
V = //m ydA = / (/ x%ydx) dy
-3 =1
y=4 =2 y=4 27 y=4 4
R e [ - [] 2
y=-3 3 =1 y=-3 3 6 y=—3 6

In this example we could have separated the integrand into its = and y parts:

=2 y=4 =2 y=4 4
V:/ </ x2ydy)dx:(/ x2dx></ ydy):Z.Z:—g.
=1 y=—3 =1 y=—3 3 2 6

More generally, if f(z,y) = g(x)h(y), (i.e. the function is separable) and the region is
rectangular then

[ Jownwar = [ /:dg<x>h<y>dy) dr
= ([ o) ([ 1),

Now consider the case where the region R is not rectangular:*

THEOREM 2 Fubini’s Theorem (Stronger Form)
Let f(x, v) be continuous on a region R.

1. IfRisdefinedby a = x = b, gi(x) =y = g2(x), with g, and g, continu-
ous on [a, b], then

gaix)
ﬂfr}da!—// ) ey dx.
@ilx)

2. IfRisdefined b} c=y=d h(y) =x = hly), with & and h> continuous
on [¢, d], then

haly)
/ff (x, v) dA —f/ flx, v) dxdy.
nir)

!see Thomas’ Calculus, beginning of Section 15.2 for details underlying this theorem



Example:
Find the volume of the prism [/ »(3—1—y)dA where R is the region bounded by the z-axis
and the lines x =1 and y = x.

e
L

N
R
0 y=0 1 *
(b)
y x=1
/=x
X =) x=
R
0 1 *

{a) (c)

The region of integration in the z-y plane and the volume defined by z = 3 — x — y are
shown in the figure. In order to do the double integral we will first consider the approach
where we fix the value of x and do the y integral. We have

1 g2V
//(S—x—y)dA = / / 3—x—y dydx—/ [3y—azy—?] dx
R =0 0 y=0
3 322 23]
- S Vdr= |22 D =
[ ) e -3,

We can also change the order of the integration where we fix the value of y and do the z
integral. We have

1 2 r=1
//(3—z—y)dA = / / 3—x—y dxdy—/ [3:6—%—:@] dy
R y 0 T=y
Yy



In some cases the order of integration can be crucial to solving the problem.

Example:
Calculate [[,(sinz)/xdA where R is the triangle in the 2-y plane bounded by the z-axis,
the line y = x and the line z = 1.

y

v
-

0 I

Taking vertical strips (i.e. keeping z fixed and allowing y to vary) gives

1 T 1 . y=x 1
/ (/ e dy> der = / {ysmx] dr = / sinz dx
0 o T 0 T Jy=o0 0

= [~cosz]y = —cosl+cos0O=1—cosl.

However, if we reverse the order of integration we get

1 el
/ / sinx dz dy
0Jy T

and [(sinx)/z dz cannot be expressed in terms of elementary functions making the integral
difficult to do.

There are always two ways to do a double integral; choose the simpler because the other
may be impossible!

A key part of the process of double (and multiple) integration over a region is to find the
limits of the integration. We can illustrate the procedure by considering the double
integral of a function over the region R given by the intersection of the line x + y = 1 with
the circle 2 + y* = 1 (see the picture next page).

1. Sketch the region of integration and label its boundary curves.

2. If we decide to use vertical cross-sections first: Find the y-limits of integration.
Imagine a vertical line through the region, R, and mark the points where it enters and
leaves R. In this case such a line would enter at y = 1 — z and leave at y = /1 — 2.

3. Find the z-limits of integration: Choose the x-limits that include all vertical lines
through R. In this case the lower limit is x = 0 and the upper limit is x = 1.

4. This step may not be necessary: Reversing the order of integration. Then the
x-limits would be from x = 1 —y to x = /1 —y? and the y-limits from y = 0 to
y =1



(a) (b)
y y
i Leaves at
1 ] — x2
E Entcrs at
=1-x
L
> X
> X 0
(©) (d)
y Leaves at Largesty Y
A, s %

y = \/I ‘_.\.'2 isy =] Enters at
\l x=1-y

|
R Enters at
y=1-—x 3

"\
L Smallest y Leaves at i
iS)’ZO t_\/l—‘\"
> ¥ BN
0 X 1 0
/
Smallest x Largest x
isx=0 isx =1

Example:
Sketch the region of integration for the integral

2 pr2x
/ / (4dx +2)dydx
0 Jz2

and write an equivalent integral with the order of integration reversed. Evaluate the integral.

4r 2.4)

y=2x

As written, the order of integration would imply that we do the y-integral first, from y = 22

to y = 2z, followed by the z-integral from x = 0 to x = 2. However, we are told to reverse



the order of integration. This means we do the z-integration first, from z = y/2 to x = /y,
followed by the y-integral from y = 0 to y = 4. In other words,

2 (2 4 vy
/ / (4x+2)dydx:/ / (4z +2)dzdy
0 Ja? 0 Jy/2

We can evaluate the integral using either ordering. Let us revert to the original:

2 20 2 2
/ / (dr +2)dydx = / [4zy + 2y]%% da :/ (82 + 4z — 42® — 22%) du
0 Ja2 0 0
2
— / (—42® + 622 + 4z) dz = [~a* + 22° + 227,
0
= —16+16+8=28.

Note that this example is not separable because it is a non-rectangular region (i.e. the limits
on the x and y integrals now depend on the region of integration).

Double integrals can also be calculated over unbounded regions.

Example:
Evaluate the integral [° [z e~ *T2)dz dy.
We have

// re W drdy = // “Wre dady
o Jo

(integrate by parts with u = z, dv = e~ *dx)

- [ e—%{[_m - e dx} dy

Double integrals have the following properties:
Let f(z,y),g(x,y) be continuous on the bounded region R. Then

/R/Cf(”“y)dfl = C/R/ f(z,y)dA for any number ¢
/R/U(fc’y)ig@y)) A = /R/ f(Iay)dA:t/R/ glx,y) dA

/R/ﬂwdf‘1 > 0 if f(z,y) =000 R

/R/ floy)dd = /R/ g(r.y)dA i f(z,y) > g(z,y) on R

/R/f(a:,y)dA - /Rl/f(x,y)dA+/RQ/f(x7y)dA

lf R:R1UR2,R1HR2:®



Area by double integration

The area A of a closed, bounded plane region R is given by

A= limZAAk:/P/dA,
k=1

which is equivalent to calculating [, f(x,y)dA with f(z,y) = L.

Wil — T~
ol N
7 T[R[ A4
/ Ayy / & =2y, )
\ | Ax, |
A /
| A

Example:

Find the area of the region R enclosed by the parabola y = 22 and the line y = z + 2.
Determining the points of intersection is essential to determining the limits on the integra-
tions. We can find the points by setting 2 = x+2 which gives 22 —x—2 = (z+1)(z—2) = 0,
giving x = —1 and x = 2. The corresponding values of y are y = 1 and y = 4. So the points
of intersection are (—1,1) and (2,4).

(=1, 1)

0 ! 0
{a) ih)



If we use vertical strips (i.e. fix z and vary y) for the first integral we will not have to split
up the region of integration. From the diagram we see that the lower and upper limits for
the first integration are therefore y = 22 and y = x + 2. This gives

2 z+2 2
A = // dyd:c:/ [y]%3? da
—1Jz2 —1
2 22 $32 9
= 2—2’)de=|=+20— | =-.
/_1(x—|— ZE) T [2—1- x 3}_1 5

Double integrals can also be used to find the average value of the function f(z,y) over
the region R, which is defined to be

= o | Femaa.

Example:

Find the average value of f(x,y) = x coszy over the rectangle R: 0 <z <7, 0 <y <1.
The area of the region R is just 7, the product of the length of the two sides of the rectangle.
We just need to find [, f(z,y) dA and then divide by 7.

T pl s
/ / x coszydydr = / [sin xy]zz(l] dx
0 Jo 0

= /0 (sinz —0) de = [—cosz]y =1+ 1=2.

Hence (f) =2/7.
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Substitution in Double Integrals

For functions of one variable it is often useful to integrate by a change of variable, e.g. © =
x(u). Let us review integration by substitution in a slightly different way than you have
learned in Calculus 1, namely backwards: Replace x by z(u) and dz by (dz/du)du. Then
alter the x-limits to the w-limits with a < b and uy < uy. First, assume that z(u) increases
with u giving a = z(uy) and b = x(ug). Then

r=b u=u2
I = ) (a:)dx:/_ f(a:(u))j—idu

If z(u) decreases with u we have a = x(uy) and b = x(u;), and the u-limits are reversed.
With u; < us we therefore have a change of sign:

x=>b u=usg dZL‘
= fa)de= —/ Flar(u) S du
But dz/du < 0 in this case, so we can combine both cases in one formula:
x=>b u=uso dZL‘
dr = -
[ t@ar= [ st

Note that on the right-hand side of this equation the function f(z) is expressed as f(z(u)).
Also, the right-hand side of the equation includes a scaling factor |dz/du|, multiplying the
du; this comes from transforming from dz to du.

For functions of two variables one would similarly expect that the change in variables

du.

r=z(u,v), y=uyuv)
(for example, for polar coordinates u = r and v = #) would result in a change in the area

by a scaling factor S such that
drdy = Sdudv.

As an example consider a linear change of coordinates:

r = z(u,v) = au + by, y=1y(u,v) =cu+dv

x\  [a b\ [(u
y) \c d)\v
where a, b, ¢ and d are constants.

Let us write M for the transformation matrix composed of a, b, ¢ and d and recall that a
unit square in (u, v) variables has sides

u 1 u 0
(£)=(o)== ()= ()=
To see what happens to this unit square under the transformation M, just apply M. This
gives
a b\ (1 a
Me = = (23 (6) - ()
b\ (0 b
Mo = = (23) () - (2

where (a, c) and (b, d) represent the coordinates of the new corners in the (z,y) plane:

or

o

o



Y
(u=0,v=1) (u=1,v=1) (atb, c+d)
62 (b, d)
€ P
(u=1,1=0) € (@¢)
€ u bY

(note that the arrows are supposed to reach the respective points)

Therefore, under the transformation M we find that the unit square in (u,v) based on ey,
e, is transformed into the parallelogram in (z,y) based on €/, €.

Note from the matrix and the diagram that the point (1,1) in (u,v) transforms to the point
(a+0b,c+d)in (z,y).

Let us calculate the area of the parallelogram P:

_____ LU
cl R e D
T 4 |
vd
! (b
T, ¢ R
a b
X
We have
Area P = [Total area of rectangle]
— [Area of 2 pairs of equal triangles 77 and T3]
— [Area of 2 rectangles R] .
Therefore,
1 1
Area P = (a+b)(c+d) —2-§ac—2-§bd—260
= ad — be = det (“ b) = det M
c d

In view of the equation dx dy = S du dv one may understand this result such that the unit
square of area dudv gets multiplied by a factor of S = det M. The same argument shows
that a small rectangle of sides du and dv with area du dv also gets multiplied by S = det M.
Therefore, for a linear change of variables a small rectangular area du dv in the (u,v) plane
is transformed into the parallelogram area dx dy = det M du dv in the (z,y) plane.



Now let us consider a nonlinear change of coordinates. We take the transformation to have
the form

r = z(u,v), y =y(u,v),

where according to the total differential the increments in x and y are given by

ox ox
Oy y

or, in matrix form,
de\  (Ox/Ou Ox/0v\ (du
dy)  \Oy/ou Oy/ov) \dv) "
The Jacobian matrix is defined to be

M (u,v) = <g§?gz gz?gZ)

and the Jacobian determinant, or Jacobian,

d(z,y)
Jd(u,v)

= det M(u,v).

This suggests that for a nonlinear change of variables we also have that a rectangular area
du dv in the (u,v) plane) is transformed into the (deformed) ‘parallelogram’ area det M du dv
in the (z,y) plane.

(a) ¥ (b) Y v+dv

v+HOv|---- v
R
vl | | u+ou
| | u
. LU X
u u+ou

(with du = du dv = év and rather ignore the symbols in the right figure)

Therefore, the required transformation formula for double integrals under a change of vari-
ables is:

//Rf(x,y)dxdyZ/ IRCTORTIRD) 'ggzqyji dude
where ‘ggz: g; o

can be thought of as the scaling factor S.



Note that | - | denotes the absolute value of the determinant of the matrix, i.e., the modulus
as in the one variable case. This may not be confused with the case of a matrix, where
vertical lines on either side denote the determinant. For example, if we let

(Y

then
det A = |¢ b’ = ad — be
c d
and
|det A| = |ad — be| .
Example:

Evaluate the integral

]://R(x2+y2)dxdy

where R is a disk 22 + y* < a?, by changing to polar coordinates.
In polar coordinates we have

x =rcosb, y=rsind.

Therefore, taking u = r and v = 6, we can write the Jacobian matrix as

M — dx/0r 0x/d0\  (cosf —rsind
- \9y/or 0y/o8) \sinf rcosd

and the Jacobian determinant is

~ O(w,y)
det M = a0, 0) =

cos —rsind
sinf rcosf

=r (00829 + sin? 9) =r

where here and in the following we assume r > 0, so we do not need to take the absolute
value. The original area R and the transformed area R’ are shown below:

(a) y (b)

2

R!

Note that the circle in the (z,y) plane transforms into a rectangle in the (r, ) plane. Here
R is the region given by 2% + y? < a? and R’ is the region given by 0 < r < a, 0 < 6§ < 2.



Therefore

I—//:B+y dzdy—// ) drde

where the 72 on the right-hand integral comes from the transformed 2% + y? and the r dr df
is from the transformed dz dy with r coming from the Jacobian determinant det M. Hence

0=2m r=a 0=2m 4
1—/ / rd&dr—(/ r3dr)</ d@)—ﬂ,
r=0 0 r=0 6=0 2

where we note that the integral is separable.

Example:
Evaluate the double integral

rz=y/2+1 2$ y
dx dy
//a: y/2

by applying the transformation u = (2x —y)/2, v = y/2 and integrating over an appropriate
region of the u-v plane.

The region R in the z-y-plane looks as follows:

E r=u+0

. y=2
ot — 3

w=" n=1 V.

ol v=0 | 0 \

The corresponding region GG in the u-v plane can be obtained by first writing x and y in
terms of w and v as x = u + v and y = 2v.
The boundaries of GG are then found by substituting these equations for the boundaries of

R:

xy-equations for Corresponding uv-equations Simplified

the boundary of R for the boundary of G uv-equations
x=y/2 utv=2/2=v u=20
x=(y/2)+1 u+tv=0Qu2)+1=v+1 u=1
y=20 2u=20 v=20
y=4 2v=4 v=2

The Jacobian of the transformation is

dw,y) |0x/ou Ox/ov

det M(u,v) A v) = |oy/ou dy/ov
_|0(u+v)/ou O(u+wv)/dv| |1 1 _o
| 9(2v)/0u d(2v)/ov | |0 2| 77




and we get

(y/2)+1 20 — Y v=2 pu=1
// dmdy—/ / |detMuv)|dudv—/ / u-2dudv =2
z=y/2 v=0 v=0 Ju=0

Note that for invertible transformations
oz, y)  (0(u,v)\™
O(u,v)  \9(z,y) ’

as you have seen in Calculus 1 for a function of one variable. This can be useful in solving
some problems.

(1)

Example:
Evaluate the integral

I://1~da:dy
R

(i.e. the area of the region R) where R is enclosed by y* = z, y* = 2z, zy = 1 and zy = 2.

y (a) v (b)
2 y2=2x Y= mmmm e
2y R'
R y

1 xy=2 v=1------------5 .

xy=1 i i
0 0 i |

0 1 5 * 0 u=1 u_itZ

To solve the integral consider the change of variables defined by
u=1y?/z, v=1ay.
Then we can write the four bounding curves as
V=reou=1 Y= u=2 zy=leov=1 zy=2&v=2.

So the region becomes a square (the region R’ in part (b) of the above figure).

Now, for the Jacobian determinant it is easier to use Eq. (1) above. So, to calculate
I(x,y)/0(u,v) we first calculate d(u,v)/d(x,y) and then take the inverse. Using u = y*/z
and v = xy we have

O(u,v) _
Iz, y)

Therefore, using Eq. (1),

ou/0x Ou/dy| _|—y*/z* 2y[z|
ov/ox Jv/dy| | vy r |




Hence

I = //1-dxdy—//1-’M’dudv
u=2 v= 21
= // dudv = = / / —d’udu
v=2
- g/u 1 |:E:|v:1 du

u=2 1

1 1 - In 2
= —/ —du:—[lnu]uj:n—
3 Sy u 3 v

Optional reading assignment:
Work yourself through the following example
(not in Thomas’ Calculus).

Example:
Evaluate the integral

/OO e 24y .

If we call this integral I, we can write

12 _ (/OO e_xQ/le_) (/ _yZ/Qdy) / / 2+y )/de dy
Now transform to polar coordinates with the limits 0 < r < oo and —7 < 6 < 7. This gives
r? = / / 2|2 ‘drd@—/ / e /2 drdg
—T r 0 —T
- / [ e—”/ﬂ d9=/ ((0) — (- ))de_/ df = 2r.
- 0 —r -7

Hence I = /2.
Note that the probability density function for a normal (or Gaussian) distribution is

1
2T

o (22 (20%)

p(z) = .

for mean p and standard deviation o. If we write t = (x—p)/o (i.e. express the displacement
from the mean in terms of the standard deviation) then the total probability is

P = —(z )2 202)d —t2/2

a\/ 2 o\ 2T
—t2/2 - .
—_— e dt =1. (by our previous result
o / N (by our p )
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Triple Integrals

Triple integrals are integrations where the region of integration is a volume. The basic
concepts are similar to those we introduced for two-dimensional (double) integrals, but now
we have for the Riemann sum

Sn = Zf(xk’ayk’a Zk) A‘/k )

k=1
where AV), = Az, Ay Az are now small volumes at the point xy, yx, 2k, see (a) in the
figure below (where it is AV, = 0V).
The limit as the size of the volume element AVj, — 0 (as n — o0) is written as (if it exists)

T}LIEOSn—///fxy, )dV = ///fa:y, drdydz,

where V' is the three-dimensional region being integrated over.

The integrals are, as in the two-dimensional case, evaluated by repeated integration where
we integrate over one variable at a time. For example, we could start by integrating over z
first, see (b) in the figure below. The procedure is as follows:

(a) (b)

y=y1(x)




1. Sketch the region of integration (if possible), see (a).

2. Choose a direction of integration and integrate: For example, fix a point (z,y)
and integrate over the allowed values of z in the region V. The z-integral limits are the
small, filled circles at the bottom and the top of the dashed line with, say, z = z;(x, y)
at the bottom and z = zy(x,y) at the top as shown in (b). Therefore we are summing
vertically over the boxes shown in (b).

3. This result depends on the choice of (z,y) and is defined in the region R of the (z,y)
plane which is the projection of V" onto this plane as shown in (¢). This now identifies
the region in the (z,y) plane over which we must do the = and y integrations.

4. Now we can take the double integral of the result of the z-integration over the
region R in the (z,y) plane, see (d).

z=b py=ya(x) pz=z20(z,y)
///f(x,y,z)dV:/ / / f(z,y,2)dzdydz.
v a=a Jy=yi(z) Jz=z(zy)
Example:
///f(ﬂs,y,Z)dV
T

Evaluate

over the tetrahedron 7" bounded by the planes t =0,y =0, z=0and v +y + 2z = 1.
Note that the plane = + y + z = 1 passes through z = 1 (putting y = z = 0) and similarly
through y = 1 and z = 1 as shown below:

<
A A

(a) (b)

Therefore

X X

Now evidently for fixed (z,y) the z-limits are the heavy dots corresponding to z = 0 at the
bottom and z =1 — x — y at the top. This gives our z-limits.

The projection R of T onto the (z,y) plane is the triangle on which the tetrahedron rests,
i.e. the triangle given by x =0, y = 0 and = + y = 1 (obtained by setting z = 0). So

z=1 y=1—x z=l—z—y
I:/ / / flz,y,2)dzdydx.
z=0 Jy=0 z=0

For example, if f(z,y,2) =1 then

1= [[[1-av = [ ][ av = volume of 7.



Therefore, in this case

=1 y=1—2x z=l—-z—y r=1 y=1—x
I = / / / ldzdydx = / / 222" Y dy da
=0 y=0 z=0 =0 y=0
=1 y=1l—zx =1 y2 y=1—z
= / (1—x—y)dydx:/ {y—xy——} dx
=0 y=0
r=1 o 2

=0 2 y=0
(1

- x) 1
doe = =
/xo 2 TG

and this is the volume of the tetrahedron.

Triple integrals can be used to find the average value of a function f(x,y,z) over a
volume D defined as

o2 = g | Farav

Example:
Find the average value of f(z,y, z) = xyz over the cube bounded by the planes z = 2, y = 2
and z = 2 in the first octant.

f_;- |
#
7l
20 A
/\ f_r"'
X 7’

The volume of the cube is 23 = 8. The integral is

2 2 p2 2 2 2 2 3 4272 3
/// :cyzd:z:dydz:/ :cda:/ ydy/ zdz = (/ xdx) = {—] =8,
0Jo Jo 0 0 0 0 2 o

because the function is separable and the region is cubic. Therefore the average value of
f(x,y, z) = xyz over the cube is

1 1
= dVv=--8=1.
@y, 2)) volume of cube ///Cube wyzdV 8 s




Example:
Find the volume V of the region D enclosed by the surfaces z = 22 +3y? and z = 8 — 2% — /2.

The two surfaces intersect at 2% + 3y?> = 8 — 22 — y2. The equation 2?2 + 2y?> = 4 thus
defines the boundary of the projection of D onto the x-y plane, which is the ellipse R:

Mt z

Leaves at
 § 3
z=8-—x"—y

{ g D‘p 4)
(2,0, 4) z=x'+3y°
Enters at
s=xt 3y
Enters at 0,0)
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(-'}OD) x2+2y2=4

Leaves at ¥

=Vi4—xh2

We now have all the information necessary to do the integral:
(4— x2 /2 8—x2—y?
V = /// dzdydx—/ / / dzdydx
(4— m2)/2 z2+3y?
4 :v2)/2
= / / — 227 — 4y2) dy dx
(4 —z2)/

4 Va2
= / [(8 22%)y — 3y3] dz
-2 _

(4—22)/2

— /_Z (2(8—21:2) @—g (4_—2ﬁ>3/2> dz
- [ (8 (4—2“’2)3/2_2 (4‘2””2)3/2> ”
_ M2 / %2 dz  [since (8 — 8/3)/(2%/2) = 4v/2/3]

= 4\/_ 43/ ? (cos 9) -2 cosfdf [using subst. x = 2sin 0]

3 —7/2




/2 4
= —-16/ cos'0df) = —— \/_ (3—1—400820—}—00849) dé
—/2 —7/2

1 /2
= -2[39—}-2811129—1—1811149]
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Substitution in Triple Integrals

Changing variables in triple integrals is similar to the procedure used for double integrals.
Suppose
r = z(u,v,w), y =y(u,v,w), z = z(u,v,w).

We define the Jacobian matrix for change of variables from (x,y, z) to (u,v,w) to be

Ox/Ou Ox/0v Ox/0w
M(u,v,w) = | dy/Ou 9Jy/Ov 0dy/ow
0z/0u 0z/0v 0z/0w

and the corresponding Jacobian determinant as

ANz, y, 2)

——— =detM
O(u, v, w) ¢

such that the transformation for volume is

dz,y, z)

——| dudvdw.
O(u, v, w) wavaw

drdydz = ’

As before, for invertible transformations we have

fens - (Jued)”

The integral under change of variables becomes

// fz,y,2)dedydz =
// V/f x(u, v, w),y(u,v,w), z(uvw))‘g((jngé

where V' is the transformed volume in (u,v,w) coordinates.

dudvdw,

Example:
A volume V' in the first octant is bounded by the six surfaces zy = 1, zy = 2, yz = 1,
yz =2, xz = 1 and xz = 2. Using the change of variables

r=xy, s =Yz, t=uxz

and by assuming that this tranformation is invertible on V| evaluate the integral

/// ryzdrdydz.
1%



The new limits are r = 1 tor =2, s =1tos=2andt =1 tot = 2. The Jacobian
determinant is

or/0x Or/dy 0Or/dz

y x 0
g(r’ﬁ = |0s/0x 0s/dy 0s/dz| =10 z y
(z,9,2) ot/0x 0Ot/0y Ot/0z z 0 =z
zZ oy 0y
0 T - zZ T

= y(zz) + z(yz) = 2zyz.

ot ( ) (a( t))‘l 1
or,y,z) _ (st _

o(r,s,t)  \9(z,y,2) 2y

and so

///nyzdxdydz _ ///xyz drdsdf — / / / _drdsdt

xyz

First-order differential equations and their solutions

You have learned in Calculus 1 that a function y is an antiderivative of a function f if

)

Finding an antiderivative for a given function f(x) means finding a function y(z) that solves
this equation. This is an example of a differential equation, an equation involving the
derivative of an unknown function y.

Using f = f(x) on the right hand side the above equation defines a special case of a
differential equation, and you already know of how to solve it. More generally, a first-
order differential equation is of the form

dy
o = (@),

where f = f(x,y) is a function of both the independent variable x and the dependent variable
y defined on a region in the xy-plane. The equation is of first-order, because it involves only
the first derivative dy/dx (and not higher-order derivatives).

A solution of this equation is a differentiable function y = y(x) defined on an interval I of
x-values such that p

Tylw) = f(z,y(@)

on I. The general solution to such an equation is a solution that contains all possible
solutions. As you will see in a moment (recall solving an indefinite integral), it always
contains an arbitrary (integration) constant. This constant can be fixed by specifying an
initial condition

y(0) = Yo -



The combination of a differential equation and an initial condition is called an initial
value problem. The solution satisfying the initial condition y(zg) = yo is the particular
solution y = y(x) whose graph passes through the point (xg, o) in the zy-plane.

Example:
Show that

1
= 1 — —e7
y=(x+1) 3¢
solves the first-order initial value problem

dy 2

g VT y0) =3,

Differentiate y(x) to calculate the left hand side:

d 1
—yzl——e .

dz 3
Now check for the right hand side:

1 1
y—x:(x—i—l)—gem—:c:l—gex.

Both are equal, hence y solves the given equation. Since

it also satisifies the initial condition.

Separable differential equations

An important class of first-order differential equation can be motivated by an

Example:
Solve the first-order differential equation.

dy _

=k
d:L‘ y?

where the function f(y) = ky on the right hand side only depends on y and is furthermore
linear in y with a constant k € R.

By assuming that y # 0 we can write

Ldy _

k .
ydx

If we treat dy/dz as a quotient of differentials dy and dx (by which strictly speaking we
modify the problem - it defines a derivative!), we obtain

1
—dy = kdx
Y



Now we can integrate:

1
/—dy = /k;dx
Yy
Inly] = kax+C, C = const.

yl = e
y = Ae™ with A = +e“ .

We see that the solution of this differential equation undergoes exponential change.
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The example to the end of the previous lecture is a special case of what is called a separable
differential equation y' = dy/dx = f(x,y), where f can be expressed as a product of a
function of x and a function of y. We can always try to solve such an equation by separation
of variables:

The detailed justification of what we have done in the previous example is integration by

substitution .
/
—ydr = /g x)dz
/ h(y) (@)

/ @d ~ [ gtayda.

After completing the integrations on both sides (which may not always be possible), we
obtain the solution y as a function of x in implicit form.

using u = y(x),

Example:
Solve the initial value problem

dy
I (1+y)e", y , y(0)

By separation of variables and integration we obtain

by = /e“”dm
l+y

In(l+y) = e"+C, C =const.,

which gives the solution y in implicit form. The constant C' is determined by using the
initial condition y(0) = 0:

n(14+0)=0=e"+C=1+C

giving C' = —1. The explicit solution of the initial value problem is obtained as

y(r) =1 —1.

First-order linear differential equations and the integrating factor
A first-order linear differential equation is one that can be written in the standard form

W\ playy = Qa), 1)

dx
where P = P(z) and ) = Q(x) are continuous functions of . It is linear (in y), because y
and its derivative dy/dx occur only to the first power, they are not multiplied together, nor
do they appear as the argument of a function (such as siny, exp(y), etc.).



Example:
Put the equation
d
x—y:x2+3y, x>0,
dx
in standard form.
dy
% = T+ —Y
dy 3
— ——y = T.
dx a:y

Hence, P(z) = —3/z and Q(x) = x.
An equation in standard form can be solved as follows: Multiply it by a function v = v(x),
dy

v— +vPy =v0@ .
dx

Now let’s play a little trick: If we choose v such that it transforms the left-hand side into
the derivative of the product vy, that is,

dy d
29 Py — —
v Py = = (uy),
we can write p
T (vy) = vQ

and easily solve by integration:

vy = /dex

y = %/dex. 2)

We call v(z) an integrating factor, because it makes the linear differential equation inte-
grable.

Now, did we mysteriously get rid of P(z) by solving our differential equation? Not quite,
because we still have to determine v(z) by solving the previously imposed equation

d dy
— =v—=+0vPy.
T (vy) = T +vPy
Apply the product rule and simplify:
dv dy Y
YT = v + Poy
dv
“y = P
dxy vy
But this equation will hold if
d
o Puv |



which is separable, P = P(x):

4= [ ra
v

Without loss of generality we may assume that v > 0,

lnv = /Pdm

v = el P (3)

The general solution to Eq.(1) is thus given by Eq.(2) together with Eq.(3). Note that any
antiderivative of P works for Eq.(3).

Example:

Solve

d
x—y:x2+3y,x>0.
dx

The integrating factor method consists of three steps:
1. Put the equation in standard form:
dy 3

_ = :1'7
dx xy

hence P(x) = —3/x.
2. Calculate the integrating factor:

v = of P@dz _ [(=3/x)dx

by choosing the simplest constant of integration, C' = 0, and noting that = > 0:
v = e Binw _ ma™? =3
3. Multiply and integrate: Multiply both sides of the standard form by v(z),
1 (dy 3 1 1
s =m=

and remember that the left hand side always integrates into the product vy, as we have
designed it to be:

d (1 1

dr \z37) T 2

1 1
v = [t

1 1
—3y = ——+C.
x X

Solving this equation for y gives the general solution

y(r) = -2 +Ca®, 2 >0.

THE END
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